Managing Software Engineering Knowledge

Aybiike Aurum Ross Jeffery
Claes Wohlin Meliha Handzic (Eds)

Managing Software
Engineering Knowledge

With 47 Figures and 23 Tables

Springer

Editors:

Aybiike Aurum Ross Jeffery

School of Information Systems, School of Computer Science
Technology and Management and Engineering

University of New South Wales University of New South Wales
Sydney, NSW, 2052 Australia Sydney, NSW, 2052 Australia
Claes Wohlin Meliha Handzic

Dept. of Software Engineering and School of Information Systems,
Computer Science Technology and Management
Blekinge Institute of Technology University of New South Wales

Box 520 SE-372 25 Ronneby, Sweden ~ Sydney, NSW, 2052 Australia

Library of Congress Cataloging-in-Publication Data applied for

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data is available in the
Internet at <http://dnb.ddb.de>.

ACM Subject Classification (1998): D.2.8 D.2.9 J.4 K.6.1 K.6.3 K.6.4

ISBN 978-3-642-05573-7 ISBN 978-3-662-05129-0 (eBook)
DOI 10.1007/978-3-662-05129-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
Softcover reprint of the hardcover 1st edition 2003

The use of designations, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover Design: KiinkelLopka, Heidelberg
Typesetting: Computer to film by author’s data
Printed on acid-free paper 45/3142XT 543210

Foreword

H. Dieter Rombach

Software development is a human-based knowledge-intensive activity. In addition to
sound methodology and technology, the success of a software project depends heavily
on the knowledge and experience brought to the project by its developers. In the past,
developers have mostly depended upon implicit knowledge. This resulted in problems
when experienced people left a project and new developers entered. The implicit
knowledge was not owned by the development organization, and therefore the
necessary learning curve for novice developers resulted in a significant lowering of the
software quality and developer productivity. The concept of continuous improvement
remained commercially nonattractive as no improvements could be sustained in the
face of personnel turnover.

For too long knowledge management and software engineering existed as separate
communities with different paradigms and terminology. The knowledge management
community developed models and methods for handling knowledge in many areas,
however, they did not adequately address the specific needs of human-based
development activities such as software engineering. On the other hand, the software
engineering community understood the requirements of software engineering tasks
and in an “amateur-style”, reinvented many of the knowledge management models and
methods. Only in the past ten years have these two communities begun to grow
together.

Knowledge management is comprised of the elicitation, packaging and
management, and reuse of knowledge in all its different forms. Explicit software
engineering knowledge includes all types of software engineering artifacts, ranging
from traditional software artifacts such as code, design and requirements to process
knowledge in the form of models, data and standards, and lessons learned. In that
sense, reuse of knowledge can be viewed as the most comprehensive form of reuse
possible. One of the most important aspects of knowledge management is therefore the
focus on reuse scenarios.

The blind population of knowledge repositories will not lead to success. Rather, the
careful and goal-oriented inclusion and packaging of knowledge for specific reuse
scenarios should be aimed for. The “store and hope for reuse” paradigm has failed in
the past in its attempts to get code artifacts reused; it also will fail in the attempt to get
comprehensive knowledge reused. The term “packaging” is related to the important
distinction between data, information and knowledge. Whereas most definitions use
the terms “data” and “information” interchangeably, “knowledge” is mostly referred to
as information in a reusable context.

vi Foreword

Finally, software process improvement people tend to refer to “experience” as a
specific form of knowledge resulting from “actually doing it in your own
environment”, The advantage is that the context is clear, and consequently the
credibility and acceptance of experience is high. For example, it is clear that effort
estimation models based on data from one’s own environment are better accepted than
estimation models imported from foreign environments.

This book aims to provide a comprehensive overview of the state-of-the-art and
practices in knowledge management and its application to software engineering. It is
structured in four parts addressing the motives for knowledge management, the
concepts and models used in knowledge management, its application to software
engineering, and practical guidelines for managing software engineering knowledge.
The editors have included authors from many research groups actively involved in the
interdisciplinary area between knowledge management and software engineering. This
book has the potential to serve as a benchmark for the state-of-the-art practices in this
important interdisciplinary area. I am convinced it will become one of the most
important background materials to graduate students, practitioners and researchers. I
compliment the editors on an important service to the software engineering
community. Well done!

Author Biography

Dr. H. Dieter Rombach is a full professor in the Department of Computer Science,
Universitit Kaiserslautern, Germany. He holds a chair in software engineering and is
executive director of the Fraunhofer Institute for Experimental Software Engineering
(IESE). His research interests are in software methodologies, modeling and
measurement of the software process and resulting products, software reuse, and
distributed systems. He has more than 120 publications in international journals and
conference proceedings. Prior to his current position, Dr. Rombach held faculty
positions with the Computer Science Department and University of Maryland Institute
for Advanced Computer Studies, University of Maryland, USA, and was a member of
the Software Engineering Laboratory.

He has a Ph.D. in computer science from the University of Kaiserslautern, Federal
Republic of Germany. In 1990 he received the prestigious Presidential Young
Investigator Award from the National Science Foundation, USA, in recognition of his
research accomplishments in software engineering. In 2000 he was awarded the
Service Medal of the State of Rhineland-Palatinate, Germany, for his accomplishments
in software engineering research and his contributions to the economic development of
the state through the establishment of a Fraunhofer institute.

Dr. Rombach heads several research projects funded by the German Government,
European Union and Industry. He currently is the lead principal of a federally funded

Foreword vii

project (ViSEK) aimed at building up a German repository of knowledge about
innovative software engineering technologies. He consults for numerous companies on
issues including quality improvement, software measurement, software reuse, process
modeling, and software technology in general, and he is an advisor to federal and state
government on software issues. He is an associate editor of the Kluwer journal
Empirical Software Engineering and serves on the editorial boards of numerous other
journals and magazines. He is a member of GI and ACM, and a Fellow of IEEE.

Preface

Aybiike Aurum, Ross Jeffery, Claes Wohlin, Meliha Handzic

A recent trend in software engineering is the management of software engineering
knowledge. The articles in this book explore the interdisciplinary nature of this
area and portray the current status of management of software engineering
knowledge. This book introduces researchers’ and practitioners’ knowledge
management principles in the field of software engineering in a way that will
capture their interest, excite and provoke them.

An Introduction to Knowledge Management in Software
Engineering

Software development is a complex problem-solving activity where the level of
uncertainty is high. There are many challenges concerning schedule, cost
estimation, reliability, security, defects and performance due to great increases in
software complexity and quality demands. Furthermore, high staff turnover,
volatile software requirements, competitive environments, dynamics of team
members’ psychology and sociology as individuals - as well as in groups - are
only a few examples of the challenges that face software developers.

Increasing application complexity and changing technology provide,
opportunities for the utilization of available experience and knowledge. There is a
need to collect software engineering experiences and knowledge, and reuse them
for software process improvement. Thus, developing effective ways of managing
software knowledge is of interest to software developers. However, it is not well
understood how to implement this vision. On a higher level, a knowledge
repository can improve an organization’s professional image and can also create a
competitive advantage. Knowing and learning how to manage software
engineering knowledge directly address this perception.

In what way can knowledge management assist software development? To
discuss this question, it is necessary to first define knowledge and knowledge
management.

Knowledge and Knowledge Management

A variety of definitions of knowledge have been presented in the literature.
Knowledge is a broad and abstract notion. The Australian Webster’s dictionary
defines knowledge as “the act, fact, or state of knowing; the body of facts,
principles, accumulated by mankind”.
Nonakan[3]rdistinguishesmbetweenimplicit (tacit) and explicit knowledge.
Explicit knowledge is stored in textbooks, software products and documents.

X Preface

Implicit knowledge is stored in the minds of people in the form of memory, skills,
experience, education, imagination and creativity. Choo [2] adds cultural
knowledge to Nonaka’s classification. On the other hand, Spender [5] classifies
knowledge in terms of implicit, explicit, individual and collective knowledge.
There is a common agreement that both implicit and explicit knowledge are
important, however, implicit knowledge is more difficult to identify and manage.

The terms “knowledge” and “data” are often used interchangeably in both
information systems and software engineering literature. Knowledge is seen a type
of information that is attached to a particular context. Alavi and Leidner [1]
speculate that information becomes knowledge once it is processed in the mind of
an individual, which then becomes information once it is articulated and
communicated to others in the form of text, software product or other means. The
receiver can then cognitively process the information so that it is converted back
into tacit knowledge.

Wilson and Snyder [6] define two types of information: support information
and guidance information. Support information includes descriptive explanations
that provide a basic understanding of a product or process by answering questions
such as who, what, when, where and why. The information on guidance illustrates
how to accomplish a task. In order to be able to accomplish a task, to solve a
problem or to answer questions we need to be able to access both types of
information so that we can cognitively process and interpret it.

Information has an economic value derived from its accuracy, timeliness and
exclusivity. According to the economists G.A. Akerloff, A.M. Spence and J.E.
Stiglitz, who won the 2001 Nobel Prize in economics, asymmetric information can
distort economic behavior and is seen as a competitive advantage [7]. Basic
intellectual capital management strategies are based on beliefs that value creation
comes from people. Furthermore, ideas are the source of beliefs, and corporate
growth is a natural process and derived from skill transfer. Thus, knowledge is
considered a crucial resource for organizations and it should be managed
carefully.

The management of knowledge is regarded as a main source of competitive
advantage for organizations. Keeping organizational knowledge up-to-date is seen
as a competitive strategy, especially when the knowledge at hand helps to generate
considerably significant returns [4].

In essence, the objective of knowledge management is to transfer implicit
knowledge to explicit knowledge, as well as to transfer explicit knowledge from
individuals to groups within the organization. Hence, knowledge management is
concerned with creating, preserving and applying the knowledge that is available
within organizations. This implies that knowledge management requires an
appropriate infrastructure for creating and managing explicit as well as implicit
knowledge about artifacts and processes.

Preface xi

The Role of Knowledge in Software Development

Software developers possess highly valuable knowledge relating to product
development, the software development process, project management and
technologies. As knowledge intensive work, software development requires
various forms of explicit as well as implicit knowledge. This knowledge is
dynamic and evolves with technology, organizational culture, and the changing
needs of the organization’s software development practices. There are cases where
the knowledge is created at irregular intervals and the value of its use can only be
displayed over time. There are also cases where the knowledge for the task is well
defined and reusable. Improving software products, software processes and
resources are special cases of knowledge management. For instance, process
support includes improved processes and their results, well-defined tasks,
improved communication and guiding people to perform their task. The use of the
Internet facilitates the storage and utilization of activities, thus improving the
quality of the software development process. Experience also plays a major role in
knowledge-related activities. Software development can be improved by
recognizing the related knowledge content and structure as well as the required
appropriate knowledge, and performing planning activities.

What Can We Learn from Knowledge Management to Support
Software Development?

Knowledge management is an area that has much to offer to software developers
because it takes a multidisciplinary approach to the various activities of gathering
and managing knowledge. The knowledge management viewpoint draws from
well established disciplines such as cognitive science, ergonomics, computer
science and management. Most importantly, it views the management of
knowledge as a human endeavor and acknowledges the fact that human assets are
buried in the minds of individual software developers and leverages it into a team
asset that can be used, learned and shared by other team members.

A knowledge management system in a software organization provides an
opportunity to create a common language of understanding among software
developers so that they can interact with each other, negotiate and share their
knowledge and experiences. A knowledge management system supports the
ability to systematically manage innovative knowledge in software development.
It facilitates an organizational learning approach to software development by
structuring and assisting knowledge transfer at the project-organization level. This
system has a knowledge repository that stores long-term reusable solutions and
illustrates how novel problems can be solved by adapting similar solutions that fit
the organization’s technical and business context. It provides “lessons learned”
functions for solving specific problems e.g. knowledge acquired from past projects
forcustomer-specific solutions or for handling similar tasks such as planning for
software projects. It aids in the development of an organizational memory bank
for practitioners. In this way it facilitates repetitive administrative oriented as well

xii Preface

as knowledge-intensive tasks (also known as workflow management) in a software
development environment.

Finally a knowledge management system repository fosters the use of fault
measurement processes and continuous improvement, and encompasses the
development of generic standards as well as specific development methods. It acts
as a facilitator at both individual and collective levels, for example, by defining
relevant qualitative and quantitative measurements, and by establishing regular
feedback.

Potential Issues

Although the idea of creating a system that allows software developers to share
knowledge is an attractive idea, the literature is filled with questions that software
developers need to address. What kind of knowledge would be useful to store for
software system design? What kind of problems can we solve in sofiware
development by using knowledge management principles? How do you acquire
and represent software development knowledge?

There are number of obstacles to the introduction of knowledge management
into software engineering communities. First, a knowledge management system in
a software organization essentially involves the development of a technical and
organizational infrastructure. This requires significant effort for the development
of knowledge content, filtering and organizing knowledge, capturing intellectual
assets and capturing processes. The system needs continuous updating and
monitoring of knowledge resources. Furthermore, training of software developers
for timely, effective and efficient reuse of experience in subsequent projects is a
necessity. The communication of knowledge for accessibility and its application to
support effective software development is expensive and time consuming. In other
words, a considerable amount of investment is required for the application of
knowledge management principles in a software development environment, where
the effort is critical to its success.

In addition to the above, a lack of awareness of knowledge management
practices among software developers, or their reluctance to share knowledge
because they are afraid that sharing and transferring their knowledge to colleagues
decreases their value and job security are only few examples of dilemmas that
software practitioners face.

Software developers commonly agree that software engineering can benefit
from knowledge management solutions. It is important to remember that software
team members need encouragement and support to share information and learn
from each other. They need an interactive environment where they can
continuously learn in an everyday environment and improve job performance.

Preface xiii

Aims of the Book and Target Audience

Management of knowledge and experience are key means for systematic software
development and process improvement. This book illustrates several examples of
how to get this vision to work in theory as well as how to apply these solutions to
industrial practice. Furthermore, it provides an important collection of articles for
researchers and practitioners on knowledge management in software development.
It is hoped that this book will become a useful reference for postgraduate students
undertaking research in software development. Although it is recommended that
the readers have a sound background in software development, this book offers
new insight into the software development process for both novice software
developers as well as experienced professionals.

Book Overview

This book is organized into four major parts. Each part contains three to five
chapters. Although it is preferable to first familiarize yourself with the first
chapter of Part 1, or at least with portions of other chapters in Part 1, the book is
designed to permit reading of the parts in many different orders, depending on
readers’ interests.

Part 1: Motives for Knowledge Management Initiatives

Challenge: Why manage software engineering knowledge?

There may be many different motives for starting knowledge management
initiatives in organizations. These motives may be grouped into two broad
categories: survival and advancement. The difference is in the focus on existing or
new knowledge. Survival strategies concentrate on knowledge management
initiatives around capturing and locating valuable company knowledge and
making the maximum use of the existing knowledge through transferring and
sharing practices. Advancement strategies, on the other hand, focus on generation
of new knowledge and processes necessary for enabling successful innovations.

Articles in Part 1 of this book cover several major motivational aspects of
knowledge management in software engineering from three different perspectives:
people, process and product. The three chapters are by John. S. Edwards (Aston
Business School, Birmingham, UK); June M. Verner and William M. Evanco
(College of Information Science and Technology, Drexel University, USA);
Torgeir Dingsegyr (SINTEF Telecom and Informatics, Norway) and Reidar
Conradi (Norwegian University of Science and Technology, Norway).

xiv Preface

Part 2: Supporting Structures for Managing Software Engineering
Knowledge

Challenge: Need to clarify concepts and models

Some observers predict that knowledge management is a vague concept that will
neither deliver what it promises nor add to the bottom line. Part 2 examines the
existing knowledge management frameworks, focusing on those that may
potentially be helpful for managing software engineering knowledge. Existing
problems of managing software engineering knowledge will be addressed.

The five chapters are by Mikael Lindvall and Ioana Rus (Fraunhofer Center for
Experimental Software Engineering Maryland, USA); Tore Dybd (SINTEF
Telecom and Informatics, Norway); Gary R. Oliver, John D’ Ambra and Christine
Van Toorn (University of New South Wales, Australia); Allen Dutoit (Informatics
Department of Technische Universitaet Muenchen, Germany), Barbara Paech,
(Fraunhofer Institute for Experimental Software Engineering, Germany); and
David Lowe (University of Technology, Sydney Australia).

Part 3: Application of Knowledge Management in Software Engineering

Challenge: The use of knowledge management in software engineering

Knowledge Management is not a single technology but instead a collection of
indexing, classifying, retrieval and communication technologies coupled with
methodologies designed to achieve results desired by the user. Part 3 covers the
applications of knowledge management in software engineering

The five chapters are by Martin Shepperd (Bournemouth University, UK); Sira
Vegas, Natalia Juristo (Universidad Politécnica de Madrid, Spain) and Victor
Basili (University of Maryland, USA); Stefan Biffl (Vienna University of
Technology) and Michael Halling (Johannes Kepler University, Austria); Linda H.
Rosenberg (Goddard Flight Space Center, NASA, USA); and Klaus-Dieter
Althoff and Dietmar Pfahl (Fraunhofer Institute of Experimental Software
Engineering, Germany).

Part 4: Practical Guidelines for Managing Software Engineering Knowledge

Challenge: Lack of standards

Some industry observers say that the lack of standards is fragmenting deployment
of enterprise-wide knowledge management products. Many organizations,
including Standards Australia, are working on standardizing various aspects of
knowledge management functionality. Part 4 concludes the book by looking at the
industrial practices in software development.

The four chapters are by Rini van Solingen (CMG Technical Software
Engineering, The Netherlands), Rob Kusters (Eindhoven University of

Preface xv

Technology and Open University, The Netherlands), Jos Trienekens (Eindhoven
University of Technology, The Netherlands); Christof Ebert, Jozef De Man and
Fariba Schelenz (Alcatel, France); and Pankaj Jalote (Department of Computer
Science and Engineering, I.I.T., India).

Acknowledgement

There are many people whom we would like to thank for their help and support.
We wish to thank all the authors for their hard work and effort in creating this
book. We are especially grateful to Fethi Rabhi, Adrian Gardiner, Peter Parkin and
Paul Scifleet for their participation in the external review process and for their
valuable comments. We would also like to thank Liming Zhu for his assistance in
creating the Web site and formatting this book and Irem Seving for assisting with
the proof reading. A special thanks goes to Ralph Gerstner of Springer, Germany
for providing professional advice during the publishing process. Finally, a big
thank you is due to our families for enduring the lengthy editing process. This
book is dedicated to our families.

References

1. Alavi M., Leidner D. (1999) Knowledge management systems: emerging views and
practices from the field. In: Proceedings of 32nd annual Hawaii international
conference on system sciences, Maui, Hawaii, USA, 11p.

2. Choo C.W. (1998) The knowing organization. Oxford university press, New York, NY

3. Nonaka L (1994) A dynamic theory of organizational knowledge -creation.
Organization science, 5: 14-37

4. Schulz M., Lloyd A.J. (2001) Codification and tacitness as knowledge management
strategies: an empirical exploration. Journal of high technology management research,
12: 139-165

5. Spender J.C. (1998) Pluralist epistemology and the knowledge-based theory of the
firm. Organization science, 5: 233-256

6. Wilson, L.T., Snyder C.A. (1999) Knowledge management and IT: how are they
related? IT Professional, 1: 73 -75

7. Williams J. (2002) Practical issues in knowledge management. IT Professional,
4:35-39

Contents

List of Contributors. xxi
Part 1 Why Is It Important to Manage Knowledge? 1
1 Managing Software Engineers and Their Knowledge 5
L.l INtrOQUCHION ..c.coueerenectrerectreeseeeeeresnnasseesnssessssaseseesasessasessesessesssesssssnens 5
1.2 History of the Professioncccucueveereveieeeceeiereeceereeeereseseeesseeesessesasnes 6
1.3 Problematic Areas in Software Engineering..........ccceveveerererenrivecrrrvnnens 12
1.4 Previous Work on Knowledge Management in Software Engineering 15
1.5 Potential for Knowledge Managementcccvvrererrerernnneesesseesennnne 18
1.6 Overall Knowledge Management Strategy...........cccceceeeeverrereerervererernnns 20
1.7 Conclusion and SUMMATYceccccererrereererrenrsrensessesesesseressesssseesassesassens 22
2 An Investigation into Software Development Process Knowledge.............. 29
2.1 INPOAUCHION ...ttt ettt st ssenee st se st e e e es 29
2.2 Software Development Process Research.........c.ccevreeereereceeresnerevesereennes 30
2.3 Background and Related Research.........cccecvevreecreerenenreseneceneesereneenens 32
2.4 Research ApProach..........coccoveceereceeverienereseniniessessesessesessnssessenseessesnesens 35
2.5 RESUIS ettt sesnestne et sssetsnssesesnssnsaeesasse e sne e ss s nee 36
2.6 DISCUSSION ..ceeuirucerireetrenteeeenenresseseessssessssesserassassessesssssssessensssessasssens 41
2.7 FUrther WOorKo.ccooirininierinricineniierninsnenneneesessnssssessesessessessssssssssssessenss 43
3 Usage of Intranet Tools for Knowledge Management in a Medium-Sized
Software Consulting Company _ 49
3.1 INrOAUCLION «.cucuvieeeeeieee ettt ettt ae s s e e sene 49
3.2 Alpha ConSUtING......ccocveerurrerrirrnrerieereserseneseesessessesessessessesessessssansessens 50
3.3 Knowledge Management Strategies and ToOIS.........c.cceererereeerereeruerernnne 51
3.4 Research Method..........cccccevvevviveneniineninenininsenssessessessssessessesassessennens 53
3.5 Usage of Knowledge Management Tools at Alpha........ccccceceevreerennne 54
3.6 DISCUSSION c.eeuieceinireieireenreieseeseerestesseseseestesestassssnssassennssassenseseesenns 64
3.7 Conclusion, and FUrther WOtkcccceevvuivveiennreereeecnresureeseecessessseesaes 67
Part2 Supporting Structures for Managing Software Engineering
Knowledge 69
4 Knowledge Management for Software Organizations 73
4.1 INOAUCHIONconmeeeneireneiiteersee ettt ereesaeeesrese st s e e ses e sesbesesasas 73
4.2 Business and Knowledge Needs..........cccouveevereeerrecenreceeieeseneeneesensesennens 74
4.3 Knowledge Management in Software Engineeringcoceeeerrreveennnn 76
4.4 KM Activities and TOOISccouevevrurereenenirirtrinrreceeeseseeesseeeesensesenes 77

4.5 KM in Support of Learningcc..ceeveeerererererreeeverereresesssssseressseennas 85

xviii Contents

4,6 Challenges and ODSACIES.........ccceurerererrevecreriserseeeniseeereseresasassssssssesones 88
4.7 State of the PractiCe......cccccvererrererrerrcrcrtrnenreeiec et reesnsesesessenens 90
4.8 CONCIUSIONS ...uvevereerrecensnssiernsescssssnnrssessassessessssesssssssessassssessessossessssasaasens 91
5 A Dynamic Model of Software Engineering Knowledge Creation............. 95
5.1 INrOQUCHION «..couerrieereernreireeneniereieasstscssssesasssesnssssscesasessnessssssssssssasssenes 95
5.2 Organizational CONLEXL.......c.evererereererrecsersssesssssssssesssssesssessssessesesesens 37
5.3 Learning CYClececveeeerrrererrereeenrererecssnsnsesessessessessassassssssassessessssesseses 99
54 Organizational Performance...........c.coeoeeeeeecercirseessecssseseseseseereresessssanns 109
5.5 Facilitating FactOrSccccvvcerereerrnrecrssncressnnernivesessesesssesessessssessesssnenss 112
5.6 SUMMATY c.ocoreieiiiniinrnisineinesiistessssisstisnsssestsstssseessssassessessessassnssseansns 114
6 Evaluating an Approach to Sharing Software Engineering Knowledge
to Facilitate Learning 119
6.1 INrOQUCHIONcoeeuiiernrrriiericnssecsesniensssssesetensenssssessseseeessesassessenesseases 119
6.2 Knowledge-Sharing ModelS.........ceeeeerirceerrenerorrerisectsnscscsesresnessaennes 122
6.3 Applying SEKS to CORONETcccoovvmrirenrcsisrnicnneneteneneesossnnees 125
6.4 Conclusion and Implications for Further Researchcccocceevueuneee. 131
7 Eliciting and Maintaining Knowledge for Requirements Evolution......... 135
7.1 INrOAUCHON ...ttt neas e sasasats e sesasnesessesasesssnnen 135
7.2 Requirements Change........c.c.ccerceerreerrerrecrerescssssssssneseseesessesseessesenesses 137
7.3 Knowledge for Requirements EVOIUtiOncccceocvereerurercerrereresesranes 139
74 Using Options for Dealing with Evolving Requirements.................... 146
7.5 Open Issues and Future Directions.........ceceeesevereisesicrsrecnrecsisrsnseseenssens 152
8 Emergent Knowledge in Web Development 157
8.1 INIOAUCHION ..cveeecvirirniicrerretesensstsessssnesssneassssesssessssessesaassosssssasnes 157
8.2 Web System Characteristics and Implicationsc..c.ceececrreurrereeuraene 158
8.3 Evolving Project Knowledge.........ccccoveereveeerneeseeeneneenesressnnssesessnens 165
8.4 Future Trends and ConcClUSIONSccveererrsesereescersseseseseneerereesessasens 171
Part 3 Application of Knowledge Management in
Software Engineering 177
9 Case-Based Reasoning and Software Engineering 181
0.1 INtrOdUCHONcovvirterereietictrsrieeasececstre s sassesasessese e saserensassessearassese 181
9.2 An Overview of Case-Based Reasoning Technology.............ccceuuee... 183
9.3 Software Engineering Applications of CBR..........ccccecvrerrrverererrerensranne 189
9.4 Summary and FUture Workcoccecercreeccreercrecsrsenerecsssesesssessonens 194
10 A Process for Identifying Relevant Information for a Repository:
A Case Study for Testing Techniques 199
10.1 INtrOQUCHIONevinriceiriiete ettt reere et e ee et eve s eresensennas 199
10.2 Related WOrK.........coceeiiviriniriniesceierenceeeere st esesesesvesessesessenns 201

10.3 Proposed Process for Discovering Relevant Information............... 203

Contents

104 Case Study: Developing a Characterization Schema for

Software Testing TeChNIQUES.........ccoveerrerrerrrenriireninnesesresesseseesessssnsiessssssenens
10.5 Process Evaluation..........cccueeeeveneesieeceneensecnsacsesseessseesescsenesens
10.6 CONCIUSIONSeoerviririreirtesistr et seeessreetresaetese s seesssssensseensssssennas
11 A Knowledge Management Framework to Support
Software Inspection Planning
11.1 INEPOAUCHION ...ttt seseessess e e eesaens
11.2 Knowledge in Software Inspection..............coevvureveeurssererccrecserernnnne
11.3 A Conceptual Knowledge Management Framework for
Software Inspection Planningc..cvceereerrrecerscrnreersncesessiessssssnssessesnsnens
114 DiSCUSSION...ccceruicerresrentiniiesnesririssestesnceessersssssessssessssessessesssssessassssones
11,5 CONCIUSION..cueeeeueeeererecetreeeeencineesesesteesessentsnsseseeassessussesesassens
12 Lessons Learned in Software Quality Assurance
12.1 INErOQUCLIONeverereecrrceeiriecesereeseccenenecsneseseessesssassnssssasseesaesesasanes
12.2 Lessons Learnedoccccceveeenrirecorerensinesnessesicssssssessessesessesnesssseses
12.3 CONCIUSION.....ceviererereererrcreenaernssnessssesesessessesessssesasrsesseseosssssnsssenses
13 Making Software Engineering Competence Development Sustained
through Systematic Experience Management.
13.1 Introduction and Backgroundccccoveeeeecrerrcereecreecrseneeeeenensnans
13.2 Towards Integrating E-Learning and Knowledge Management...
13.3 Recent Innovations in Experience Management...........cc.ceceeurreevennas
13.4 Integrating Experience Management with E-Learning....................
13.5 Summary and ConcClUSION........cccevereereererrseereserrareecesessesassaesasssseasenns
Part 4 Practical Guidelines for Managing Software Engineering
Knowledge
14 Practical Guidelines for Learning-Based Software Product
Development
14.1 INrOQUCHIONoeenrineiicerninieniiitrretes e et saesesaresestessesesnssees
142 Learning During Embedded Product Development...........cc..ccceunene
14.3 Guidelines for Model Application in Practice..........ccoovrvcrercuererenenes
14.4 CONCIUSIONSeerenereieaienrensiisnnsasssessesnsansasssnserssisessassonsassssssessssssssas
15 In-Project Learning by Goal-oriented Measurement
15.1 IDOQUCHON c.vveveereereecreneeenceseescreresseseseeseseessacsnsessesesassenessenenssens
15.2 The Goal Question Metric Approach............cccceeerecveeerrrcnrrrenesensennes
15.3 Feedback of Software Measurement Results..........c..cccverreerrerisuinas
154 Application of the GQM Approach in Practicecccouverrrevnencncns
15.5 CONCIUSION...c.coieriereerrrenereesintreeresacseeressssecsssnesssssnesnasssasssarensnsocsnas
16 e-R&D: Effectively Managing and Using R&D Knowledge............cc.e...
16.1 INErOQUCHION «....cvereeeveee bttt ceee et sent et sresetesesseseenessenenne

Xix

231
231
233

235
242
245

251
251
252
267

269
269
274
281
285
289

295

xx Contents

162 Case StUdY Setting......coevceeeereerrrcrcerereeeerecrsrerereestsesreesesessesnsassens 342
16.3 Knowledge Management in Software Engineering.............cceeuueve. 343
164 Practical R&D Knowledge Managementcccocveeevernrerernernnens 348
16.5 Knowledge Management Return on Experiencecccceeveverurucenee 353
16.6 CONCIUSIONS ...oveeernrecenrercericterenseressseeessssssessasssosesssasssssessssnonsssasanees 355
17 Knowledge Infrastructure for Project Management 361
17.1 INErOAUCLION ...ttt sttt et seesenaeae 361
17.2 Process Specification and Process ASSEtS........ccceeerereecrernervereesvesnens 362
17.3 Process Databasec...ccceiinenriiincnincenniinesnneiceressseisesseenesssroseens 366
174 Body of Knowledge........covriiiiviniieiinincnnnnneiiensisscsesescences 370
17.5 Use of Knowledge Infrastructure in Projects.........c.coeeriruecirenenccns 371
17.6 SUMMATY ...veoviiiiniiirinininiicie sttt sesssssssssesesses 373

Index 377

List of Contributors

Klaus-Dieter Althoff

Fraunhofer IESE, Sauerwiesen 6
D-67661 Kaiserslautern, Germany
althoff@iese.thg.de

Aybiike Aurum

School of Information Systems, Technology and Management
University of New South Wales

NSW, 2052 Australia

aybuke@unsw.edu.au

Victor Basili

Department of Computer Science
University of Maryland

College Park, MD 20742, USA
basili@cs.umd.edu

Stefan Biffl

Institute for Software Technology
Vienna University of Technology
Karlsplatz 13, A-1040 Vienna, Austria
Stefan.Biffi@tuwien.ac.at

Reidar Conradi

Norwegian University of Science and Technology
NO-7491 Trondheim, Norway
Reidar.Conradi@idi.ntnu.no

John D’Ambra

School of Information Systems, Technology and Management
University of New South Wales

NSW 2052 Australia

j.dambra@unsw.edu.au

xxii List of Contributors

Jozef De Man

Alcatel

Fr.-Wellesplein 1, B-2018 Antwerpen, Belgium
jozef.de man@alcatel.be

Torgeir Dingseyr

SINTEF Telecom and Informatics
SP Andersens vei 15

NO-7465 Trondheim, Norway
Torgeir.Dingsoyr@sintef.no

Allen Dutoit

Technische Universitiit Miinchen, Institut fiir Informatik, Boltzmannstrae 3
D-85748 Garching b. Miinchen, Germany

dutoit@in.tum.de

Tore Dyba

SINTEF Telecom and Informatics

S.P. Andersensv. 15, NO-7465 Trondheim, Norway
tore.dyba@sintef.no,

Christof Ebert

Alcatel

54 rue La Boetie, 75008 Paris, France
Christof. Ebert@alcatel.com

John S. Edwards

Aston Business School
Birmingham, B4 7ET, UK
j-s.edwards@aston.ac.uk

William Evanco

College of Information Science and Technology
Drexel University

3141 Chestnut St, Philadelphia, PA 19104, USA
William.evanco@cis.drexel.edu

List of Contributors

Michael Halling

Dept. of Systems Engineering and Automation
Johannes Kepler University

Linz Altenbergerstr. 69, A-4040 Linz, Austria
Michael. Halling@univie.ac.at

Meliha Handzic

School of Information Systems, Technology and Management
University of New South Wales

NSW, 2052, Australia

m.handzic@unsw.edu.au

Pankaj Jalote

Department of Computer Science and Engineering
Indian Institute of Technology Kanpur

Kanpur, India 208016

Jalote@jiitk.ac.in

Ross Jeffery

School of Computer Science and Engineering
University of New South Wales

NSW, 2052 Australia
rossj@cse.unsw.edu.au

Natalia Juristo

Facultad de Informatica. Universidad Politécnica de Madrid
Campus de Montegancedo

28660 Boadilla del Monte, Madrid, Spain
natalia@fi.upm.es

Rob Kusters

Eindhoven University of Technology,

Den Dolech 2, 5600 MB Eindhoven, The Netherlands,
R.J Kusters@tm.tue.nl

Mikael Lindvall

Fraunhofer Center for Experimental Software Engineering Maryland
4321 Hartwick Rd, Suite 500

College Park, MD 20740, USA

mlindvall@fc-md.umd.edu

xxiii

xxiv List of Contributors

David Lowe

University of Technology, Sydney
PO Box 123, Broadway

NSW, 2007, Australia
david.lowe@uts.edu.au

Gary Oliver

Australian Graduate School of Management
University of New South Wales

NSW, 2052, Australia

gary@agsm.edu.au

Barbara Paech

Fraunhofer IESE, Sauerwiesen 6
D-67661 Kaiserslautern, Germany
paech@jiese.fhg.de

Dietmar Pfahl

Fraunhofer IESE, Sauerwiesen 6
D-67661 Kaiserslautern, Germany
pfahl@iese.thg.de

Dieter Rombach

Fraunhofer IESE, Sauerwiesen 6
D-67661 Kaiserslautern, Germany
rombach@jiese.thg.de

Linda H. Rosenberg

Goddard Space Flight Center, NASA
Greenbelt, MD 20771, USA
Linda.H.Rosenberg@nasa.gov

Ioana Rus

Fraunhofer Center for Experimental Software Engineering Maryland
4321 Hartwick Rd, Suite 500

College Park, MD 20740, USA

irus@fc-md.umd.edu

List of Contributors

Fariba Schelenz

Alcatel

54 rue La Boetie, 75008 Paris, France
fariba.schelenz@alcatel. fr

Martin Shepperd

Empirical Software Engineering Research Group

School of Design, Engineering and Computing, Bournemouth University
Bournemouth, BH1 3LT, UK

mshepper@bmth.ac.uk

Jos Trienekens

Eindhoven University of Technology

Den Dolech 2, 5600 MB Eindhoven, The Netherlands
J.J M.Trienekens@tm.tue.nl

Rini van Solingen

LogicaCMG Technical Software Engineering

P. O. Box 8566, 3009 AN Rotterdam, The Netherlands
Rini.van.Solingen@cmg.nl

Christine Van Toorn

School of Information Systems, Technology and Management
University of New South Wales

NSW 2052 Australia

c.vantoorn@unsw.edu.au

Sira Vegas

Facultad de Informatica. Universidad Politécnica de Madrid
Campus de Montegancedo

28660 Boadilla del Monte, Madrid, Spain
svegas@fi.upm.es

June Verner

College of Information Science and Technology
Drexel University

3141 Chestnut St., Philadelphia, PA 19104, USA
june.verner@pcis.drexel.edu

XXV

xxvi List of Contributors

Claes Wohlin

Department of Software Engineering and Computer Science
Blekinge Institute of Technology

Box 520, SE-372 25 Ronneby, Sweden

Claes. Wohlin@bth.se

Part 1
Why Is It Important to Manage Knowledge?

Meliha Handzic

Investment in knowledge pays best interest.
— Benjamin Franklin

Rapid change and competition for customer loyalty have forced firms to seek
sustainable competitive advantage in order to distinguish themselves from their
competitors. Business leaders view knowledge as the chief asset of organizations
and the key to sustaining a competitive advantage [4]. For this reason, companies
have started to focus more on what they know, and less on what they own. It is
therefore not surprising that knowledge has been identified as the new basis for
competition and as the only unlimited resource, the one asset that grows with use.

Many firms have also come to understand that they require more than just a
casual approach to corporate knowledge if they are to succeed in the new
economy [2]. Companies have to find out where their business-specific knowledge
is, and how to transform it into valuable products and services that differentiates
them from the rest of the market. Good knowledge management can foster the
creation of new knowledge to meet new challenges and enables the effective and
rapid application of knowledge to create value.

The main purpose of knowledge management is to make sure that the right
people have the right knowledge at the right time. In particular, knowledge
management needs to ensure that people have the necessary talents, skills,
knowledge and experiences to implement corporate strategies. Implementations of
knowledge management also need to provide structures and systems that enable
people to share and apply their knowledge to support decisions, to present services
to the customer, to support customers’ needs, to develop solutions required and
expected by the customer, as well as to stay in business and to secure
employability.

It is argued here that there is a need for holistic approaches that can help
practitioners to understand the sorts of knowledge management initiatives or
investments that are possible and to identify those that make sense in their context
[1]. Accordingly, Part 1 brings together various perspectives on motives for
knowledge management.

While there may be many different individual reasons for starting knowledge
management initiatives in organizations, they can be grouped into three broad
categories: minimizing risk, seeking efficiency and enabling innovation which
ensure business survival or advancement.

If - the - primemeotivefor -knowledge management is minimizing risk, the
response typically involves identifying and holding onto the core competencies of
a company. Thus, risk minimization is closely related to knowledge initiatives

2 Handzic

aimed at locating and capturing valuable company knowledge [5]. In software
engineering, people have been recognized as key holders of valuable knowledge
content. Therefore, identifying, locating and capturing what is known by
individuals and groups of software developers is of critical importance for
software businesses survival.

In today’s complex economy, businesses are constantly confronted with the
need to operate more efficiently in order to stay competitive and satisfy increasing
market demands. Seeking efficiency usually relates to knowledge initiatives for
transferring experiences and best practices throughout the organization in order to
avoid unnecessary duplication and to reduce cost. Technology is often an
important part of achieving efficiency improvements [5]. In particular, companies
that develop software are under increasing pressure from their customers to
deliver software solutions faster and cheaper. Therefore, researchers and
practitioners in the field of software engineering need to turn their attention to new
ways and tools for improving the software development process as a possible
means for achieving enhanced efficiency and sustaining the competitive advantage
of software firms.

There is a growing belief that knowledge can do more than improve efficiency.
The new products and services resulting from knowledge and technology may
bring profound changes in the way businesses operate and compete in the new
economy. The unifying thread among various theoretical views is the perception
that innovation is the key driver of an organization’s long-term economic success.
Innovation of products, processes and structures has been assessed as a critical
component in the success of new-age firms.

Typically, innovative organizations focus both on new knowledge and on
knowledge processes. They constantly engage and motivate people, creating the
overall enabling context for knowledge creation. These organizations take a
strategic view of knowledge, formulate knowledge visions, tear down knowledge
barriers, develop new corporate values and trust, catalyze and coordinate
knowledge creation, manage various contexts involved, develop conversational
culture and globalize local knowledge [3].

The greatest challenge for software engineering companies is to move in a
knowledge-enabling direction by consciously and deliberately addressing
knowledge management. By nurturing knowledge, enabling its sharing and use,
getting knowledge out of individual minds into the social environment, and by
turning individual creativity into innovativeness for everyone, software firms can
ensure their long-term advancement and business success.

The review of literature on knowledge management reveals large gaps in the
body of knowledge in this area. The ultimate challenge is to determine the best
strategies to improve the development, transfer and use of organizational
knowledge at the individual and collective levels. We believe that the integrated
approach adopted in this book can help make sense of many different issues and
theoretical concepts, and provide an underlying framework that can guide future
research and practice.

The overall field of knowledge management can accommodate a wide range of
themes and approaches. Articles in Partl of this book cover several major

Part 1 Why Is It Important to Manage Knowledge 3

motivational aspects of knowledge management in software engineering from
three different perspectives. These include people, process and product
viewpoints.

Software engineering has been recognized as one of the most knowledge
intensive professions. In the first article, John Edwards takes a closer look at
software engineers (people) and identifies major issues involved in managing
these professional knowledge workers. He then uses this as a framework to
discuss how knowledge management may be relevant to further advancing the
software engineering profession.

Despite extensive research into project failure and the many guidelines for
successful software development that have been proposed, projects still fail.
Therefore, in the second article, June Verner and William Evanco specifically
address the improvement of software development (process), focusing primarily
on project risk management because of its major influence on project success.
First, the authors describe the current state of the practice and identify critical
success factors. Then, they propose a preliminary knowledge-based model to
predict future software project success.

Software is often a major part of most innovative products and services or is an
innovative product in its own right. In the third article, Torgeir Dingseyr and
Reidar Conradi illustrate the importance of innovative knowledge management
software (product) as an engine of a learning software organization. In particular,
the article shows the need for software organizations to work with both
codification and personalization strategies to achieve effective knowledge
management.

References

1. Handzic M. (2001) Knowledge management: a research framework. In: Proceedings of
the 2nd European conference on knowledge management, Bled, Slovenia, pp. 219-229

2. Nonaka l. Takeuchi H. (1995) The knowledge creating company: How Japanese
companies create the dynamics of innovation. Oxford university press, New York,
USA

3. Nonaka I., Nishiguchi T. (2001) Knowledge emergence. Oxford university press, New
York, USA

4. Raich M. (2000) Managing in the knowledge based economy. Raich Ltd., Zurich,
Switzerland

5. Von Krogh G., Ichijo K., Nonaka I. (2000) Enabling knowledge creation. Oxford
university press, New York, USA

Editor Biography

Dr. Meliha Handzic is a senior lecturer at the School of Information Systems,
Technology -and-Management; University of New South Wales. She is the founder
and the group leader of knowledge management research group (kmRg) in the
University of New South Wales. Her main research interest is Knowledge

4 Handzic

Management, more specifically processes and enablers of knowledge creation,
sharing, organization and discovery. Her other interests include forecasting and
decision support. She has published over 50 research papers on these topics.
Presently she is regional editor of the journal Knowledge Management Research
and Practice, and on the editorial boards of In Thought and Practice and Journal
of Information Technology Education.

1 Managing Software Engineers and Their Knowledge

John S. Edwards

Abstract: This chapter begins by reviewing the history of softiware engineering as
a profession, especially the so-called software crisis and responses to it, to help
focus on what it is that software engineers do. This leads into a discussion of the
areas in software engineering that are problematic as a basis for considering
knowledge management issues. Some of the previous work on knowledge
management in software engineering is then examined, much of it not actually
going under a knowledge management title, but rather “learning” or “expertise”.
The chapter goes on to consider the potential for knowledge management in
software engineering and the different types of knowledge management solutions
and strategies that might be adopted, and it touches on the crucial importance of
cultural issues. It concludes with a list of challenges that knowledge management
in software engineering needs to address.

Keywords: Knowledge management, Software engineering, Software process
improvement, Learning, Expertise, Knowledge management strategy

1.1 Introduction

Software engineering is one of the most knowledge-intensive professions.
Knowledge and its management are relevant to several aspects of software
engineering at different levels, from the strategic or organizational to the
technical. These include:

Estimation of costs and time scales
Project management

Communicating with clients and users
“Problem solving” in system development
Reuse of code

Training and staff development
Maintenance and support

It might therefore be expected that software engineers would be well advanced
in the practice of knowledge management. However, there are few signs that this
is being the case. Although the general knowledge management literature contains
many examples of knowledge management systems in successful use in
information technology - related companies, relatively few are specifically for
software engineering. Most reported systems in these companies address areas
such as overall company performance, sales and marketing, or perhaps trouble-
shooting hardware failures. Mouritsen et al. [40] for example, give a very detailed

6 Edwards

account of knowledge management in the form of producing an intellectual capital
statement for a software engineering firm, Systematic Software Engineering.
However, there is virtually nothing in their article that is specific to software
engineering.

One reason for the lack of “visibility” of software engineering in the wider
knowledge management literature is the tendency for discussion of such topics to
take place at conferences for the software engineering community. These include
the Learning Software Organizations Workshop, the International Conference on
Software Engineering, the International Conference on Software Engineering and
Knowledge Engineering and the European Software Process Improvement
Conference. Thus there is an active knowledge management community in
software engineering, but it is interesting that much of their work is distanced
from the knowledge management mainstream.

In this chapter, we begin by reviewing the history of software engineering as a
profession, to provide a background for discussing the issues involved in
knowledge management in software engineering. We then look at the aspects of
software engineering that may make knowledge management problematic, but
equally are often the reasons why it is important. We next consider what has been
done so far by way of knowledge management in software engineering, and in
particular the question of whether knowledge management has been taking place,
but under other names. Finally, we look at the potential for knowledge
management in software engineering by offering a framework for discussing
knowledge management, including the cultural issues that most influence this
profession. We conclude by identifying the principal challenges for knowledge
management in software engineering and by arguing for a “complementary”
strategy to address them.

1.2 History of the Profession

In this section, we review some of the key features of the history of software
engineering, both as an activity and a profession. This serves to introduce the
relevance of knowledge management to software engineering. The topics include
the impression given of perpetual crisis, efforts at software process improvement,
what software engineers actually do in technical/functional terms, and whether or
not software engineering is knowledge work.

1.2.1 Perpetual Crisis?

At one level, the history of software engineering gives the impression of a
profession in perpetual crisis. Even before the 1968 NATO conference on
software engineering, which brought the term into common use [41], back in the
days of punched cards and paper tape, the development of software was regarded
as being problematic. Indeed, it is asserted [47] that the term software engineering

1 Managing Software Engineers and Their Knowledge 7

was chosen for this conference title deliberately in order to be provocative. The
tendency for commercial and governmental systems to be delivered late, over
budget and lacking functionality was already becoming apparent. There was a
need for the development of computer systems to be performed with the rigor and
discipline associated with branches of engineering.

More than 30 years later and in another century, not much seems to have
changed, as the paper by Bryant indicates [12]. Granted, the majority of sofiware
development now takes places in specialized companies rather than in the in-
house departments of large organizations, but the problems relating to cost, time
and quality still seem to be similar. One might therefore conclude that nothing
much has changed in software engineering over this period. Yet the situation is not
as simple as this. Recent major successes of software engineering, such as
avoiding (for the most part) any major Y2K problems and coping with the
introduction of the euro, have earned the profession little credit either externally or
internally. The profession presents itself in a strange light, presumably because
this is how it sees itself—a crisis of identity, at least. Indeed, one of the UK’s
weekly magazines for professionals in this field has a reputation for almost always
headlining a negative story. Bryant rightly questions whether software engineering
as a profession is part of the solution or part of the problem.

Towards the middle of the period we have been discussing, Andrew Friedman
(with Dominic Cornford) produced an influential account of the history of
software engineering [22]. One of the frameworks used for this analysis was a
model based on three phases, derived from “the story so far” up to the late 1980s.
The phases were dominated by hardware constraints, software issues and user
needs, respectively. Baxter [7] argues that if Friedman’s time-based phasing
model had been correct, then “by now software writing would be unproblematic”,
but that this does not seem to be the case, as we would agree. However, Friedman
himself said that phase three (dominated by user needs) would not necessarily give
way to a phase four, and that “one possibility...is to revert back to the domination
of earlier phase concerns”. Programming issues still have a great influence on
what software is created, rather than just the requirements of the users. Baxter
points out that “beta versions”, “patches” and “bugs” are all commonplace in the
software world, but, as she puts it “can the reader imagine having a “beta” set of
wheels on their car?”

The view within the software engineering department is no more reassuring.
For example, Perlow [46] refers to the “fast paced, high-pressure, crisis-filled
environment in which software engineers work”. If a general expectation that
software will not work properly and a crisis-filled environment are reasonable
indications, then software engineering is indeed a profession in a continuing state
of crisis.

1.2.2 Seoftware Process Improvement

The comments in Sect. 1.2.1 should not be taken as evidence that nothing has been
done to improve matters. On the contrary, many systematic attempts have been

8 Edwards

made to produce software that is more reliable and of higher quality. One way to
do this is simply to improve the testing procedures, but we will not consider this
further here for two reasons. First, this approach goes against all the principles of
total quality management, since it is far cheaper and easier to avoid errors rather
than to find and correct them. Second, the ever-increasing complexity of modern
software [23] makes it much harder to test than, say, a piece of mechanical
equipment. The emphasis has therefore rightly been on producing software that is
more reliable and of higher quality by methods that are more predictable and
robust. These approaches are generally grouped under the heading of software
process improvement. A good review of various different improvement
“technologies” is given by the experienced commentator on the field, Robert Glass
[24)].

In this section we concentrate on those improvement methods termed “process
models” by Glass, since these have the greatest relevance to the management
aspects of the software engineering profession, as opposed to the technical
aspects. If improvements are left solely to the technical level, then the best that is
likely to be achieved will be isolated “islands of knowledge”. This is a widely
recognized problem in knowledge management. Among these process models are
the Capability Maturity Model (CMM), the Quality Improvement Paradigm (QIP),
Software Process Improvement and Capability dEtermination (SPICE), and the
ISO 9000 series of internationally agreed standards.

1.2.2.1 The Software Capability Maturity Model

One of the most widely recognized frameworks for looking at the extent of
professionalism in a software engineering company or unit is the software
Capability Maturity Model [33, 44, 45]. This was developed at Carnegie Mellon
University’s Software Engineering Institute (SEI). The CMM for software (there
are now other related CMMs) is organized into five maturity levels:

1. Initial: The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort
and heroics.

2. Repeatable: Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to
repeat earlier successes on projects with similar applications.

3. Defined: The software process for both management and engineering activities
is documented, standardized and integrated into a standard software process for
the organization. All projects use an approved, tailored version of the
organization’s standard software process for developing and maintaining
software.

4. Managed: Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood
and controlled.

1 Managing Software Engineers and Their Knowledge 9

5. Optimizing: Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and technologies.

Here we see the progression from a “let’s run the program and see what
happens” approach to the technically rigorous and managerially disciplined
approach that an engineering discipline should have. Perlow frequently refers to
“individual heroics” in discussing the organization that he studied [46]; clearly it
belongs at level 1. Knowledge management is by definition nonexistent in a level
1 unit, but becomes increasingly important as the level rises. Indeed, it could be
argued that more effective knowledge management is one of the hallmarks
distinguishing the higher levels of capability maturity.

1.2.2.2 Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) is an approach that draws on the field
of Total Quality Management (TQM). One of the pioneers of this approach was
the Software Engineering Laboratory at NASA’s Goddard Space Flight Center
[6]- The phrase coined for the resulting organization is the “experience factory”.
The relationship between the QIP and the experience factory is well described by
Basili and Caldiera [5]. They also explain why manufacturing-based total quality
approaches have not worked well in software engineering. Such approaches do not
deal well enough with the nature of a software product. For example, any
particular piece of software is only developed once, so that statistical quality
control approaches are impossible. Some of the lessons learned at the Goddard
Space Flight Center are described in Chap. 12 of this book [48].

1.2.2.3 Software Process Improvement and Capability Determination

Software process improvement and capability dEtermination (SPICE) is an
initiative intended to produce an international standard for software process
assessment [31]. This covers not only software development and operation, but
also procurement and support as related to packaged software. Extensive trials
have occurred for some years. Thus far it has reached the status of a technical
report (ISO/IEC TR 15504: 1998) published by the international organization for
standardization (ISO), with the intention that this will evolve into a full
international standard. More general international quality standards are covered in
the Sect. 1.2.2.4.

1.2.2.4 ISO 9000 Series Standards

The ISO 9000 series of standards [30] relates to quality management systems of
alinkindspinrorganizationsysbutssomenparts of the software engineering industry
have been particularly attracted by the idea of systems designed to deliver
products that meet customer needs. In many industries, ISO 9000 certification is

10 Edwards

either a source of competitive advantage or an essential qualifier in order to be
considered as a supplier at all. Software consultancies, therefore, have shown great
interest in becoming accredited under ISO 9000. A particular point of
commonality with the other methods mentioned is that the latest version, ISO
9000:2000, is constructed around the idea of viewing a business in terms of its
processes, and separating those into the “realization processes”, which form the
core of what the organization does, and support processes. Thus in a software
house or consultancy, developing software is a core realization process. However,
in an organization whose business is making diesel engines or selling insurance, it
would be a support process.

1.2.3 What Functions Do Software Engineers Carry Out?

In this section, we look at the functional or technical activities carried out by
software engineers, to complement the “management” perspective of the previous
section. Historically, attempts to describe what software engineers do have usually
gone hand in hand with attempts to formalize the process by which they do it.
Thus the “waterfall” led to the life cycle approaches and then to structured
methods, also sometimes called methodologies; see [22]. Similarly, prototyping,
once the ultimate in “make it up as you go along” approaches, has acquired far
more structure and transferability in recent years because of initiatives such as the
development of dynamic systems development method (DSDM).

As an example of a structured method, we shall use the UK government-
approved structured systems analysis and design method (SSADM) [59]. In its
most recent version (4.3), SSADM comprises five modules: feasibility study,
requirements analysis, requirements specification, logical system specification,
and physical design.

DSDM by its very nature has a more complex structure than the hierarchical
one of SSADM. At the top level, the project process has five phases: feasibility
study, business study, functional model iteration, design and build iteration,
implementation. In addition, there are the preproject and postproject phases,
making seven in all. The authoritative source for information on DSDM can be
found at http://www.dsdm.org (last accessed November 1, 2002). From this, it is
clear that in DSDM, the term project refers to the actual system development, not
to its maintenance or support. SSADM, unusually for a structured method, is even
more restricted, stopping before even the programming, let alone the
implementation or maintenance.

This is not just an issue of semantics, however. In principle, a sofiware
development project may be cancelled at any time before its completion. Often,
the method being used includes specific points at which a “stop/go” decision is to
be taken. However, Baxter [7] points out that in fact there is in reality only one
gate (as she terms such decision points), at the end of what she terms the
feasibility phase. As she puts it, “projects are never cancelled once started”. Our
own experience supports this view. Thus there is a very specific knowledge
management issue in identifying knowledge relevant to this single gate.

1 Managing Software Engineers and Their Knowledge 11

There are many other methods for systems development; some of the principal
ones are reviewed and compared in [26]. Drawing on these together with SSADM
and DSDM, we obtain the following list of ten activities involved in systems
development and maintenance: investigation, determine feasibility, systems
analysis, system design, programming, testing, training, documentation,
implementation, and maintenance/support.

Figure 1.1 gives an idea of the relationship between these various technical and
functional activities of software engineers. It is not intended to be an exact
representation, because the time spent on activities varies from one project to the
next, and there will be loops back. Also shown in Fig. 1.1, there are in addition
two higher-level activities: project management, control, and people management
(users, clients, project team). For the remainder of this chapter, we shall keep this
list in our minds as our description of “what software engineers do”.

1.2.4 Is Software Engineering Knowledge Work?

Let us now consider whether software engineering qualifies as knowledge work at
all. Newell et al. suggest [42] that knowledge work has three particular distinctive
characteristics. The first two of these are autonomy and co-location. Autonomy of
the workers is a consequence of the creativity and problem-solving aspects of the
work. Creativity and problem solving have long been recognized as vital elements
of software engineering. Clearly, therefore, this feature is present. Co-location is
described by Newell et al. as “the need to work remote from the employing firm,
typically physically located at the client firm”. This does not apply to all software
engineers, but it is a definite feature of the profession, as seen in the widespread
use of contractors and the outsourcing of either or both of development and
maintenance work. Newell et al. comment that “The client firm might therefore be
in direct competition with the employing firm for the services of knowledge
workers” will strike a chord with many in the IT industry.

The third feature identified by Newell et al. is that knowledge workers are
“gold collar” workers, a term coined by Kelley [35]. Such workers need to be
“provided with excellent working conditions and generally afforded exceptional,
or at least very good, terms and conditions of employment”. No doubt many
software engineering professionals would challenge the notion that their pay and
conditions are excellent as a matter of principle, but by and large they do receive a
better remuneration and benefits package than their opposite numbers in many
other jobs. For example, the average salary for graduates entering IT jobs in the
UK is typically 10% higher than the average for all graduates.

We can safely conclude, therefore, that software engineering is knowledge
work, and hence that knowledge management is of high importance in software
engineering—or at least it should be. We now go on to look at the problematic
issues in software engineering and its management.

12 Edwards

\4

\' 4

[»-:o-an::m oo:!:ar:o-r:—-wgJ

Fig. 1.1. Software engineering activities

1.3 Problematic Areas in Software Engineering

Various authors have studied software engineers and software engineering over
many years [5, 7, 28, 36, 39, 46, 63]. Combining their views with our own
experience, we see that among the problematic features particular to this
profession are:

o The tension between systems development and maintenance/support work

e A combination of organizational and technical aspects

o The nature of team working

1 Managing Software Engineers and Their Knowledge 13

¢ A combination of generic skills and extremely specific skills
¢ Constant change, some of it externally imposed
e The need for a quick response coupled with long system lifetimes

1.3.1 The Tension Between Systems Development and Maintenance/Support
Work

Fundamentally, the work of software engineering splits into two parts—
development and maintenance. These can be characterized (or perhaps
caricatured) as the creative, interesting, exciting part and the boring, routine,
annoying part, respectively. Glass [23] points out that software engineering theory
tended to ignore maintenance for many years, perhaps for this reason. Naturally,
as with almost all such categorizations, there is a grey area in the middle where the
two overlap. An important consequence of this division in the work, however, is
that in many cases there is a corresponding split into separate teams. This is a
distinct obstacle to successful knowledge management, because it is as important
to share knowledge between the two “functions” as within them. The maintenance
team needs access to knowledge about how a system was developed, but equally
the development team might well benefit from knowledge of maintenance issues
relating to a similar system developed previously. Sharing knowledge across
teams is bound to be more difficult than within teams.

1.3.2 A Combination of Organizational and Technical Aspects

The discussion in the Sect. 1.2 identified that that there are both technical and
organizational or managerial aspects to a software engineer’s work. It is also
important to realize that very few of those involved in software engineering have
only technical or only organizational or managerial responsibilities. Table 1.1
shows a broad characterization of the relationship between these responsibilities
and the activities identified earlier. This balance, or indeed tension, between
technical and organizational activities is an issue to which we shall return later.

1.3.3 The Nature of Team Working

Another relevant feature is that software engineers—and especially software
developers—normally work in groups. However, compared to similar groups in
other professions, software development groups change very rapidly. For this
reason, Baxter [7] prefers to call them coalitions rather than teams. Perlow [46]
reports that although individuals worked together, success meant doing high-
visibility work, and that this was associated with the individual rather than the
teamsThe knowledge. management. implications of this are readily apparent.
Sharing knowledge is necessary to get the work done, but the rapidly changing
membership of the team/coalition means that the basis of the knowledge is often

14 Edwards

an individual rather than a group. As Perlow found, helping others is often seen as
a distraction rather than something that is rewarded by management.

Table 1.1. The different aspects of various software engineering activities

Activity Main responsibilities (in descending order)
Investigation Organizational
Determine feasibility Organizational
Systems analysis Organizational, technical
System design Technical, organizational
Programming Technical, managerial
Testing Technical, managerial, organizational
Training Organizational, managerial
Documentation Technical, managerial
Implementation Organizational, technical, managerial
Maintenance/support Technical, organizational, managerial
Project management and control Organizational, managerial
People management Managerial

1.3.4 A Combination of Generic Skills and Extremely Specific Skills

Skills possessed by software engineers are a curious combination of the very
general and the very specific. A database administrator, for example, needs to
have not only generic knowledge about the principles of database design and
structure, but also very detailed specific knowledge about the particular software
package version, hardware configuration and operating system for which she is
responsible [4]. This is by no means unique to software engineers; a similar
problem applies to automobile mechanics, for example. However, the balance
between the general and the specific seems far less clear in software engineering
than in many other professions. For example, when does knowledge about a
particular facet of database design in Oracle 81 on a Unix platform override more
general knowledge of database design principles?

1.3.5 Constant Change, Some of It Externally Imposed

Change increases the importance of knowledge management whilst
simultaneously making it more difficult to do it effectively. A further degree of
control over potential change is lost because most of the changes faced by
software engineers are, to a greater or lesser extent, externally imposed. At the
highest level, if a government decides to change the way in which a particular tax
is calculated, then all systems relating to that tax have to be amended. However, in
another sense, most of what software engineers do is externally determined,
becauseit-is-client.driven. Thus there-is.the need to anticipate change, as well as to
react to it.

1 Managing Software Engineers and Their Knowledge 15

1.3.6 The Need for a Quick Response Coupled with Long System Lifetimes

This raises an issue of what knowledge to keep, and what to discard. At one
extreme, keep everything, and the response provided to a query or problem is
likely to get slower and slower. At the other, keep only what is used daily, and you
will soon find yourself in trouble for example, when reports or procedures that are
only run annually come along. The tradition that documentation is the poor
relation in software development does not help matters here.

1.4 Previous Work on Knowledge Management in
Software Engineering

As we said at the start of the chapter, there are relatively few “mainstream”
articles about knowledge management in software engineering, for example, as
defined by the result of a keyword search. However, the situation is beginning to
change, including eight articles in a special May/June 2002 issue of IEEE
Sofiware. The article by the guest editors for that issue, Rus and Lindvall [49],
gives a good overview of the present state of the art, as does Chap. 4 of this book,
contributed by the same authors [38].

Carter [13] interviews Kathy Schoenherr, a software engineering manager
about knowledge management in her organization, an American insurance
company. Schoenherr identifies three categories of activity in software
engineering where knowledge management can contribute:

e Problem tracking and resolution
e Method documentation
e Human resource issues

She also argues that effective use of knowledge management would allow more
sharing of analysis and design from previous applications. (Again, the remainder
of the article is about knowledge management more generally, not specifically
knowledge management in software engineering.)

Hellstrom et al. [27] use a software engineering firm as an example of what
they call the “decentralized management of knowledge work”. They argue that
top-down approaches to knowledge management are inappropriate in such
circumstances, and propose instead that “semiorganized” knowledge exchange, or
brokerage, between individuals is most effective. This approach resonates with the
view sometimes heard expressed that managing software engineers is like
herding cats!

Kautz et al. also look at knowledge management, specifically knowledge
creation, in a small Danish software house [34]. They look in particular at the role
of IT systems in knowledge management and discuss various tasks as knowledge
processesyespeciallyiqualityrassurancerfor the software. They conclude that the IT
systems played “an important, yet subordinate role”. Openness, trust and mutual
respect were vital in enabling learning to take place.

16 Edwards

Doctoral theses (which have an inevitable three- or four-year time lag) are also
beginning to appear in the area of knowledge management in software
engineering, for example those of Birk [8], Dingseyr [16] and van Aalst [57].
Some of Dingsayr’s work may also be found in Chap. 3 of this book [17].

1.4.1 Knowledge Management by Another Name?

As well as the research outlined above, there is also much work that is relevant to
knowledge management in software engineering that does not actually call itself
knowledge management, either by choice (especially in the case of some of the
conferences referred to earlier), or because the term was not current when the
article was written. There are three strands of relevant work, one being that on
professional expertise in software engineering, a second on learning and
experience in software engineering, and the third on the use of knowledge-based
systems in software engineering.

1.4.1.1 Professional Expertise in Software Engineering

We have already drawn on this literature in our earlier discussions, including [22].
The work in this strand stresses that knowledge is socially constructed. Although
there must be limits to the extent to which this affects, say, a work-around for a
bug in a COBOL combpiler, the organizational dimension of software engineering
knowledge management is clearly dependent on this. Scarbrough [51] explains
this position well.

Williams and Procter discuss IT expertise in a bank, using an extended case
study [60]. They use a typology developed by Winstanley [61] to identify four
different situations for the software engineer, according to the power that their
expertise possesses in internal (within their own organization) and external labor
markets. This is shown in Table 1.2.

Table 1.2. Winstanley’s typology [61]

Undeveloped internal Developed internal labor
labor market market
Positive worker power in A. Independent mobile B. Company professional
external labor market professional
Negative worker power in C. Insecure contract D. Dependent worker
external labor market worker

Expertise in this context appears to mean the same as what we have termed
knowledge. The external labor market has a strong component of technical
knowledge. The internal labor market has a strong element of organizational
knowledge. Williams and Procter identified three teams of software engineers
(including all roles from programmers up to management) within the bank who
fell into three different categories in the typology. The first team was very

1 Managing Software Engineers and Their Knowledge 17

technically oriented, and their knowledge related mainly to programming
languages and technology. They thus fell into category A, independent mobile
professionals. A second team, although possessing strong programming
knowledge, relied even more on its internal reputation—earned by knowledge of
the bank’s systems. They come into category B, company professionals. The third
team had a much broader range of knowledge, but not the same in-depth
knowledge of any area as the other two. They came under category D, dependent
workers.

Newell et al. [42] continue to draw on this school of work, although nowadays
with an explicit knowledge management label. They remark that IT experts are
increasingly subject to market pressures, because of developments such as the rise
in outsourcing and the use of consultants, and that this tends to dilute the role of
the profession in regulating abstract knowledge. In the Williams and
Procter/Winstanley terms, software engineers are being pushed from category A to
category C, and from category B to category D. This substantially increases the
knowledge management problems for user organizations, who are becoming more
and more dependent on their “providers” for software knowledge. It will also have
adverse effects on the attitude of the software engineers towards sharing their
knowledge, especially for those in category C.

Where the outsourcing or consultancy is provided from another country, the
problems will be still more acute. Davenport and Prusak [15] explain the need for
face-to-face meetings to facilitate knowledge sharing. Edwards and Kidd [20]
describe some of the additional problems of cross-border knowledge management.

1.4.1.2 Learning and Experience in Software Engineering

A central element of this strand is the “experience factory” work referred to earlier
[5]. More recent papers drawing on the earlier work [52, 29] describe
DaimlerChrysler’s implementation of an Experience Center in software
engineering. These ideas have now spread widely; for an Australian example see
[37], and also [11, 14]. The thrust of this work involves robust processes with a
strong emphasis on managing the people as well as the software systems. There
are strong connections between this strand of work and the extensive literature on
learning organizations, much of which was inspired by the work of Senge [54].

1.4.1.3 Knowledge-Based Systems in Software Engineering and More
Generally

This strand of work also has a long history, although just as most knowledge
management research about software engineering firms is not specifically related
to software engineering, so most knowledge-based systems in software
engineering firms. are not specifically related to software engineering either. One
of the themes that carries over into knowledge management work has been that of

18 Edwards

understanding the nature of what software engineers do. See, for example, all
eight of the articles in Part I of the collection edited by Partridge [43].

The more important lessons from past research or applications in this strand are
often not the knowledge-based systems that were created (or even in some cases
that failed to be created), but the processes of knowledge elicitation and
representation that the developers, experts and users went through. For example,
the issues of work in teams and the balance between general and specific
knowledge were central to the work of Barrett and Edwards [4] on a system for
database design and maintenance. No fewer than eight layers of expertise, from
the most general to the most specific, were identified. Different experts proposed
different solutions to a problem, and some means of “adjudicating” between them
was necessary. A “knowledge czar” approach—nominating someone as the senior
expert—was chosen.

A great deal of knowledge-based systems work in software engineering has
been carried out at the Fraunhofer Institute for Experimental Software Engineering
(IESE). Examples of this can be found in [10] and in some of the papers in [2],
and Chap. 11 of this book gives the current position [3].

More generally in the knowledge-based systems field, one of the most widely
used methods for building knowledge-based systems, CommonKADS, an
extension of the earlier KADS [53, 58], is based on a philosophy of knowledge
modeling. CommonKADs incorporates no fewer than six types of model:
organizational, task, agent, expertise, communication, and design. There are
libraries of common problem-solving methods and extensive ontologies.
Knowledge modeling surely is one approach to knowledge management, but the
knowledge management literature makes virtually no reference to KADS or
CommonKADS at all.

1.5 Potential for Knowledge Management

Let us now attempt gradually to bring these diverse themes together. Picking up
the earlier theme from Kautz et al. [34], there have been many studies over the
years of the psychological profiles and personality traits of computer programmers
and software engineers. A relatively recent example by Wynekoop and Walz [62]
is interesting in that it considers programmers, systems analysts and project
managers separately. Many previous studies have either considered only one of
these groups, or have combined all of them together. Wynekoop and Walz found
that the three groups differed both from each other, and from the general
population:

The picture that emerges is that IS personnel are more conventional,
conscientious, diligent, dependable, organized, logical, and analytical than the
general population. However, systems analysts and managers also possess more
leadership characteristics, and are more ambitious hardworking and creative with
more self-confidence and a stronger self-image. Programmers, on the other hand,
are more inflexible and predictable and less social than the general population.

1 Managing Software Engineers and Their Knowledge 19

Assuming that we can equate “IS personnel”, as identified by Wynekoop and
Walz, with software engineers, a further important point is that their results
confirmed earlier findings that software engineers are innovative and creative
[55]. Thus both innovative/creative and analytical/technical dimensions of
knowledge are present in software engineering, and both may benefit from being
managed.

In order to proceed further, we present in Fig. 1.2 a model that we have used
before [18]. This model takes an organizational viewpoint regarding what happens
to a particular element of knowledge. First, knoeledge is created/acquired; then it
goes through a cycle of retain, use and refine/update (any of these activities may
be temporary, or indeed missing entirely). It may also be shared with/transferred
to those outside the circle of people who originally created/acquired it, in parallel
with this retain - use - refine cycle.

CREATE
ACQUIRE

REFINE
UPDATE RETAIN
USE
SHARE
TRANSFER

Fig. 1.2. A view of the knowledge management process

These five knowledge activities need to be considered in relation to the list of
software engineering activities Sect. 1.2.3. In principle, there needs to be a process
to carry out each of the knowledge activities effectively for each of the software
engineering activities. In general, there can be no rules as to which is more
important or easiest to do. Knowledge management must be situated in an
organizational context; these priorities must be determined for any given software
engineering unit at any given time.

Types of Solution: An investigation into the approaches that managers believe
should be used in knowledge management [21] identified that, broadly speaking,

20 Edwards

there are three types of “solution” that can be applied in knowledge management.
These are technological, people and process solutions. Although this research
looked at knowledge management in general, we believe that the categories apply
to knowledge management in software engineering.

Technological solutions are concerned with installing new technology or
making better use of existing technology. Specific technologies in the study
included data mining, databases or intranet access. Activities included
standardization of hardware or software, eliminating duplicate systems or data,
and in one case trying to discourage the use of privately owned personal
organizers and laptops, which were seen as a barrier to sharing information and
knowledge.

People solutions are concerned with staff retention and motivation, training,
debriefing and networking. One organization identified the need to rely less on
“training through osmosis”. Significantly for software engineering, another
thought the processes should involve removing their previous “culture of
confidentiality”.

Process solutions are concerned partly with paper-based specifications and
process instructions but also with the mix between formal and informal methods
of sharing knowledge. The emphasis is on “working smarter”. In the study
mentioned above, these solutions tended to be favored by the smaller
organizations—the ones in which, at least in principle, everyone knew who
everyone else was.

1.6 Overall Knowledge Management Strategy

The last element in our framework is that, broadly speaking, there are two overall
strategies in knowledge management: codification and personalization, as pointed
out by Hansen et al. [25]. These may be applied either separately or, more
profitably, in a complementary fashion. Within the overall strategy, any or all of
the three types of solution mentioned in the previous section may be deployed.
Certain combinations tend to occur naturally. Codification strategies tend to be
associated with technological solutions such as intranets and knowledge
repositories. Personalization strategies more often favor people-based solutions
such as communities of practice (CoPs) and storytelling. A more complementarist
approach may favor process-based solutions, especially those that integrate top-
down and bottom-up knowledge management concerns; see Edwards and Kidd
[19] for further discussion of the latter. We now look at the possibilities for each
of these three strategies in software engineering knowledge management.

1.6.1 Codification Strategies

Some software engineers might be more sympathetic to a codification strategy.
The work of Wynekoop and Walz [62] suggests that this ought to be especially

1 Managing Software Engineers and Their Knowledge 21

true of programmers. Codification strategies seem appropriate when the “right
answer” from one context is easily transferable to another. Thus sharing
knowledge about programming issues should be suited to this strategy. There has
indeed been a considerable amount of work on tools to support programming and
design work (two of the most technical activities from Table 1.1). These include
so-called Computer Aided System Engineering (CASE) tools and designer
workbenches. These are most useful for retain, share and use activities in
knowledge management; they provide little support for refining knowledge and
none for creating knowledge.

Problem tracking and resolution, and method documentation, identified earlier
as categories of knowledge management activity, also seem to be targets for
codification strategies. There is, however, a snag here: Much of this work has
concentrated on retaining and sharing knowledge within a single project. As was
argued by Schoenherr [13], effective sharing of analysis and design knowledge
between applications is a major potential benefit.

The more concrete products of the knowledge-based systems work on software
engineering mentioned earlier also correspond to a codification approach to
knowledge management.

1.6.2 Personalization Strategies

Having identified codification strategies as best suited to the more technical
activities within software engineering, personalization strategies by implication
are more suited to the managerial and/or organizational activities. Personalization
strategies can be very effective for creating and refining knowledge, and also
effective for sharing and retaining it. They provide less direct help in using it.

Human resource issues in software engineering are clearly candidates for a
personalization strategy for knowledge management. Most of the discussion by
Hellstrom et al. [27] concerns successful personalization strategies. The
professional expertise and learning and experience strands of research into
software engineering also ally themselves naturally with this viewpoint. We would
argue that the managerial activities (i.e. those relating directly to the people
involved with the project) are those where a personalization strategy is likely to be
most successful, along with higher-level technical activities such as those in
analysis and implementation where Creating and Refining knowledge is crucial,
i.e. existing solutions aren’t good enough.

1.6.3 Complementary Strategies

Our view is that, while codification and personalization both have their place, a
complementary strategy is the most effective. This must involve process-based
solutions,. often. to link technological- and people-based ones. How, for example,
does an organization ensure that knowledge created in a community of practice is
then successfully retained? What clements can be stored in some kind of

22 Edwards

repository, and what cannot? Post mortems, as advocated by Birk, Dingseyr and
Stalhane [9], are useful under all types of strategy. In a personalization strategy, a
post mortem aids both individual and group understanding, while in a codification
strategy, it assists in determining what documents, databases and so on are worth
keeping.

The paper by Kautz et al. [34] is a good example of a complementary strategy
towards knowledge management using IT for codification where it is appropriate,
but also employing a range of other approaches. The knowledge-based systems
work where the emphasis was on elicitation of the knowledge rather than building
a system also fits well into this category.

1.6.4 The Importance of Cultural Issues

Although we come to this heading last, research suggests that in many ways
culture generally is the most important aspect of knowledge management [50, 42].
Software engineering should be no exception, because most of the emphasis in the
process improvement and experience approaches is on understanding and
controlling the process and the product. This must be a shared rather than an
individual understanding, or else there is no guarantee that the process will be
repeatable. Individuals may excel in creating or using knowledge (to use the
Fig. 1.2 terminology), but successful knowledge management in software
engineering means an emphasis on retaining and sharing knowledge, whether the
overall strategy is codification, personalization, or both. This can only be achieved
with an appropriately supportive knowledge-sharing culture [56, 32]. Such a
culture may not come naturally to all sofiware engineers or their departments,
given the findings of Wynekoop and Walz [62] that programmers are less social
than average, and the rewarding of individual heroics found by Perlow [46].

Crucially, such a culture needs to be generated both from the top down, from
management expectations and leadership, and from the bottom up, from the
community of software engineers within the organization [19].

A final cultural issue is that knowledge management in software engineering
may not involve just the software engineers. The culture of the users may be
important too. Al-Karaghouli et al. [1] discuss a system to help what they term the
system developers and their customers to understand and communicate with each
other. However, such a technological solution will be of little help unless the
customers also trust the developers, whether they are external consultants, or in-
house colleagues.

1.7 Conclusion and Summary

The way in which software engineering is organized has changed substantially
over the past 35 years, but many of the knowledge management issues have not.
Software engineers face issues connected with technical, managerial and

1 Managing Software Engineers and Their Knowledge 23

organizational activities. The balance between these activities depends both on the
particular individual’s job, and the context they are working in at any given time.
Among the principal challenges to be faced are:

e Software engineering is knowledge work. Effective knowledge management is
therefore vital in improving the professionalism of a software engineering
department or unit. Analysis and design knowledge particularly needs to be
shared between projects.

o The fact that projects are rarely cancelled except at the end of the feasibility
study makes retaining knowledge about how to make this stop/go decision
crucial.

e The division between development and maintenance can easily become a split
with dire consequences if knowledge management is not performed well,
especially sharing knowledge between individuals and teams.

e Rapid turnover of staff makes it important to retain continuity of knowledge.
However, the high workloads that are in part a consequence of this high
turnover mean a lack of time for knowledge sharing and for reflective activities
such as knowledge refinement.

e Software engineering knowledge contains an unusually complex combination
of different layers of expertise, from the very general to the very specific. This
is especially problematic when using knowledge.

o The culture of the department or unit, and indeed the organization it is part of,
must encourage a bottom up “buy in” to knowledge management activities that
matches the knowledge management strategies employed from the top down.

Despite the many problems, effective knowledge management in software
engineering is possible. There are technological, people and process-based
solutions, and the best approach is surely a combination of all three within an
overall knowledge management strategy that includes both personalization and
codification elements. At least any obstacles facing software engineers are not
related to technical issues of computer support for knowledge management, since
using computer-based tools poses few such problems for software engineers. The
most important aspect overall, however, is to develop a culture that encourages
both knowledge sharing and reflection.

References

1. Al-Karaghouli W, Fitzgerald G., Alshawi S. (2002) Knowledge requirements systems:
an approach to improving and understanding requirements. In: Coakes E., Willis D.
Clarke S. (Eds.), Knowledge management in the sociotechnical world: the graffiti
continues, Springer, Berlin Heidelberg New York, pp. 170-184

2. Althoff K.-D., Feldmann R., Miiller W. (Eds.) (2001) Advances in learning software
organizations. Springer, Berlin Heidelberg New York

3oppAlthoff Ke-DopPfahly D (2003) Integrating experience-based knowledge management
with sustained competence development. In: Aurum A., Jeffery R., Wohlin C.,

24 Edwards

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Handzic, M. (Eds), Managing sofiware engineering knowledge, Springer, Berlin
Heidelberg New York

Barrett A.R., Edwards J.S. (1995) Knowledge elicitation and knowledge representation
in a large domain with multiple experts. Expert systems with applications, 8: 169-176
Basili V.R., Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sloan management review, 37: 55-64

Basili V.R., Caldiera G., McGarry F., Pajerski R., Page G., Waligora S. (1992) The
software engineering laboratory: An operational sofiware experience factory. In:
Proceedings of the 14th international conference on software engineering, Melbourne,
Australia, pp. 370-381

Baxter L.F. (2000) Bugged: The software development process. In: Prichard C., Hull
R., Chumer M., Willmott H. (Eds.), Managing knowledge: critical investigations of
work and learning, Macmillan, Basingstoke, pp. 37-48

Birk A. (2000) A knowledge management infrastructure for systematic improvement
in software engineering. Dr. Ing Thesis, University of Kaiserslautern, Germany

Birk A., Dingseyr T., Stilhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19: 43-45

Bomarius F., Althoff K.-D., Miiller W. (1998) Knowledge management for learning
software organizations. Software process: improvement and practice, John Wiley and
Sons, West Sussex, UK, pp. 89-93

Bréssler P. (1999) Knowledge management at a software house: An experience report.
In: Learning software organizations: methodology and applications. In: Ruhe G.
Bomarius F. (Eds.) Lecture Notes in Computer Science, Springer Berlin, Heidelberg
New York, 1756: 163-170

Bryant A. (2000) It’s engineering Jim; but not as we know it: software engineering,
solution to the software crisis or part of the problem? In: Proceedings of 22nd
international conference on software engineering Limerick, Ireland, pp. 78-87

Carter B. (2000) The expert’s opinion: knowledge management. Journal of database
management, 11: 42-43

Chatters B. (1999) Implementing an experience factory: maintenance and evolution of
the software and systems development process. In: Proceedings of the IEEE
International conference on software maintenance, Oxford, UK, pp. 146-151

Davenport T.H., Prusak L. (1998) Working knowledge: how organizations manage
what they know. Harvard business school press, Boston, USA

Dingseyr T. (2002) Knowledge management in medium-sized software consulting
companies. PhD Thesis, Norwegian University of Science and Technology, Norway
Dingseyr T., Conradi R. (2003) Usage of intranet tools for knowledge management in
medium-sized software consulting companies. In: Aurum A., Jeffery R., Wohlin C.
Handzic M. (Eds.), Managing software enginecering knowledge, Springer, Berlin
Heidelberg, New York

Edwards J.S. (2000) Artificial intelligence and knowledge management: How much
difference can it really make? In: Proceedings of KMAC2000, (Eds), Edwards J.S.,
Kidd J.B. (Eds.) Operational research society, Aston university, Birmingham, UK, pp.
136-147

Edwards J. S., Kidd J.B. (2001) Knowledge management when “the times they are a-
changing”. In: Proceedings.of 2nd.European conference on knowledge management,
Bled, Slovenia, 171-183

20.

21.

22.

23.

24.°

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

3s.

36.

37.

38.

39.

1 Managing Software Engineers and Their Knowledge 25

Edwards J.S., Kidd J.B. (2003) Knowledge management sans fronti¢res. Journal of the
operational research society, 54: 130-139

Edwards J.S., Shaw D., Collier P.M. (2002) Group perceptions of knowledge
management. In: Proceedings of 3rd European conference on knowledge management,
Dublin, Ireland pp. 209-222

Friedman A.L., Cornford D.S. (1989) Computer systems development, history,
organization and implementation. John Wiley and Sons, Chichester, UK

Glass R.L. (1996) The relationship between theory and practice in software
engineering. Communications of the ACM, 39: 11-13

Glass R.L. (1999) The realities of sofiware technology payoffs. Communications of
the ACM, 42: 74-79

Hansen M.T., Nohria N., Tierney T. (1999) What’s your strategy for managing
knowledge? Harvard business review, 77: 106-116.

Harry M.J.S. (2001) Business information: A systems approach. Financial times,
Prentice Hall, Harlow

Hellstrom T., Malmquist U., Mikaelsson J. (2001) Decentralizing knowledge:
managing knowledge work in a software engineering firm. Journal of high technology
management research, 12: 25-38

Hohmann L. (1997) Journey of the software professional: a sociology of software
development. Prentice Hall, New Jersey

Houdek F., Schneider K., Wieser E. (1998) Establishing experience factories at
Daimler-Benz: an experience report. In: Proceedings of the 20th international
conference on software engineering, Kyoto, Japan, pp. 443-447

Hoyle D. (2001) ISO 9000 quality systems handbook. Butterworth-Heinemann,
London UK

http://www.sqi.gu.edu.aw/SPICE/ The software process improvement and capability
dEtermination Website, (accessed November 6, 2002)

Huber G.P. (2000) Transferring sticky knowledge: Suggested solutions and needed
studies. In: Proceedings of knowledge management beyond the hype: looking towards
the new millennium, Edwards, J.S., Kidd, J.B. (Eds.), Operational research society,
Birmingham, pp. 12-22

Humphrey W.S. (1989) Managing the software process. Addison-Wesley, Reading,
MA, USA

Kautz K., Thaysen K., Vendels M.T. (2002) Knowledge creation and IT systems in a
small software firm. OR Insight, 15: 11-17

Kelley R. (1990) The gold collar worker: harnessing the brainpower of the new
workforce. Addison-Wesley, Reading, MA

Kidder T.L. (1981) The soul of a new machine. Avon, New York

Koennecker A., Jeffery R., Low G. (2000) Implementing an experience factory based
on existing organizational knowledge. In: Proceedings of the Australian software
engineering conference, Canberra Australia, pp. 53-62

Lindvall M., Rus L. (2003) Knowledge management in software engineering. In:
Aurum A., Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering
knowledge, Springer, Berlin Heidelberg New York

Moody F. (1990) I sing the body electric: a year with Microsoft on the multimedia
frontier. Viking, New York

26

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Edwards

Mouritsen J., Larsen H.T., Bukh P.N., Johansen M.R. (2001) Reading an intellectual
capital statement: describing and prescribing knowledge management strategies.
Journal of intellectual capital, 2: 359-383

Naur P., Randell B. (Eds.) (1969) Sofiware engineering: report on a conference
sponsored by the NATO science committee, Garmisch, Germany

Newell S., Robertson M., Scarbrough H., Swan J. (2002) Managing knowledge work.
Palgrave, Basingstoke

Partridge D. (Ed.) (1991) Artificial intelligence and software engineering. Ablex,
Norwood, NJ, USA

Paulk M.C., Curtis B., Chrissis M.B., Weber C.V. (1993) Capability maturity model,
Version 1.1. IEEE Software, 10: 18-27

Paulk M.C., Weber, C.V., Curtis B. (1995) The capability maturity model: guidelines
for improving the software process. Addison-Wesley, Reading, MA

Perlow L.A. (1999) The time famine: Toward a sociology of work time.
Administrative science quarterly, 44: 57-81

Randell B. (1996) The 1968/69 NATO software engineering reports. Presented at
Dagstuhl-Seminar 9635: “History of software engineering”, Schloss Dagstuhl,
Germany, 26-30 August, 1996

Rosenberg L.H. (2003) Lessons learned in software quality assurance. In: Aurum A.,
Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge,
Springer, Berlin Heidelberg New York

Rus I., Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

Scarbrough H. (1996a) The management of expertise. Macmillan Business,
Basingstoke

Scarbrough H. (1996b) Strategic IT in financial services: the social construction of
strategic knowledge. In: Scarbrough H. (Ed.), The management of expertise
Macmillan, Basingstoke, pp. 150-173

Schneider K., von Hunnius J.-P., Basili V.R. (2002) Experience in implementing a
learning software organization. IEEE Software, 19: 46-49

Schreiber A.T., Wielinga B.J., Akkermans J.M., van de Velde W., de Hoog R. (1994)
CommonKADS: a comprehensive methodology for KBS development. IEEE Expert,
9: 28-37

Senge P.M. (1990) The fifth discipline, the art and practice of the learning
organization. Doubleday, New York

Sitton S., Chmelir G. (1984) The intuitive computer programmer. Datamation, 30:
137-140

Snowden D. (2000) Cynefin, a sense of time and place: an ecological approach to
sense making and learning in formal and informal communities. In: Proceedings of
KMAC2000, Edwards J.S., Kidd J.B. (Eds.), Operational research society,
Birmingham, UK, pp. 1-11

van Aalst J.-W. (2001) Knowledge management in courseware development. PhD
Thesis, Delft University of Technology, Delft, The Netherlgnds

van Heijst G., Schreiber A.T., Weilinga B.J. (1997) Using explicit ontologies in KBS
development. International journal of human-computer studies, 46: 183-292
WeaverP:lua(1993)Practicali SSADMsdwPitman, London

60.

61.

62.

63.

1 Managing Software Engineers and Their Knowledge 27

Williams R., Procter, R. (1998) Trading places: a case study of the formation and
deployment of computing expertise. In: Williams R., Faulkner W., Fleck, J. (Eds.),
Exploring expertise: issues and perspectives, Macmillan, Basingstoke, pp. 197-222
Winstanley D. (1986) Recruitment strategies as a means of managerial control of
technical labor. In: Proceedings of labor process conference, Aston University,
Birmingham, UK

Wynekoop J.L., Walz D.B. (1998) Revisiting the perennial question: are IS people
different? Database for advances in information systems, 29: 62-72

Zachary G.P. (1994) Showstopper! the breakneck race to create Windows NT and the
next generation at Microsoft. Free Press, New York

Author Biography

John S. Edwards is Professor of Operational Research and Systems at Aston
Business School, Birmingham, UK. His principal research interests are in
knowledge management and decision support, especially methods and processes
for system development. He has published more than 60 research papers on these
topics, and two books, Building Knowledge-Based Systems and Decision Making
with Computers. Current work includes the transferability of best practices in
knowledge management, linking knowledge-based systems with simulation models
to improve organizational learning, and an investigation of knowledge management
in organizations using group facilitation techniques. He is also editor of the
journal Knowledge Management Research and Practice.

2 An Investigation into Software Development Process
Knowledge

June M. Verner and William M. Evanco

Abstract: Knowledge management elevates individual knowledge to the
organizational level by capturing and sharing information and turning it into
organizational knowledge. In order to provide a better understanding of the most
serious software project risks and the interrelations among risks, we collected
software project data from developers. This data includes information about senior
management, customers and users, requirements, estimation and scheduling, the
project manager, the software development process, and development personnel.
In order to elevate our data to organizational knowledge we conducted a variety of
studies on this data and found that the most critical success factor was good
requirements. Other critical success factors were either influenced by the
requirements, or themselves influenced the development of the requirements.

Keywords: Software project success, Critical success factors, Software
development, Developer perspective

2.1 Introduction

Developing software systems is an expensive, often difficult process with high
failure rates. While one recent study found that 20% of software projects failed,
and 46% experienced cost and schedule overruns or significantly reduced
functionality [41], another study suggested that failure rates for software
development projects are as high as 85% [31]. Software development projects are
plagued with too many problems, such as poor project management, cost and
schedule overruns, poor software quality, and under-motivated developers [5, 9,
65]. Development failures lead to a lack of credibility and to communication
problems among software developers, senior management, customers, and users,
which in turn makes software development an even more difficult task [23, 24].

Despite extensive research into and many guidelines for successful software
development, systems still fail [7, 42, 46, 51]. The majority of organizations have
software development practices that keep them at level 1 on the Software
Engineering Institute’s capability maturity model (CMM) scale [32]. Few project
post mortems are conducted [65], little understanding is gained from the results of
previous projects within the organization, and past mistakes continue in new
projects. Too frequently, key development practices are ignored and early warning
signs that lead to project failure-are-notunderstood. Of course, it is hard to capture
lessons learned and there are few incentives to use prior knowledge, especially
when the project manager is under pressure [57].

30 Verner and Evanco

Much of the literature regarding project failure is from the customer/user
perspective [22, 33, 72]. But it is just as important to recognize the effect that
project failure has on development staff. Troubled projects cause developers to
suffer long hours of unpaid overtime, loss of motivation, and burnout, leading to
excessive staff turnover and its associated costs. Developers have acquired
valuable individual experience from each project with which they have been
involved. Organizations and individuals could gain much insight if they could
share such knowledge [59].

From the discussion above, it is clear that the ability of the project manager to
understand the consequences of actions taken during the development process and
the effect that various decisions have on the development outcome are critical to
project success. Identifying project success and failure factors and their
consequences as early as possible may provide valuable clues that help the project
manager to improve the software development process.

A quantitative approach to software development is in alignment with the 1998
NSF Software Research Program for the 21st Century Workshop findings [3, 6,
45). The participants at this workshop suggested that future research activities
should “develop the empirical science underlying software as rapidly as possible”
and to “analyze how some organizations have learned to build no-surprise systems
in stable environments. By extracting principles from these analyses, empirical
research can help enlarge the no-surprise envelope.” Qur research fits into this
quantitative approach providing a better understanding of the most serious project
risks, the interrelations among risk factors, and their impacts on project failure
probabilities.

Factors affecting software project success and failure can be classified as risks,
critical success factors, and mitigants. Risks involve events in the development
environment or situations in the external environment that threaten project
success. Knowledge management can be viewed as a risk prevention and
mitigation strategy because it addresses risks that are too often ignored [59].
Critical success factors are the handful of factors that the development team must
ensure are present; in their absence, failure of the project is highly probable!.
Mitigants are actions or activities in which the development team can engage once
arisk appears to be likely.

2.2 Software Development Process Research |

Risks, critical success factors, and mitigants are related to project success and
failure in a very complex fashion. It is the long-range goal of our research to use
knowledge management to shed light on these complex interrelationships and to
provide a tool that project managers can use to better manage their development
projects. Knowledge management elevates individual knowledge to the

! This is a probabilistic definition of critical success factors rather than the deterministic
definition often used.

2 An Investigation into Software Development Process Knowledge 31

organizational level by capturing and sharing this information and turning it into
knowledge that the organization can access [59]. The development of automated
tools could provide the project manager with more objective criteria for the
prediction of project outcomes and an early warning of potential problems. Our
thesis is that there will be fewer software development failures if project managers
improve their understanding of the project success determinants at a conceptual
level. An automated project management tool could help project managers and
software development teams evaluate the likelihood of a successful project
outcome and better understand the risks associated with a project. They would be
able to perform “what if” analyses that would enable them to determine areas in
which the concentration of scarce resources will ensure the best project outcomes.

Our research approach is unique in its focus on software practitioners and their
perspectives. From industry interviews, we know that the software practitioner
perspective is extremely valuable to the discipline of software engineering in
general, and to the management of the software development process in particular.
Support for this approach is provided by a number of process quality improvement
models (e.g., CMM, ISO 9000 and Software Process Improvement and Capability
dEtermination (SPICE)) which are based on the widely held belief that improving
the software development process improves the quality of the software product
[50, 66].

We are engaged in a series of research projects and are in the process of
developing comprehensive statistical models that relate software development
risks, critical success factors, and mitigants to help project managers predict
software project success or failure. The data used to calibrate our models come
from extensive case studies of real life projects, interviews with software
practitioners, and survey questionnaires. Methodologies based on multiple and
logistic regression, principal component analysis, and Bayesian belief networks
serve as a basis for the development of the predictive models.

Our research agenda fits with that suggested by Fenton and Neil [21]. They
noted that the future for software metrics lies in using relatively simple existing
metrics to build management decision-support tools that combine different aspects
of software development and testing. This will enable managers to make many
kinds of predictions, assessments, and trade-offs during the software life-cycle.
They note that we need to handle the key factors largely missing from the usual
metrics approaches, namely: causality, uncertainty, and combining different
(sometimes subjective) evidence. Thus, they suggest that the way forward for
software metrics research lies in causal modeling, empirical software engineering,
and multi criteria decision aids. The causal model tells the story that is missing
from the naive approach. It can be used to help make intelligent decisions for risk
reduction and to identify factors that can be controlled or influenced.

The rest of our discussion is organized as follows. We review the background
to our work and other related research; this is followed by a section that reviews
the general background to our work and other related research. Sect. 2.4 discusses
ouryresearchrapproachsyWesthensprovidesan outline of research completed to date
and the results obtained from this research. Finally, we conclude with a discussion
of our findings thus far and future research.

32 Verner and Evanco

2.3 Background and Related Research

In Sect. 2.3.1, we review and discuss research related to the definition of software
project success. In Sect. 2.3.2, we discuss the factors influencing project success
and failure.

2.3.1 Project Success

Many studies have shown that project success or failure is a question of
perception, and that the criteria may vary from project to project [34, 35, 48, 68,
69]. Glass [26] noted a profound difference of opinion between managers and
team members concerning software project success, and our recent research agrees
with his views [54]. In Linberg’s [41] study of several projects, the criteria for
success that had strong agreement among all the involved parties were “meets user
requirements, achieves purpose, meets time scale, meets budget, happy users, and
meets quality”. Other researchers cite successful software development projects as
having met agreed upon business objectives and being completed on time and
within budget [2, 36, 41, 49, 61, 70, 71]. Still other definitions of success include
the degree to which the project achieved its goals; reliability, maintainability and
meeting of user requirements; user satisfaction; effective project teamwork;
professional satisfaction on the part of the project manager [28, 52]; and the extent
to which the software is actually used [14, 25]. Another important consideration
for management is that a successful project does not result in cancellation [38, 39].

2.3.2 Factors Affecting Project Success or Failure

Factors leading to project failure are summarized below [41, 52]:

o Estimation and scheduling failures: Resource failures leading to conflicts of
people and time, and schedule pressure

¢ Requirements failures: Poor specification of requirements, poor scope
definitions, and goal failures caused by inadequate statement of project goals
by management

o Communication failures: User contact failures including the inability to
communicate with the customer/user, organizational failures caused by poor
organizational structure, lack of leadership, lack of top-level management
support, or excessive span of control, people management failures involving a
lack of effort, stifled creativity, and personality clashes

o Process failures: Technology failures including failure to meet specifications,
technique failures caused by the failure to use effective software development
approaches and poor business processes, methodology failures with a failure to
perform necessarysactivities;splanning and control failures characterized by
vague assignments and use of inadequate project management and tracking

2 An Investigation into Software Development Process Knowledge 33

tools; and size failures with projects that are too large for the performing
organization

Although there is a significant amount of risk management literature [8, 10, 11,
30], this review is necessarily brief because of space limitations. Many researchers
have investigated the components of software risk; for example, Boehm [8]
suggested ten risk categories while Ropponen and Lyytinen [58] identified six
categories of risk.

Based on an extensive review of the risk literature, we identified seven
categories of software project risk: (1) senior management, (2) customers and
users, (3) requirements, (4) estimation and scheduling, (5) the project manager, (6)
software development process, and (7) development personnel [65, 63, 54, 55]. In
the following paragraphs, we further discuss the seven major risk categories.

Senior management/sponsor: Inadequate management? practices have far-reaching
implications for project success [1]. A serious project risk is lack of sponsor
support [S0]. Inadequate senior management and sponsor support can lead to a
lack of commitment on the part of customer/users and their availability. Serious
consequences may also result from interference by senior management that leaves
a project manager without the authority to properly manage the project. Arbitrarily
changing the project manager during the project may also have serious project
consequences.

Customer/users: Lack of end-user involvement in any of the phases of the
development life cycle will also have a negative impact on project success [1, 44].
While customer/user problems are one of the major contributors to failed projects
[65], realistic customer expectations can reduce conflict which in turn, supports
the perception of project success from both the developer and managerial
standpoint [42].

Requirements: Understanding requirements is an essential critical success factor in
the development of a system; a poor understanding of both the problem and its
scope leads to poorly defined requirements and serious project risk [60]. If there is
no clear agreement on the part of customers and users regarding the project’s
requirements, unrealistic expectations regarding software projects often surface
[51]. Requirements continue to be a huge problem for IT development, and poor
requirements are involved in most project failures [4, 26, 60]. Requirements
gathering early in the development process using well-defined methodologies that
result in well-documented requirements understood by all stakeholders reduces
project risk [12]. In addition, well-defined procedures for changes to those
requirements increase the probability of project success.

Effort estimation and scheduling: Much has been written about the detrimental
effects of underestimated schedules on the development process and the resulting
shortchanging of development activities [8, 50, 51]. A poor estimate of effort and
schedule is often found to be a major contributor to software project failure [7].

2 When we refer to management, we are referring to corporate management. Where
appropriate, we will explicitly refer to a project manager.

34 Verner and Evanco

Brooks [9] stated that more projects have gone awry for lack of calendar time than
from all other causes combined. Since the late 1970s there has been on-going
research into effort and schedule estimation. DeMarco [17] suggested that “the
software cost estimation problem is solved” and “though software managers know
what to do, they just don’t do it.” More recent research by Verner and Evanco [63]
also shows that although many cost estimation models are available, they are not
in general use. Poor requirements gathering can result in poor effort estimation,
hence poor resource estimation, stressed developers, and shortchanged project
activities; testing activities are usually the main casualty. Unfortunately, senior
management does not always permit project managers to be involved in project
estimates [63]. Perhaps if project managers were better educated in estimation
techniques and methodologies, they might improve their effort and schedule
estimation credibility and thus be permitted to have more involvement.

Project management. A project without a project manager, or one who does not
have the appropriate background and experience, is at serious risk [65].
Inadequate project management practices also have far-reaching implications for
software project success [1]. Many key project risks are associated with the
management process itself, and much of good management practice is the control
of pervasive and fundamental process risks [67]. Good managers do not merely
accept, or worse, ignore risky aspects of the development project. However,
during project execution many project managers become so busy and subject to
mounting resource and time pressures that they neglect risk control procedures
[56].

Effective project management is focused on people, problems, and process [19,

51]. Though most managers admit that they face more people-related problems
than those of a technical nature, managers seldom manage that way [18] as they
are generally not schooled in managing the sociological aspects of software
development [16].
Developers: The impact of developers on the software development process is
critical both in terms of what they do and with whom they interact. Lack of project
control that results in developers working long hours without adequate rewards,
and the associated negative effects on their personal lives, are serious risks to the
success of a project [15]. Most productivity studies have found that motivation is a
stronger influence on productivity than any other contributing factor [7, 42].
Properly motivated employees will also more readily support the achievement of
broader organizational-level goals [18].

Software development process: Project risk management is just one facet of the
development process. However, the analysis, tracking, and control of risks are
weak areas of the development process [56]. Risk can be reduced through the
improvement of the development process [32]. The idea behind the CMM is to
place the process of developing software under statistical control to make it more
predictable. Inappropriate life-cycle models, poor planning, monitoring, and
control;-and.inadequatechange-management procedures add significantly to
project risk.

2 An Investigation into Software Development Process Knowledge 35

2.4 Research Approach

Our research approach is divided into pilot studies and questionnaires; each of
these is described below.

2.4.1 Pilot Studies

The objective of our pilot studies was to investigate software project success,
project success risk factors, and their relationships to obtain a better understanding
of the success components. Such studies are instrumental in the preliminary
identification of the critical success factors associated with project success.

Structured interviews formed the basis of this part of the research. The
procedures used in Wohlin et al. [70] and Wohlin [71] to study the relationships
between project characteristics and project success using subjective evaluation
factors form the basis of some of this work. Several structured discussions with
software developers from a variety of organizations took place. Initial discussions
were with 25 software practitioners who were employed in the same organization.
These discussions covered a number of important software development topics.
Following the initial discussions, we had further discussions with another group of
21 software development personnel from a large financial/insurance institution.
We identified a comprehensive list of critical success factors, risks, and mitigants.
The success components identified during these discussions were later used to
develop a comprehensive project success questionnaire.

2.4.2 Questionnaires

As noted above, after our structured discussions, we developed a comprehensive
software project success questionnaire. All the respondents to our questionnaire
were software developers. The questionnaire, which dealt with completed
software projects and the factors that led to the success or otherwise of these
projects, was organized under the seven headings described in Sect. 2.3.2 above,
namely (1) senior management, (2) customers and users, (3) requirements, (4)
estimation and scheduling, (5) project manager, (6) software development process,
and (7) development personnel. In addition, we asked (1) “Did senior
management in the organization consider the project to be a success?” and (2) “Do
you (the developer) consider this project was a success?” When we refer to
management’s perception of success, we are actually describing the developer’s
perception of senior management’s view. Although this may appear a little
strange, at the time this work was done we did not have access to a sufficient base
of senior managers to obtain their views directly. As a result of this work, we
discovered that developers appear to have a different view of project success from
other software project stakeholders and that their perspectives on a successful
project needed to be further investigated. Each of the 21 respondents from the
large financial/insurance institution answered two questionnaires, one that focused

36 Verner and Evanco

on a successful project and the other on an unsuccessful project. Data from 42
software projects was thus gathered (data set 1). The software development
projects in data set 1 involved from 5 to 500 software practitioners.

We subsequently held discussions with software practitioners from a number of
U.S. (data set 2) organizations and asked them to complete our questionnaire.
Data Set 2 includes 78 projects from a diverse group of practitioners. These
respondents were from different organizations, ranging from small business IT
departments to large firms that are contractors to the US Government. The
employing organizations ranged from level 1 to level 4 on the CMM scale. A
colleague collected data set 3, which consisted of 43 Australian projects.

We then developed a small pilot study questionnaire to investigate factors that
contribute to practitioners’ perceptions of project success. Twenty-nine questions
relating to success were included in this questionnaire [55]. Statistical analysis
including correlation analysis and factor analysis was used to develop a success
definition [13, 29, 37, 40, 43]. Note that our focus is on the developer perspective.

During our pilot discussions, we collected over 80 pages of comments related
to the developers’ definitions of project success and factors that lead to software
project success and failure. Though we have completed some data analysis, as
described below, further investigation of this data is warranted.

2.5 Results

Our results are organized as follows: definition of project success, issues raised
during discussions, and data analysis.

2.5.1 Definition of Project Success

A notable result of our pilot study is that software developers have a different
definition of project success from that usually cited in the literature. Our results
show that the practitioner view of project success consists of two parts, namely
personal factors associated with the work and customer/user factors.

1. The personal factor includes a sense of achievement while working on a
project, a good job was done (i.e., quality was delivered), the project work was
satisfying, and the project resulted in professional growth.

2. The customer/user factors include whether the customer/users were involved, if
they had realistic expectations, and whether the project met all of their
requirements.

We note that there is nothing in this definition that mentions budget or schedule.
Details of this part of the study can be found in [55].

2 An Investigation into Software Development Process Knowledge 37

2.5.2 Issues Raised During the Discussions

Discussions of software projects with the developer groups were wide ranging and
resulted in the following factors being perceived as having major impacts on
project success:

1. Little or no senior management support

2. Customer and user problems

3. Poor requirements

4. Project management problems, including inadequate management skills, the
lack of a project manager, and midstream changes of the project manager

. Estimation and scheduling problems, including short-changed testing and poor-
quality products

6. The development process itself, including problems with the life-cycle model

used, and with project monitoring and control
7. Lack of a change control system

W

Notably, not a single respondent addressed risk assessment, or the lack of it,
when discussing failed projects. This suggests to us that, in the organizations we
studied, risk assessment is not routinely part of the development process. Other
findings from the discussions showed that management regarded staff turnover as
a major contributor to the failure of software development projects.

2.5.3 Data Analysis

We have not conducted a complete analysis of all the data. Rather we have
focused our attention thus far on management support, customers and users,
requirements, and estimation and scheduling. We now describe the investigations
we have completed to date. Some of the investigations involve a single data set,
while other investigations analyze all three data sets.

2.5.3.1 Investigations into Estimation and Scheduling

Data set 1: Chi-square analyses related estimation and scheduling responses to
success outcomes, i.e., developers’ views of the success of the project and their
perceptions of management’s view of the projects’ success. In addition, logistic
regression was used to predict success from both developers’ and management’s
views. Estimation and scheduling critical success factors significantly associated
with developer’s views of success were as follows:

1. Project estimates were based on appropriate requirements information

2. The ability of the project manager and developers to have input into the
schedule

3. Goodness of the effort estimates

38 Verner and Evanco

The only estimation and scheduling critical success factor that was associated
with management’s view of success was that the customers/users had input into
the schedule [63].

Data sets 1 and 2: What was striking about the data was that in two thirds of the
projects, the project manager was not involved in the initial project estimates, and
in only half of these projects was the project manager able to negotiate schedule
changes [63].

For the combined data (120 projects), 3 additional estimation and schedule
critical success factors emerged, namely:

1. Good project estimates
2. Adequate staff
3. No late staff additions to meet an aggressive schedule

Critical success factors perceived to be important to management’s view of
success included: the project manager had input into the schedule and the quality
of the estimates.

Logistic regression was used to predict project success for the first 42 projects
(i.e., data set 1, all respondents from the same organization), and these results
were compared with the 78 projects (data set 2, the diverse group of respondents).
Equations developed for data set 1 were used to predict success for Data Set 2, and
vice versa. The prediction equation developed from Data Set 2 was the better
predictor of success for both data sets showing that the results were generalizable
in this instance. It is illuminating to note that two thirds of the projects that the
respondents suggested had “estimates of average quality” were underestimated,
which suggests that the respondents were so accustomed to underestimates that
they did not consider this to be unusual. Even worse, 85% of those projects that
supposedly had above average estimates were underestimated.

Data Sets 1, 2 and 3: In order to conduct a more comprehensive analysis, the
additional project data set (set 3) was added to the database of projects, the details
of which are reported in [64]. This data was used to investigate the generalizability
of some of the estimation and scheduling prediction equations. The majority of
projects in our samples were estimated with unclear requirements. In view of the
fact that 69% of our projects were underestimated, our results reiterate that it is
still true that we are optimistic and assume that things will go well. Inadequate
requirements severely handicap the project team’s ability to apply estimation
techniques and methodologies that might provide reasonable cost and schedule
estimates. The most surprising results of this study are that (1) project manager
involvement in the initial effort and schedule estimates was not significantly
correlated with project success from either the management or developer point of
view and (2) developer input to the estimates was negatively correlated with the
quality of the estimates and with both success variables. While many factors
impinge on project success and failure, this investigation suggests that the most
important of the estimation and scheduling factors are:

2 An Investigation into Software Development Process Knowledge 39

1. Project estimates were based on appropriate requirements information
2. Goodness of the effort estimates

3. Taking staff leave into account

4. The effect of adding staff late to meet an aggressive schedule

Commonsense tells us that poor requirements are unlikely to lead to good effort
estimates. The lack of risk assessment affects the development process, with
schedule and cost underestimates leading to inadequate staffing. Staffing itself
then becomes a major risk factor. Adding staff late to meet an aggressive schedule
is still a problem and is perceived by both managers and developers as leading to
project failure.

2.5.3.2 Investigations of Management Support, Customers and Users, and
Requirements

Data Set 1: Analysis of data set 1 resulted in the identification of the following
management, customer/user, and requirements critical success factors from the
developers’ perspective:

. Lasting sponsor commitment

. The level of customer/user confidence in the development team
. Level of customer involvement

. Customers/users stayed through the project

. Realistic customer expectations

. Requirements were completed adequately, were good overall

. Customers/users involved in requirements gathering

N AN B WN =

Data Sets 1 and 2: In a study of the combined data set of 120 projects, described
in detail in Procaccino et al. [53], developers’ views of success were explained by
the following critical success factors:

1. The level of customer/user confidence in the development team

2. Level of customer involvement

3. Customers/users involved in requirements gathering

4. The size of the project was large and affected requirements elicitation

Management’s view of success was explained only by the scope of the project
being well-defined. Because the data consisted of two data sets, we were able to
investigate the generalizability of our results. Logistic regression models
developed from data set 1 and applied to data set 2 correctly predicted 80% of the
successful projects from the developers’ point of view and 57% of the successful
projects from management’s point of view. Regression models calibrated from
data set 2 and then applied to data set 1 correctly predicted 73% of the projects
with regard to developer success and 88% of the projects with regard to
management success. “Good” prediction was suggested by Boehm [7] to be within
25% of actual values at least 75% of the time. Hence, predictions of 80% and 88%
can be considered good from Boehm’s perspective.

40 Verner and Evanco

Data Sets 1 and 2, path analysis: Further research by Evanco et al. [20] applied a
number of statistical techniques including tetrachoric correlation analysis, path
analysis, probit regression analysis, and Bayesian belief networks to the data from
data sets 1 and 2. These methodologies allowed us to investigate cause/effect
models within the software development process.

Path analysis, like any other statistical technique cannot prove causality, but it
can serve to test the goodness-of-fit of a theorized causal model based on
correlation among independent and dependent variables. The steps we used in
developing our path analysis diagrams were as follows: based on our extensive
review of the literature and the results of the previously cited studies, we
constructed an a priori theoretical model of relationships among a number of
dichotomous variables (i.e., yes/no or high/low) with their proposed causal
linkages supported by tetrachoric correlational analysis.

Sponsor
Involved in Sponsor
project Lasted
decisions
Customer
Involved Customer Success from
throughout Lasted eve ecgle r
project perspective
3
Customer
Invoived with .| Customer Well-:&ﬁned
Requirements Confidence doliverables
Gathering
Woell-defined
project scope

Fig. 2.1. Path model for project success

The path model is depicted graphically in Fig. 2.1. As shown in Fig. 2.1, if
customers/users devote adequate time to the requirements gathering process, we
might expect a higher probability of a well-defined project scope. In turn, a well-
defined project scope will lead to well-defined software deliverables. Involvement
in requirements gathering and interaction with the developers will also instill
greater confidence on the part of the customer/user with respect to the
development team. Customer/user confidence, in turn, may result in a greater level

2 An Investigation into Software Development Process Knowledge 41

of customer involvement throughout the rest of the project. This involvement can
include milestone and progress reviews, user interface testing, development of test
cases, and acceptance testing.

If the sponsor is involved in project decisions, we might expect the probability
that the sponsor remains committed throughout the project to increase. Similarly,
both the level of customer involvement in various aspects of the development
process and the sponsor remaining committed throughout the project, increases the
probability that the customer will last through the project. Finally, from the point
of view of the project developers, project success is governed by both the sponsor
and customer lasting through the project and the ability to produce well-defined
software deliverables.

A test of the overall model fit is the generalized squared multiple correlation [62,
47], whose value was calculated to be 0.64. We also ran a probity regression
analysis for the success variable with the eight variables included without regard
to causality. We found an R?=0.40, which is substantially less than the generalized
square multiple correlation. The model’s generalized squared multiple correlation
being greater than the R? for the overall regression model is evidence that our
proposed model is a good fit based on the overall correlation of the observed data.

Finally, from the probity estimates for the various paths, we computed the
probabilities for each of the two dichotomous dependent variables. These
probabilities were used in a Bayesian belief network model to compute the
probabilities of success given the possible values of the independent dichotomous
variables, customer involved with requirements gathering and sponsor involved in
project decisions. The probabilities ranged from 55% when both variables had
“no” answers to 68% when both variables had “yes” answers. Thus, customer and
sponsor involvement increase the likelihood of project success.

2.6 Discussion

The analyses we have conducted thus far focused on data relating to only four of
the seven major software project success categories we identified earlier, namely
senior management, customers/users, requirements, and estimation and
scheduling. The data for the other four categories still requires detailed analysis.

Using knowledge management techniques that can elevate individual
knowledge to the organizational level, we have identified a number of critical
success factors for software development projects. Our investigations suggest that
the most important of the estimation and scheduling factors are:

1. Project estimates were based on appropriate requirements information
2. Goodness of the effort estimates

3. Taking staff leave into account

4. The effect of adding staff late to meet an aggressive schedule

42 Verner and Evanco

It is notable that input by developers into the estimates was negatively correlated
with project success and with good estimates. The most important factors in the
categories of management support, customers/users, and requirements are:

1. The level of customer/user confidence in the development team

2. Level of customer involvement

3. Customers/users involved in requirements gathering

4. The size of the project was large and affected requirements elicitation

The path analysis shows that in addition to the first three variables above, other
variables affecting success were:

1. Sponsor is involved in project decisions

2. Customer is involved throughout the project

3. Both sponsor and customer lasted throughout the project
4. There was a well-defined project scope

5. Software deliverables were well-defined

Note that the variable, “the size of the project was large and affected requirements
elicitation,” did not enter our path analysis.

The most critical success factor was good requirements. Other critical success
factors were either affected by the requirements, or themselves affected the
development of good requirements. The above results make it clear that a project
manager needs to consider seriously the risk to a project if the requirements are
poor. Good project estimates and the number of staff assigned to the project
depend on good requirements. Critical success factors, such as sponsor
involvement in project decisions and a well-defined project scope, influence the
development of good requirements.

We have shown that a project manager must juggle many factors that influence
project success and that many project managers are unable to do this. Better
project management education and more guidance, based on both successful and
unsuccessful project experiences, will help project managers who are ill prepared
to deal with so many diverse factors. It is noteworthy that good requirements and
issues related to good requirements are so important in predicting project success.

Three observations impacting future studies are significant from the above
studies: increasing the size of the respondent population leads to more robust
statistical results; for most analyses, fewer variables tend to be related to
management success when compared to developers’ view of project success; and
many of the explanatory variables derived from our questionnaire are correlated.
The fact that not a single respondent addressed risk assessment, or the lack of it,
when discussing either successful or failed projects suggests that risk assessment
is not routinely part of the development process.

2 An Investigation into Software Development Process Knowledge 43

2.7 Further Work

Our next step is to add estimation and scheduling variables to our path analysis
model to develop a more comprehensive path model. This will be followed in turn
by analysis of each of the other categories—namely, the software development
process, the development personnel, and the project manager—and the integration
of their critical success factors into an increasingly comprehensive path model.

Because we found it very interesting that software developers have a different
definition of project success from that usually cited in the literature, we have
developed a revised project success questionnaire to investigate further the
definition of project success. We are collaborating with several international
researchers in order to discover if, or how, cultural factors affect developers’
definition of software project success.

The lack of risk assessment for the projects in our samples surprised us. The
practice of risk assessment in real-world environments, when and how often it is
done, and how formal or informal the process is, needs further investigation.

References

1. Amoako-Gyampah K., White K.B., (1997) When is user involvement not user
involvement. Information strategy: the executive’s journal, 13: 40-45

2. Baccarini D., (1999) The logical framework method for defining project success.
Project management journal, 30: 25-32

3. Basili V, Belady L., Boehm B., Brooks F., Browne J., DeMillo R., Feldman S.I., Green
C., Lampson B., Lawrie D., Leveson N., Lynch N., Weiser M., Wing J. (1999) Final
report. In: NSF workshop on a software research program for the 21st century,
software engineering notes, 24: 3

4. Beizer B. (1984) Software system testing and quality assurance. Van Nostrand
Reinhold Company, New York, USA

5. Bennatan E.M. (2000) On time, within budget. John Wiley and Sons, UK

6. Boehm B.W., Basili V., (2000) Gaining intellectual control of software development.
IEEE Software, 33: 27-33

7. Boehm B.W., (1981) Software engineering economics. Prentice Hall, Englewood
Cliffs, NJ, USA

8. Boehm B.W. (1991) Software risk management: principles and practices. IEEE
Software, 1: 32-41

9. Brooks F.P. Jr., (1975) The mythical man month. Essays on software engineering,
Addison Wesley, USA

10. Carr M.J., Konda S., Monarch 1., Ulrich C., Walker C. (1993) Taxonomy-based risk
identification. Software engineering institute, Carnegie-Mellon university, technical
report CMU/SEI-93-TR-6

11. Charette R.N., (1989) Engineering risk analysis and management. McGraw-Hill
New York, USA

12" Clavadetscher C:(1998) Userinvolvement key to success. IEEE Software, 15: 30-32

13. Cohen J. (1960) A coefficient of agreement for nominal scales. Educational and
psychological measurement, 20: 37-46

44

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

3L

32.

33.

34

35.

Vermer and Evanco

Davis F.D. (1989) Perceived usefulness, perceived ease of use and user acceptance of
information technology. MIS quarterly, 13: 319-339

DeMarco T. (2001) Keynote speech at the international conference on software
metrics, London, April 4

DeMarco T., (1991) Non-technical issues in software engineering. In: Proceedings of
IEEE Conference on software engineering, Austin, Texas, pp. 149-150

DeMarco T., (1995) What “lean and mean” really means. IEEE Software, 12: 101-102
DeMarco T., Lister T. (1989) Software development: state of the art vs state of the
Practice. In: Proceedings of IEEE conference on software engineering, Pittsburgh,
USA, pp. 271-275

DeMarco T., Lister T. (1999) Peopleware: productive projects and teams. Dorset
House Publishing Co. New York, NY

Evanco W., Procaccino J.D., Verner JM. (2002) Software project success: a path
analysis. Submitted to IEEE transaction on engineering management

Fenton N.E., Neil M. (2002) Software metrics: roadmap. In: Finkelstein A. (Ed.), The
future of software engineering, 22nd international conference on software engineering,
ACM press, pp. 357-370

Garrity E.J., Saunders G.L. (1998) Introduction to information systems success
measurement. In: Garrity E., Saunders L. (Eds.), Information system success
measurement, Idea publishing group, Hershey, Pennsylvania, pp. 1-12

Gefen D. (2000) It is not enough to be responsive: the role of cooperative intentions in
MRP II Adoption. The DATA BASE for advances in information systems, 31: 65-79
Gefen D., Keil M. (1998) The impact of developer responsiveness on perceptions of
usefulness and ease of use: an extension of the technology acceptance model. The
DATA BASE for advances in information systems, 29: 35-49

Gefen D., Straub D. (2000) The relative importance of perceived ease-of-use in IS
adoption: a study of e-commerce adoption. JAIS, 1: 1-30

Glass R.L., (1998) Software runaways. Prentice-Hall, Upper Saddle River, New Jersey
Glass R.L. (1999) Evolving a new theory of project success. Communications of the
ACM, 42: 17-19

Hagerty N. (2000) Understanding the link between IT project manager skills and
project success: research in progress. In: Proceedings of SIGCPR conference,
Evanston, IL, USA, pp. 192-195

Hair J.F.,, Jr., Anderson R.E., Tatham R.L., Black W.C. (1995) Multivariate data
analysis with readings. Prentice Hall, Englewood Cliffs, NJ

Higuera R., Haimes Y. (1996) Software risk management. Software engineering
institute, Technical report, CMU/SEI-TR-012

Hoffman T. (1999) Study: 85% of IT departments fail to meet business needs.
Computerworld, 33: 24

Humphrey W.S. (1988) Characterizing the software process: a maturity framework.
IEEE Software, 5: 73-79

Ishman M. (1998) Measuring information systems success at the individual level in
cross-cultural environments. In: Garrity E., Saunders L. (Eds.), Information system
success measurement, Idea publishing group, Hershey, Pennsylvania, pp. 60-68
Johnston J. (1999): (The Standish group), Turning CHAOS into success. Software
magazine, 19: 30-39

Johnston J. (1999): (The Standish group) The ghost of Christmas future: small
movements spell where big shifis will come. Software magazine, 19: 15-17

36.

37.

38.

39.

40.

41.

42.
43.

44

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

2 An Investigation into Software Development Process Knowledge 45

Jones C, (1995) Patterns of large systems failure and success. IEEE Computer,
28: 86-87

Katchigan S.K. (1986) Statistical analysis - an introduction to interdisciplinary
introduction to Univariate and multivariate methods. Radius press, New York, USA
Keil M., (1995) Pulling the plug: software project management and the problems of
project escalation. MIS quarterly, 19: 421-444

Keil M., Montealegre R. (2000) Cutting your losses: extricating your organization
when a big project goes awry. Sloan management review, 41: 55-68

Kellner M.I. (1991) Non-technical numbers in software engineering (Panel Session
Overview). ICSE, Austinn, USA, pp. 149-150

Linberg K.R. (1999) Software developer perceptions about software project failure: a
case study. Journal of systems and software, 49: 177-192

McConnell S. (1996) Rapid development. Microsoft Press, Redmond, Washington
Miles M., Huberman M. (1994) Qualitative data analysis: an expanded sourcebook,
Sage Publication, USA

Nolan A.J. (1999) Learning from success. IEEE Software, 16: 97-105

NSF (2000) Final report. In: NSF workshop on a software research program for the
21st century hitp://www.cs.umd.eduw/projects/SoftEng/tame/nsfw98/FinalRep.rtf
(accessed 17th April, 2003)

Paulk M., Curtis B., Chrissis M., Webster C. (1993) Capability maturity model for
software. In: Technical report, CMU/SEI-93-TR-024, Software engineering institute,
Carnegie Mellon, Pittsburgh, USA

Pedhazur E.J. (1982) Multiple regression in behavioral research: explanation and
prediction. Holt, Rinehart and Winston, New York, NY, USA

Pinto J.K., Mandel S.J. (1990) The causes of project failure. IEEE transactions on
engineering management, 34: 269-276

Pinto JK., Slevin D.P. (1988) Project success: definitions and measurement
techniques. Project management journal, 19: 67-72

Pfleeger S.L. (1998) Software engineering: theory and practice. Prentice-Hall,
(Englewood Cliffs, NJ

Pressman R. (1996) Software engineering: a practitioners approach, McGraw Hill,
London, UK

Pressman R. (1998) Fear of trying: the plight of rookie project managers. IEEE
Sofiware, 15: 50-54

Procaccino J.D., Verner J.M. (2000) Early risk factors for software development. In:
Proceedings of the 12th European software control and metrics conference, London,
pp-107-116

Procaccino J.D., Verner J.D., Overmyer S.P., Darter, M. (2002) Case study: factors For
early prediction of software development success. Information and software
technology, 44: 53-62

Procaccino J.D., Verner J.D. (2002) Software practitioner’s perception of project
success: a pilot study. International journal of the computer, the Internet and
management, 10: 20-30

Raz T., Michael E. (2002) Use and benefits for project risk management. International
journal of project management, 19: 9-12

Reifer.D.J.-(2002).A. little bit.of knowledge is a dangerous thing. IEEE Software, 19:
14-15

46

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Verner and Evanco

Ropponen J., Lyytinen K. (2000) Components of softiware development risk: how to
address them? A project manager survey. IEEE transactions on software engineering,
26:98-112

Rus I, Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

Schenk K.D., Vitalari N.P., Shannon D. (1998) Differences between novice and expert
systems analysts: what do we know and what do we do? Journal of management
information systems, 15: 9-51

Standish Group (1994) CHAOS, http://www.pm2go.com/sample_research (accessed
date 17th April)

Schumacker R.E., Richard G.L. (1996) A beginner’s guide to structural equation
modeling. Lawrence Erlbaum Associates, Mahwah, NJ, USA

Vemer J., Evanco W. (2000) The state of the practice of software effort estimation in
business organizations. In: Proceedings of ESCOM-SCOPE, Munich, Germany,
pp. 229-237

Verner J.,W., Evanco W., Cerpa N. (2002) How important is effort estimation to
software development success? Submitted to the journal of empirical software
engineering research

Verner J.M, Overmyer S.P., McCain, K.W. (1999) In the 25 years since the mythical
man-month what have we learned about project management? Information and
software technology, 4: 1021-1026

Wang Y., Court ., Ross M., Staples G., King G., Dorling A. (1997) Quantitative
evaluation of SPICE, CMM, ISO 9000 and BOOTSTRAP. In: Proceedings of the 3rd
IEEE international symposium on software engineering standards, IEEE computer
society press, USA, pp.57-68

Ward S.C., Chapman C.B. (1995) Risk management perspective on the project
lifecycle. International journal of project management, 13: 145-149

Wateridge J. (1995) IT projects: a basis for success. International journal of project
management, 13: 169-172

Wateridge J. (1998) How can IS/IT projects be measured for success? International
journal of project management, 16: 59-63

Wohlin C., Mayrhauser A. von, Host M., Regnell B. (2000) Subjective evaluation as A
tool for learning from software project success. Information and software technology,
42: 983-992

Wohlin C., Amscheler Andrews A. (2001) Assessing project success using subjective
evaluation factors. Software quality journal, 9: 43-70

Woodroof J., Kasper G.M. (1998) A conceptual development of process and outcome
user satisfaction. In: Garrity E., Saunders L. (Eds.), Information system success
measurement, Idea publishing group, Hershey, PA, pp. 122-132

Author Biography

Dr June Verner is a Professor of Information Systems in the College of
Information Science and Technology at Drexel University, Philadelphia. She has
beenyinvolvedyinsresearchyintossoftwareyquality, software process improvement,
software project management, and software metrics for many years. Dr. Verner
has published over 50 research papers and is a member of the Technical Council

2 An Investigation into Software Development Process Knowledge 47

on Software Engineering. Dr. Verner's received her Ph.D. in software engineering
from Massey University NZ.

Dr. William Evanco has a Ph.D. from Cornell University. He is currently on the
faculty of the College of Information Science and Technology at Drexel
University. Before Dr. Evanco joined Drexel he was on the technical staff of Mitre
Corp in Washington, DC. He has many years of IT consulting experience with US
industry and government agencies. His research interests are in software quality,
software testing, and software project management and risk analysis.

3 Usage of Intranet Tools for Knowledge Management
in a Medium-Sized Software Consulting Company

Torgeir Dingsayr and Reidar Conradi

Abstract: Many software companies have invested in or developed knowledge
management tools. This chapter examines intranet-based knowledge management
tools in a medium-sized software consulting company. We present four tools: the
Project Guide, a structured knowledge repository designed to help developers and
managers carry out projects; the “Well of Experience”, an unstructured knowledge
repository containing more than 600 experience notes; the Competence Block
manager for organizing internal courses; the Skills Manager, which gives an
overview of employee competence. In addition to presenting the tools, we
describe how developers and managers use the tools, and find that knowledge
management tool usage depends on what work tasks an employee has, as well as
the employee’s personal preferences. We argue that medium-sized software
companies should choose a knowledge management strategy that supports the
actual work tasks and personal preferences of employees.

Keywords: Knowledge management tools, Intranet, Knowledge cartography,
Knowledge repository and library, Personalization, Codification.

3.1 Introduction

This chapter describes how intranet-based knowledge management tools are used
in a medium-sized software consulting company. Medium-sized software
consulting companies are interesting because there are relatively few studies of
knowledge management in this type of company. Also, many companies belong to
this category, and they often use other technical solutions than those used by
larger companies. By studying how knowledge management tools work, we can
learn how to improve them.

The company Alpha Consulting focuses on knowledge engineering and has 150
employees. The company has chosen a knowledge management strategy that relies
on both codification, to represent knowledge in written form and personalization,
to foster the exchange of tacit knowledge. Alpha Consulting has developed tools
to support both of these strategies, and we describe four tools, including how they
are used, based on 14 interviews with employees in different groups in the
company. We analyze how the tools support company strategies, and argue that
the synergy between personalization and codification work particularly well in this
medium-sized company.

First, we first present details of Alpha Consulting and then continue with a
discussion of knowledge management tools in general. We focus on the

50 Dingseyr and Conradi

knowledge management tools at Alpha in particular and how they are used, and
end by discussing this usage. A more detailed description of knowledge
management at Alpha Consulting can be found in [2]. For a survey of other case
studies of knowledge management initiatives in software companies, see also
Dingsgyr and Conradi [3].

3.2 Alpha Consulting

Alpha Consulting (“Alpha”) is a software consulting company based in Norway,
develops knowledge-based systems for a variety of customers. When it was
founded in 1985, it was a spin-off of a larger, more general consulting company,
and according to a Norwegian newspaper, “an international staff of specialists will
develop expert systems that above all will cover the needs of the demanding oil
industry”. The newspaper continues: the company shall “offer services in
industrial use of knowledge-based expert systems, and software in the field of
artificial intelligence”.

Since then, the company has grown organically, from just a few employees in
the beginning; to approximately 150 in 2002 both by increasing staff and through
and acquisition in 2000. The company has also extended their services and market.

In the annual report for 1999, they state that their vision is to “make knowledge
sharing in organizations more effective, and thereby contribute so that knowledge
is refined and used to achieve the organization's goal”. Their mission is to

Deliver services, solutions and products to organizations and individuals who
wish to make their business more effective through innovative use of information
technology. The company’s core competence is knowledge management, process-
support and implementation of intelligent systems for knowledge-based behavior
and knowledge processes. Within this business area, Alpha will seek international
activity based on their role as a leading vendor in Norway.

In July 2001, the company discussed with a major aircraft company about
delivering a system for modeling software and organizations.

The important technologies for delivering these solutions include network and
database technology, document management and search, Web technology, work
process support, co-ordination technology, artificial intelligence and data mining.
The underlying technology is Java, Microsoft and SmallTalk technology.

Customers come from the public, marine and industry sector. Projects for these
customers typically include 3 - 10 people working for at least half a year, and in
some cases for several years. In projects, the participants take on different roles, as
“project manager”, “technical manager”, and “customer contact”. In addition to
these projects, the company has a record of participating in cooperative research
projects, from highly applied research to more advanced research in EU- and
Norwegian Research Council-funded projects.

The company is organized around “processes” and “projects”. The “process
organization”ymeansythatytheyshavesdefined important areas for the company,
which has one “process manager”, usually with support from a small team.
Examples of processes are management, delivery and support, and also knowledge

3 Usage of Intranet Tools for Knowledge Management 51

management. Many employees in the company are responsible for some process
issues while working on a project. Most employees have a university degree in
computer science, and some have doctoral degrees, specifically in artificial
intelligence.

The knowledge management process at Alpha hands out a prize to the
“knowledge sharer of the month” in order to promote knowledge management.
This prize has been given to people who share their knowledge through Alpha’s
knowledge management tools, or through oral communication.

On first sight, the organization seems very flat with people rotating between
different process manager positions. But as one employee told us, “of course,
there is a hierarchy here as well, it is just not written down any place”.

While working on projects, most of the development has traditionally been
done in-house rather than at the customer’s site. However, situation where
employees work at the customer’s sites are becoming more frequent. When we
visit the company, approximately 20% of the staff were working elsewhere
outside the main company building.

3.3 Knowledge Management Strategies and Tools

Here we present what strategies a company can choose when applying knowledge
management, and then present categories of tools that support these strategies.

3.3.1 Knowledge Management Strategies

There are essentially two main strategies for knowledge management [7]:

e Codification: To systematize and store information that represents the
knowledge of the company, and make this available for the people in the
company.

e Personalization: To support the flow of information in a company by storing
information about knowledge sources, like a “yellow pages” of who knows
about what in a company.

Hansen et al. [7] argue that companies should focus on just one of these
strategies. We wish to add however, that the codification strategy does not fit all
types of knowledge. In situations where knowledge is very context-dependent and
where the context is difficult to encode and transfer, it can be dangerous to reuse
knowledge without analyzing it critically. For some examples of problems with
this strategy, see Jergensen and Sjeberg [8].

Another alternative to the two strategies could be to support the growth of
knowledge, that is, creation of new knowledge by arranging for innovation
through special learning environments or expert networks, but we will not discuss
that here. Note that some have referred to these strategies by other names: Cod-
ification can also be called “exploitation”, and personalization “exploration” [9].

52 Dingseyr and Conradi

3.3.2 Knowledge Management Tools

In terms of tools for knowledge management, we mean tools that have several
users and are widely available for employees in an organization. This is usually
what we call intranet tools [11] which support knowledge management in “at least
three ways: 1) providing compression of time and space among the users. 2)
offering the flexibility to exchange information, and 3) supporting information
transfer and organizational networking independent of direct contacts between the
users”.

Knowledge Communities of
Repositories and Knowledge
Libraries Workers

Knowledge
Flow

Knowledge
Cartography

Fig. 3.1. Types of knowledge management tools [1]

There are many dimensions for describing knowledge management tools.
Ruggles [10] mentions tools that generate knowledge, for example, tools for data
mining that discover new patterns in data. Further, we have knowledge
codification tools to make knowledge available for others, and knowledge transfer
tools to decrease problems with time and space when communicating in an
organization. Another dimension is whether the tools are active [6] or passive. By
active tools, we mean tools that notify users when it is likely that users require
some kind of knowledge. Passive tools require a user to actively seek knowledge
without any system support. We now categorize the tools according to a model
fromsthe book:Information: Technology:for Knowledge Management [1], because
it is widely known. The authors divide technology for a “corporate memory” into
four parts, shown in Fig. 3.1:

3 Usage of Intranet Tools for Knowledge Management 53

® Knowledge repositories and libraries: Tools for handling repositories of
knowledge in form of documents

o Communities of knowledge workers: Tools to support communities of practice
in work; like organizing workspaces for communities for online discussions
and distributed work

e Knowledge cartography: Tools for mapping and categorizing knowledge, from
core competence in a company to individual expertise; what we can refer to as
“metaknowledge”

o The flow of knowledge: Here we find tools for supporting the interaction
between tacit knowledge, explicit knowledge and metaknowledge that is, that
combines the three parts above

3.4 Research Method

The aim of the research reported in this chapter is to investigate how intranet-
based knowledge management tools are used in a medium-sized software
consulting company. We selected Alpha as a case company because we know that
they have many knowledge management tools and have been working internally
on knowledge management for several years.

To obtain the data for the research reported in this article, we used a method
inspired by ethnography [5]. For the analysis, we relied on a grounded theory
approach. We spent four weeks at Alpha, obtained access to their intranet systems
and attended all meetings where all the employees were invited as well as
meetings concerning one project.

3.4.1 Data Collection

We used the following data sources:

e Interviews: We used semistructured interviews with open-ended questions.
The interviews were transcribed in full, and in total we obtained 120 pages of
transcripts for analysis.

e Usage logs: We collected logs from the usage of the knowledge management
system on the intranet Web pages.

e Documents: We gathered documents about the design and intent of the
Knowledge Management tools.

o Screenshots: We gathered screenshots from different areas of the knowledge
management system.

e Pictures: We took pictures of people in normal work-situations to get a better
understanding of the workplace and work processes.

o Logbook: We registered observations from everyday life in the company in a
logbook, together with memorandums from conversations, meetings and
presentations.

54 Dingseyr and Conradi

3.4.2 Data Analysis

We analyzed the qualitative data using the principles of grounded theory [12]. We
also kept quantitative data in logs, which first had to be preprocessed before we
could plot them for analysis.

How did we organize the analysis of the data that was collected? First, we
gathered the qualitative material that was collected on each knowledge
management tool. We constructed a database! with information from the
interviews, documents and our own logbook observations. We tagged the
information to show what kind of source it came from, and categorized the people
who interviewed: managers, project managers, developers, and people responsible
for knowledge management.

We then searched this database for areas of interest, and gathered information
from the different sources. For example, a search in the database for the keyword
“skill” resulted in 43 occurrences in 10 documents.

After that, we analyzed (and “coded”) the chunks of information to find
interesting categories that might later contribute to theory building. Would there
be any special patterns in what the people were saying? A triangulation approach
was used to see if there were differences between groups of people or between
what people were saying and logs or collected documents.

3.5 Usage of Knowledge Management Tools at Alpha

We now present some of the knowledge management tools at Alpha, and divide
them into two groups: knowledge repositories and libraries and knowledge
cartography tools. We do not discuss other types of tools because there has been
more work on tools supporting communities of knowledge workers. Also, there
were no tools that we can describe as knowledge flow tools at Alpha. All the tools
that we examined were "passive" knowledge management tools.

The usage situations found for each tool are presented, as well as the types of
user groups. We start by giving a general overview of the front page on the
intranet system, then present knowledge repository tools, knowledge cartography
tools, and finally, we give a general assessment of the tools.

3.5.1 Knowledge Management Tools in General

At the main Web page of the knowledge management system at Alpha, there are
links to several different subsystems. The first page provides company-internal
news. Above that, there is a calendar, which shows the current events. On the left,
there are links to several other Web pages: The skills manager, competence
blocks, the knowledge repository WoX and several other tools.

1 Using N5, a tool for analysis of non-numerical data from (QSR international, Australia)

3 Usage of Intranet Tools for Knowledge Management 55

On the top of the page, there are links to each employee's timesheet, a
telephone list, the external Web pages, and the possibility to send an e-mail to the
Webmaster. On the right-hand side, there is a “tip” about a knowledge
management magazine, and a link to an informal “newspaper” that covers social
events in the company. At the bottom of the screen, there is a “quiz of the day”
and viewers may answer this quiz in a box below.

When we asked employees in the company how often they would use the tools
for knowledge management, most of the employees from Alpha said that they
were used it several times a day. A developer said he used it “between five to ten
times a day”, and another said “a couple of times a week to register hours. [since]
it is always something you must do... look at news. If you want to follow what is
happening in the company, you have to look at it a couple of times a day. When I
open Internet Explorer, it is the first page I get”. Of other people we spoke to at
Alpha, it seemed that most were using the tools “several times a day”, some
“daily” and a few “weekly”.

3.5.2 Knowledge Repository and Library Tools

With this group, the following tools are highlighted: the project guide and the well
of experience.

3.5.2.1 Project Guide

This is a practical guide to assist project work that contains descriptions of
different processes that are common, such as project start-up and closure, how to
do testing and so on. It contains templates for documents that are normally
produced during project execution, as well as examples. Different company roles,
such as developer, manager and customer contact, have different views to the
guide.

According to one manager this tool “has a form that is very nice—initiatives on
peptalks when projects start and such. It is really a step in the right direction, that
things are triggered by the system, and that people do not just know how to do
things”. Another manager commented that the tool was the” result of a lot of
projects, and some routines and terms around it is an indirect result”.

Many people at Alpha indicated that they do not use this tool very often. One
manager said, “I must say that this is a tool that I might have used more. And
when I say that, I suppose there are other people as well that could have used it
more”. A developer said “No, I do not use that... or at least not deliberately, but I
suppose that there are many things that we do that you can find in the project
guide”. Another developer said, “No, there is no need for me to use it. It is maybe
aimed more towards project managers, but to be honest I have not used it as
project manager either. Maybe because the projects have been too small. Or that it
has been clever people on the projects that have not needed any training”. Another
developer had problems with the form of the project guide: “I do not like it a lot,

56 Dingseyr and Conradi

maybe because it is available electronically”. This developer felt that he lost
overview when reading hypertext documents, for example, when investigating
"acceptance tests, it was a long list of subpoints that you could click on. But you
never get through such a list—it is too much! And I am a bit uncertain because it
looks like a whole book, and if I pick out a piece to read it, do I have to read
everything before it?” A third developer said she felt “angry when using it”,
because it did not contain a complete set of information, and is difficult to
navigate in.

Overall we found that people mainly used the tool to obtain tips and advice in
project start up and execution. A manager said that he “used it as a daily support —
in order to solve projects in general, and when we needed an acceptance test
earlier in the project, we had a look there to see what tips and advice we could
find”.

Words: I | -

Include: B Text/subject [J Comments

Your credits: 0

Fig. 3.2. The well of experience (WoX) search interface for the knowledge repository of
experience notes

3.5.2.2 Knowledge Repository: The WoX

The Well of Experience WoX,, is a small tool for capturing knowledge that would
normally be written on yellow stickers, what the company calls “collective yellow
stickers”. It contains everything from the phone number of the pizza restaurant on
the corner, to “how you set up SmallTalk on a special platform”. You find
information by searching an unstructured database (Fig. 3.2), and you can give
“credits” to notes that you find useful. Notes with more accumulated credits about
an issue show up before notes with less. The tool contains a mechanism to give
feedback to the person who wrote the note, and there has been a kind of
competition in the company to get the most credits. One developer described this
module as “quite useful; it is simple enough to be used in practice”. When we
visited the company, it contained around 600 “experience notes”.

Examplesiof suchrnotesiare “how to'reduce the size of your profile in Windows
NT”, “how to remove garbage from an image in SmallTalk”, “technical problems
with cookies” and “an implementation of the soundex algorithm in Java”.

3 Usage of Intranet Tools for Knowledge Management 57

According to one developer, “People are very good at submitting notes when
they think that something can be useful for others.” A manager described the notes
in terms of “a behavioral arena that people use in different ways, to create a
culture of knowledge sharing, and [the tool] lets people experience that others
make use of their knowledge”. The tool is promoted by posters, which can be
found in frequently visited places like the one in Fig. 3.3, located just outside the
staff restaurant.

Fig. 3.3. “I’ve been WoX'ing today, have you?” One of several posters promoting the use
of the WoX knowledge repository at Alpha

When we asked employees to describe what kind of tools they were using in
their work, almost all of the developers mentioned that they were using WoX. All
developers but one (seven out of eight) said that they have written experience
notes, and all of them have tried to search for experience notes. The managers
were not as active in using the notes as others. Three out of six managers did not
mention WoX when we asked about knowledge management tools in the
company.

We found five different types of usage of the knowledge repository, to

1. Solve a specific technical problem
2. Get an overview of problem areas
3. Avoid rework in having to explain the same solution to several people

u J

58 Dingseyr and Conradi

We describe each of these types of usage in more depth:

Solve a specific technical problem: The most prominent use of this tool seemed to
be in “problem solving”. As one developer explains “If you run into a problem,
then you can use WoX to see if anyone else in the company has had a similar
problem”, or it can be used “when you sit with a problem that you can’t solve, or a
strange bug, or if you do not understand why the computer does not behave the
way it should”.

Another developer says: “It happens that I have been searching and have found
things in WoX. And then you do not have to search in other places, and maybe
spend two or three days”.

As one developer mentioned, the problem with the notes is that “the person that
writes something has a certain background, and with that background they
presume that when they write ‘first you do this, then that...’, the others will also
know what to do”. This, however, is not always the case, especially in more
complicated situations.

Get an overview of problem areas: One employee said, “If I am stuck and wonder
about something, usually, I remember that it was written somewhere in WoX, and
then I go back and find it”. One developer, for example, tends to refer back to
notes about project startup, particularly at a startup phase, which happens every
six months or so. Another developer and another manager also said that they
would look almost every day to see what was new on WoXso I know what is in
there, and do not have to search for things".

But people do not write about all types of problems as experience notes. Notes
about issues that are “unofficial knowledge”, or as one developer put it “not things
that are unethical, but things that you do that could easily be interpreted wrongly
by customers” do not appear and that knowledge is transferred through informal
oral communication.

Avoid rework in having to explain the same solution to several people: One
developer said: “When the third person comes and asks about the same thing, then
you realize that it is about time to document it”. He would then later tell people
who were asking about the topic to look it up in WoX.

Improve individual work situation by adjusting technical tools: Some said that
they would find information on how to improve the tools that they use in their
daily work, like Outlook, to make them more easy to use. Another example is
“how to reduce your profile in Windows NT”, which reduces the booting-time of
your operating system quite a bit. A third example of a small improvement is a
note on how to burn CDs for customers. This note in particular explains how to
design covers for the CDs so that they look more professional when delivering a
final software product.

Find who has a specific competence in the company: “Newbies get a short-cut to
discover things that I have spent some time to build up. If they browse WoX a bit,
they can find that ‘this person knows a lot about low-level Windows-patching’ and
that ‘this person is good at Apache Webserver set up’”, one developer said.

3 Usage of Intranet Tools for Knowledge Management 59

3.5.3 Knowledge Cartography Tools

At Alpha we examined two cartography tools: Competence Blocks and the Skills
Manager.

3.5.3.1 Competence Blocks

The Competence Blocks is a list of company-internal courses that are open for
assigning and viewing, and the courses may be evaluated after completion. A brief
description of each course is given, together with schedule information and who is
responsible. Most of the courses are given in a day or less. Sometimes, courses
from other suppliers are also offered through this system. A manager described it
as a “very valuable supplement (to normal on-the-job-training), with blocks that
can be composed specifically”. According to a developer, the management
“encourage people to organize competence blocks”. This tool is used when
someone wants to participate in a course, or plan a course (or Competence Block).

We found six people who mentioned this tool in interviews. This is a tool that
people do not use very often, but must use if they want to participate in a course.
A developer said that this tool "suits me very well—I prefer oral communication
to written".

3.5.3.2 Skills Manager

This is a system where all employees can state what level of knowledge they have
in different areas that are of interest to the company, like object-oriented
technology or the ability to program in Visual Basic. It can be used to indicate
which level you want to be at, so if you are interested in learning more about
Visual Basic, you can state it in this tool. The tool is used for staffing projects, and
many people in the company also use it to find someone who can help them to
solve a problem. As one developer said: “I can say that I need a person that knows
HTML, and then I will get a list of people, and see what level of knowledge they
have.” For a wider discussion of this tool, see Dingseyr and Reyrvik [4].

Managers, project managers as well as developers said in our interviews that
they used this tool. From the interviews, we have divided the usage of this tool
into four categories, some with subcategories, to

1. Search for competence to solve problems
2. Allocate resources

3. Find projects and external marketing

4. Develop competence

We discuss each of these uses more in detail below:

Search for competence to solve problems: The developers often need to know
something about a topic they are not very skilled in themselves. We can then

60 Dingseyr and Conradi

distinguish between two types of usage of the skills management system. First,
people use it to find other people in the company who have knowledge about a
specific problem that they have to solve i.e. short-term usage. Second, people
increase their overall insight in to the core competencies of the company i.e. long-
term usage.

Let us look at first the short-term usage. One developer says, “It happens (that I
use it), if I suddenly have a specific problem in an area that I do not know much
about. Then it sometimes helps to go in there and find someone who knows about
it. I have in fact done that once...”. Another developer seems to use it more often:
“of course, when I wonder if there is anyone who can help me with something, I
look up in the skills management system to see if anyone has the knowledge that I
need.” In Fig. 3.4, we show a screenshot of the skills management system, giving
an overview of skills in object-oriented development. Here, you can also e-mail
people who have a required competence in a specific area, or you can just print a
list of people and ask them yourself, as another developer has done: “I find a list,
and look at what level they have ... and then I go around in the building and ask
them”. Of course, this depends on people-to-rate themselves in a honest way. One
developer used the skills management system to find people, but after asking the
believed “experts” she found that she “did not get the answers that I needed, so I
had to go to someone else. It depends very much on people to update their skills
correctly. To describe a skill level is not that easy, so some overrate themselves
and others underrate themselves strongly.” Another developer is critical of the
categories of competence in the skills management system: “what you can get
information about now is if someone knows about Web— and that contains quite a
lot! Maybe it is not that general, but not too far off. It is based on the core
competency areas of the company, but when it comes to more detailed things, like
who in fact can write a computer program, and who can find a solution, you do not
find that there.”

When we looked at long-term usage, we found very little material in our
interviews. One developer, however, often finds a group that knows something
about a subject on the skills management system, and asks them questions by e-
mail. But “if it then happens that you have asked questions about SQL to ten
gurus, and it is always the same two that answers, then you start to go to them and
talk. You learn after a while who it is worth to attempt to get anything out of”.

Allocate resources: In our empirical material from Alpha, we can see some
patterns of the practical uses of the skills management system, in terms of resource
allocation.

As one new employee said, “contrary to a lot of other companies that use such a
system, here at Alpha we really use the system for resource planning.” Another
comment is on the same track “I think that the Skills Manager is a useful tool, but
a tool that still has got a lot of potential when it comes to practical use. Those who
do the resource management already use the tool a lot in the daily resource
allocation work.”

3 Usage of Intranet Tools for Knowledge Management 61

(: Skills Mana
Personal Update leview | Configuration | Adwinistration | Help
View skiill: 00D e
» Malp aew e curront
Vou can instead view desired level evaluations for thiy i,
1 Cick bare to change your own evakiation for this skl
- Show el A * incicates that the person has & commant. Cick the name for detal.
Out 2ills skill prority = Core
Sont sl by groie
* Ghaw single porsen
« Techmsingy & :
Metinnia i i
» A - Ariifcisd v sbigence i E i
TRt eer— :) : , . E @
-OT. Tochrology
+ pint] 9 |F i 1] ¥
+0008] i I *] B
TOORDA |] L i 3] o
] | K D |4 i I PR R
ocou | M [: ’))
spseraiseeonts | | H i i]] n
& dhechinchrs ¢ it v ¥ ¢ "]
) £] i *] |
L] t] L BB ¥ H
e " ' { v 1 n
» Pocjoct Managemert] ' Vs s H
Finaes DAY CIOGROT A]] IR L] 90y H
: ok X g; t] i bR 1Y *
* bro wreeg ogusyes T o M H t € ’ u
+ Cow T » I 5 ‘ u
P]] < 1 L]
» Tooks & Applcations ' 1 < 5 "
» Ofher shils o k ¢] 9 M
i [N F "
i ' ’ 3 H
' ¥ v (R I8]
1 ' *) |é »
1 1 + &
' [F] B
' i e
' i) e 9 R
]] £
L L} & B
]] nir » m
i v L W
i i) F K
i } i
< et C
2 hrvels e 3 | L | |

Fig. 3.4. An example of a result after querying for competence on “object-oriented
development” in the Skills Manager. The names of people have been removed

A third Alpha employee comments on the Skills Manager as an important tool
for resource allocation, but also for the strategic development of the company:
“The tools I use the most are ... the competence block manager and the Skills
Manager. Definitely! I’'m responsible for the content in many databases, and partly
the skills management base. And the Skills Manager is a tool that is very
important for the resource allocation process. Therefore, many employees come
up with suggestions to new content, new elements, in the skills database.”

Find projects and external marketing: Another use of the system is for the sales
department. One manager said that "even sales can use it (the skills management
system), to find new directions to go in", or rather to find what types of projects

i ink;of another use that we did not hear from

62 Dingseyr and Conradi

namely to use the system as external marketing; that is as proof of a highly skilled
workforce.

Develop competence: Concerning the development of competencies at Alpha, the
skills manager also seems to play a part.

The problem with all of our systems is that they function only to the
degree that they are used. (Systems) like the Skills Manager depends on
everybody to update them often and objectively. That could be solved by
work-process support. Skills updating could be a natural part of the closing
of a project, for example by updating the involved competencies,
particularly those that have been in use during the project. Today, you are
allocated to projects on the basis of what you have in the Skills Manager.
There we have views devoted to people with free time and the competence
required in the project. When you are allocated to a project on the basis of a
competence profile, then there is also knowledge in the system about which
competencies that are expected to be used in the project. Therefore it would
be natural to ask for an update on those competencies when the project is
finished.

Another employee sees the Skills Manager in light of intellectual capital: Such
tools are very good indicators for accounting intellectual capital. You are able to
see what kind of competencies we will need in the long term, evaluate it, and
compare it to what competence we already have in the firm. Then, you can say
that we have that many person months with C++ or Java competence, and we see
that there is an increase in this competence, and then we can evaluate that.

In the skills management system at Alpha, the employees can use this tool to
state what they want to learn about in the future, not only what they know now. In
that way, people can develop their competence by working on relevant projects.

3.5.4 General Assessment of Tools

When we asked people to assess the tools that they have available for knowledge
management in their daily work, we got a variety of answers. Some said that the
tools that exist now are "primitive", and far from what the company thinks should
be possible to use. Others said they worked “fine”, while others think that they
were impractical.

Several people in the company believe in more technically advanced
knowledge management tools. One manager said, If we were allowed to set up a
project with more of our skilled people, and followed up in the same way as we do
against customers, then we would have had a (set of knowledge management
tools) that are much more functional, support our employees better, and support
knowledge management at Alpha better than what we have today.” Another
manager said: “It (the knowledge management system) is characterized by when it
was made, and the need that has been in the organization at different times. That
is, it has been developed once, and has been patched-up a bit afterwards.” As a
result, the technical condition of the system is not something that the company

3 Usage of Intranet Tools for Knowledge Management 63

would sell to an external customer. This view is also supported by a developer,
who said, “We have a number of tools that represent some good ideas, but the
tools' condition today is not the ultimate. We see a lot of possibilities for
improvement, especially on technology. What really could have made a difference
is that we could have had much better integration between the tools”. An example
of tools that could be integrated better are the Skills Manager and the WoX.
Another possible integration is between the Skills Manager and the Competence
Blocks.

Other people emphasized that the tools are under constant development. A
manager said “It is under constant development, really, and when you get
something new, you discover at once the need for something more”.

Several people mention that they would appreciate a more "active" kind of
knowledge management, like one manager who said:

The problem is not that we do not document enough experience, but to make the
experience appear when it is needed. It is ok in those situations when an employee
recognizes that ‘now I need knowledge about something’ - we could have improved
the indexing possibilities [in internal knowledge repositories] ... But if we had done
s0, it would be like that if I was thrown into a new project - or a newly employed
was - and you are to do a relatively specific thing, then it could happen that you do
some searches for knowledge on the essence on the job, but all the side-experience
you have, you would not search for [knowledge that does not fit the search criteria].

I see it like the essence of the border of passive knowledge management [that the
knowledge management system supports].

One developer said: “I only use the knowledge management system for
registering hours, and doing smaller stuff. I do not think it is easy to find
information there.” This was because this developer would normally need
information whilst working on software development, and she felt it was time-
consuming to start a browser and look up a Web page for the internally developed
framework she was mostly working with. Also, she meant that these Web pages
were usually not updated, so she preferred to read code to find answers to
problems. Another user said, “I think the knowledge management system is a bit
messy. I do not really know what is in there, because I have never had the time to
go through everything”.

Others were critical of an extensive use of tools: “Some people talk warmly
about ‘taking our own medicine’ by using work processes in development and
things like that. That is just bullshit! Maybe it is a good thing for in-house
training, but work processes is not the most effective way of working.” This
developer said that if you are an expert user, you have your own way of working
that is probably much better. Work processes would force you into a work pattern
that does not suit you, because the way the company is modeling work patterns is
“extremely static”.

Another developer said that the contents of the tools are “much more up to date
than you would expect”. He thinks this is because much of the information is
generated from databases that are easier to maintain than Web pages.

64 Dingseyr and Conradi

Over the time period we collected measurements, we found that the front page
was accessed an average of 2032 times per week, which is approximately 14 times
per week per employee.

3.6 Discussion

The structure of this discussion highlights again the types of tools and strategies
described in the previous paragraphs. We have focused on two main strategies for
knowledge management: codification and personalization. We investigated two
types of tools: knowledge repositories and libraries and knowledge cartography
tools. We now discuss how these tools were used for codification and
personalization in the company, then we examine what kind of learning that takes
place as a result of these tools.

3.6.1 Knowledge Repositories and Libraries

When we go on to ask about how these knowledge repository and library tools are
used for transferring knowledge between development projects, we divide the
usage into two types. First, we look at usage of codified knowledge from the tools
in terms of what corresponds to the codification strategy that we have presented in
Sect. 3.3.1. Second, we notice that some types of usage are more suitable to the
personalization strategy.

3.6.1.1 Codification Strategy

For the knowledge repository and library tools, we found the following usage
situations (with the corresponding tool in parentheses):

Get tips and advice in project startup and execution (Project guide)

o Solve a specific technical problem (Well of Experience)

o Avoid rework in having to explain the same solution to several people (Well of
Experience)

¢ Improve work situation by adjusting technical tools (Well of Experience)

From the interviews it seemed that the Project Guide was in use by different
employee groups and with a different frequency than the Well of Experience. The
Project Guide seemed to be mostly in use by some project managers, and not very
much in use by developers. The Well of Experience on the other hand, seems to be
used by many employees, and at a much higher frequency. We note that it was
mainly developers who said that they actively contributed to the contents of the
Well of Experience, and not employees who acted as project managers or
managers.

3 Usage of Intranet Tools for Knowledge Management 65

Why do we see this difference between the usage of these tools? Is it because of
the intended focus of the knowledge in the tools, or the way the tools can be used?
The Project Guide is intended to be a support in project work and contains
abstracted knowledge from previous projects. The Well of Experience has no
structure and may contain any type of information. Yet, it seems that it is the
developers that use the tool and fill it with technical information, either to make it
easier for others to solve a problem, or to avoid rework oneself by having to
explain the same thing several times, or to adjust technical tools to increase
performance.

The user interfaces of the tools are quite different: The Project Guide can
display knowledge according to different roles in a development project, and is
browsable. The Well of Experience is a small search engine containing company-
relevant information.

It might be that developers require more specific information to solve most of
their daily problems. When they have a specific problem, the solution is often in a
“bug fix”, or a technical description on how to change something. The solution is
not found in an abstract way to reason on such problems, which is what you might
expect from the Project Guide. Maybe the type of abstract knowledge found there
is better suited in situations that require overall decisions, but not in concrete
problem situations.

3.6.1.2 Personalization Strategy

When asking employees about usage, we found two uses of Knowledge
Repositories/ Libraries that are part of the personalization strategy

¢ Get an overview of problem areas (Well of Experience)
¢ Find who has a specific competence in the company (Well of Experience)

Here, the employees did not use the knowledge found in the Well of
Experience directly. They saw the available knowledge and who made it, then
used that information for getting an overview of problem areas the company faced
often. They also saw who frequently posted tips on topics: persons who could be
considered some kind of expert. It is an interesting point that the tools with
codified knowledge can be seen as having an additional purpose other than pure
“codification” and “distribution”.

3.6.2 Knowledge Cartography

We now discuss how the knowledge cartography tools supported personalization
at Alpha. We did not find any usage types that we classified as codification. Of the
cartography tools, we found the Skills Manager to be in use for four different

purposes:

66 Dingsgyr and Conradi

¢ Searching for competence to solve problems (Skills Manager)
¢ Resource allocation (Skills Manager)

e Finding projects and external marketing (Skills Manager)

e Competence development (Skills Manager)

Only two employees mentioned that they were using the Competence Blocks.
From the interviews it seems that this tool is used much less than the Skills
Manager that almost everyone mentioned, where most employees had updated
their skill levels.

Developers said they were using the Skills Manager for solving problems and
competence development. Managers and administration used it for resource
allocation, to find external projects and to market the company externally.

3.6.3 Learning at Alpha

We now go on to discuss what kind of learning the different usage types at Alpha
resulted in. We found some of the usage types resulted in problem solving:

e Solve a specific technical problem (Well of Experience)
e Searching for competence to solve problems (Skills Manager)

We also found use in avoiding rework and improving the work situation:

e Avoid rework in having to explain the same solution to several people (Well of
Experience)
e Improve work situation by adjusting technical tools (Well of Experience)

Other types of use were to obtain orientation in the company, and for making
some work processes more effective:

Getting an overview of problem areas (Well of Experience)

Finding who has certain competence in the company (Well of Experience)
Resource allocation (Skills Manager)

Finding projects and external marketing (Skills Manager)

Competence development (Skills Manager)

Getting tips and advice in project start-up and execution (Project guide)

If we describe these forms of usage in relation to the theories about learning in
Alpha, people who had the same position in the company would sometimes use
different tools. Some preferred to use the Skills Manager to find experts in order
to solve a technical problem, while others would search in the knowledge
repository WoX. This might be an indication that the expected knowledge gain is
not the only factor that affects the choice of tool since there is also an interest in
how the knowledge is presented.

3 Usage of Intranet Tools for Knowledge Management 67

3.7 Conclusion, and Further Work

We found a variety of specialized knowledge management tools at Alpha. One
contained knowledge that was unstructured, the Well of Experience, and one
contained packaged knowledge, the Project Guide. We found two knowledge
cartography tools, the Skills Manager and the Competence Blocks. From the
interviews and the usage logs, we see that the use of these tools varied. From this
we conclude that there are many different knowledge management tools in a
medium-sized software company, and the tools were used to varying degrees.

In terms of tool usage, it seems that the repositories that present more
“packaged” knowledge are used less often than the tools with unstructured
knowledge. If we take into account the different groups of employees, it also
seems that project managers prefer tools with more abstracted knowledge, while
the developers prefer tools with more specific knowledge.

Further, usage of tools varied between people in the same group. Some
developers preferred oral communication to written, and tended to make more use
of the personalization tools. Others preferred written communication, and some of
these preferred to have it on paper while others preferred to have it electronically.
Others again were skeptical to the use of tools in general, because it was hard to
find relevant information. Overall, we can conclude that the use of knowledge
management tools varies both between developers, project managers and
managers, and after the employee’s personal preferences.

We found 12 different types of usage of the knowledge management tools,
some relying on personalization and some on codification. From this we can
conclude knowledge management tools are used for a variety of purposes. The
practitioners in the company will adapt and use tools to suit their normal work
situations.

Knowledge repositories can function as a personalization strategy as well as a
codification strategy. For companies that want to develop knowledge management
tools, this shows that different groups of users in sofiware companies, such as
developers, project managers, and management benefit from different types of
tools. Developers require more detailed knowledge, while the other groups seem
to benefit more from abstract knowledge in their tool use.

This also shows that a medium-sized software company can gain from being
effective at knowledge transfer through both personalization and codification, and
that it does not have to select a single knowledge management strategy.

Acknowledgement

We are grateful to contact persons and interviewees at Alpha Consulting who
shared their experience on knowledge management. We are further grateful to the
Norwegian Research Council for funding the work through the Process
Improvement for IT industry (PROFIT) project, and to all colleagues working in
the project for providing a stimulating research environment. Finally, we would
like to thank the anonymous reviewers for their helpful input.

68 Dingseyr and Conradi

References

1. Borghoff UM, Pareschi R. (1998) Information technology for knowledge
management. Springer, Berlin Heidelberg New York, ISBN 3-540-63764-8

2. Dingsgyr T. (2002) Knowledge management in medium-sized software consulting
companies. Doctoral thesis, Department of computer and information science,
Norwegian University of science and technology, Trondheim, ISBN 82-7477-107-9

3. Dingseyr T., Conradi R. (2002) A survey of case studies of the use of knowledge
management in software engineering. International journal of software engineering and
knowledge engineering, 12: 391-414

4. Dingseyr T., Reyrvik E. (2001) Skills management as knowledge technology in a
software consultancy company. In: Althoff K.-D., Feldmann, R.L., Miiller W. (Eds.),
Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York,
Kaiserslautern, Germany, 2176: 96-107

5. Fetterman D.M. (1998) Ethnography: step by step. Sage Publications, London, UK,
ISBN 0-7619-1384-X

6. Gunnar A.S., Coll J., Dehli E., Tangen K. (1999) Knowledge sharing in distributed
Organizations. In: Proceedings of the workshop on knowledge management and
organizational Memories, Stockholm, Sweden

7. Hansen M.T., Nohria N., Tierney T. (1999) What is your strategy for managing
knowledge? Harvard business review, 77: 106-116

8. Jorgensen M., Sjeberg D. (2000) The importance of NOT learning from experience.
In: Proceedings of the EuroSPI conference, Coppenhagen, Denmark

9. Mathiassen L., Pries-Heje J.,, Ngwenyama O. (2002) Improving software
organizations: from principles to practice. Addison Wesley, Boston, ISBN 0-201-
75820-2

10. Ruggles R.L. (1997) Knowledge management tools. Resources for the knowledge-
based economy, Butterworth-Heinemann, Boston, USA

11. Ruppel C.P. Harrington S.J. (2001) Sharing knowledge through intranets: a study of
organizational culture and intranet implementation. IEEE transactions on professional
communication, 44: 37-52

12. Srauss A. Corbin J. (1998) Basics of qualitative research: grounded theory procedure
and techniques. Sage publications, Newbury Park, CA, ISBN 0-8039-5939-7

Author Biography

Torgeir Dingseyr wrote his doctoral thesis on Knowledge Management in
Medium-Sizes Sofiware Consulting Companies at the department of computer and
information science at the Norwegian University of Science and Technology in
Trondheim. He is currently working as a research scientist on software process
improvement at SINTEF Telecom and Informatics in Trondheim, Norway.

Reidar Conradi is a professor in the department of computer and information
science at the Norwegian University of Science and Technology in Trondheim.
Hisinterestsareprocess-modeling;-software process improvement, software
engineering databases, versioning, object orientation, component-based
development, and programming languages.

Part 2
Supporting Structures for Managing
Software Engineering Knowledge

Aybiike Aurum

No man’s knowledge here can go beyond his experience
— John Locke

Software engineering knowledge is dynamic and evolves with technology,
organizational culture and the changing needs of the organization’s software
development practices. Software development processes rely heavily on
knowledge and creativity of both individuals and teams in software development.
The basic principle in software engineering is that the overall quality of software
can be improved when knowledge is made available and used proficiently.
Furthermore, the need for further development of software engineering practices
within organizations adds to the demand for systematic knowledge and skill
management at all stages of the software lifecycle. Thus, developing effective
ways of managing software knowledge is of interest to software developers.

Three enabling factors support the knowledge management process in software
organizations. The first is technology that links developers to one another and
creates an organizational memory bank that is accessible to the entire
organization; second is leadership that encourages knowledge management in
software product development, services and work processes within the
organization. The final factor is organizational culture that supports the sharing of
knowledge, experiences, and technology and innovation.

There is a need to support the systematic storage of evolving knowledge, and to
capture and share emerging knowledge in software organizations [5]. The
challenge is twofold. First, software organizations need to capture, share,
coordinate and manage implicit and explicit knowledge as well as find complete
solutions to problems in the project and organizational level. Second they need to
find and integrate partial solutions for continuous improvement, and hence,
organizational learning [4]. Once organizations recognize this need, it is essential
for them to identify their present position to serve as a baseline. In addition to
considering project size and product application domains, software development
processes adopted by organizations must be aligned with the expectations of their
customers, managerial practices, organizational culture, social dynamics and the
knowledge and skills of the developers. Furthermore, these issues have to be
integrated to a coherent guidance for performing theses processes.

Making personal knowledge available to other team members is one of the
objectives of knowledge management, because maximizing access to knowledge
across the development team increases productivity and efficiency. Furthermore,

70 Aurum

knowledge assets related to the production process can generate significant value

within the organization.

In order to build organization-specific software know-how, organizations need
to learn from their past software projects. An organizational learning approach to
software development involves development of experienced-based knowledge
repositories [2]. Hence, knowledge management applications must be embedded
within the organizational structure to support organizational learning.

Reuse is one example of transferring existing knowledge to team members.
There are several questions that need to be considered when applying reuse
approaches, e.g. is it economical to spend time and money to store the knowledge?
How frequently do the developers use the knowledge? What is the content of the
data and the metadata that describes the structure of the data? What is the best way
to forecast the future changes in knowledge?

Another example of a knowledge management application in software
organizations is change management. This refers to one of the fundamental
aspects of overall project management, i.e. change requests must be documented
and the impact of each change on development artifacts must be tracked and
retested after the change is realized. There are significant long-term project costs
associated with not managing these issues.

Effective knowledge support in software development requires support from
both management and technical levels in software organizations [1, 3]. This can be
accomplished in three major directions as follows:

e Supporting software process: Support is needed for techniques and
technology for the software development process. Examples of this type of
support emerge in the form of improving software process models, activities
within processes, process results or communication between developers.

e Supporting software product. Software development is a creative problem
solving activity. Support is needed in design, engineering and modeling with
appropriate technology to deliver innovative solutions to clients.

e Supporting people: Software development processes consist of a number of
different kinds of activities and tasks. These require a considerable amount of
knowledge and experience. Software developers need support and guidance to
perform activities such as adapting a workflow to support knowledge-
intensive tasks.

Several potential questions are still waiting to be explored in the field of
software engineering, e.g. how do we get the relevant knowledge, and how do we
make it available to developers? How do we improve the communication between
developers across various projects? How do we store and reuse the best practices,
knowledge and experience in different projects? How do we support knowledge
sharing? There are few suggested models and frameworks that provide answers
from a knowledge management perspective in order to provide support for
software engineering to improve the software development process, software
products or software team dynamics.

Theyobjectivesofthisysectionyisytoghighlight existing problems of managing
software engineering knowledge and to examine knowledge management

Part 2 Supporting Structures for Managing Software 71

frameworks, and to focus on those that may be potentially helpful in managing
software engineering knowledge.

There are five chapters in this part. The first of these is written by Mikael
Lindvall and Ioana Rus. The authors examine the existing problems that can be
addressed by knowledge management in software organizations. The authors
provide a comprehensive and self-contained overview of knowledge management
and a description of opportunities for software development organizations.

Software engineering knowledge creation is a social collaborative activity,
albeit some knowledge management activities are more effective than others. In
Chap. 5 Tore Dyba introduces a dynamic model, which illustrates how software
teams acquire and use knowledge in an organizational setting in order to improve
their software processes. This article provides a model that illustrates
communication, coordination, and collaboration between software teams.

Knowledge has limited value to developers if it is not shared. Although we
have the technology that allows knowledge workers to communicate their
knowledge, e.g. by using e-mail and intranet, the technology has a limited effect in
communication unless there is an explicit strategy to create, integrate, and share
the knowledge within the organization. Gary Oliver, John D’Ambra and Christine
Van Toorn explore software engineering repositories from a knowledge
management perspective in Chap. 6. They propose a framework for capturing and
sharing knowledge to facilitate learning in software engineering from the
experience of others within the same organizational context.

Requirements engineering lies at the heart of software development, which
covers activities such as discovering, documenting, and maintaining requirements
for software systems. Requirements engineering is a complex problem-solving
activity on its own, because the context of requirements changes as more is
learned about the system being built, and as the competitive environment changes.
Requirements engineering activities engage many stakeholders with varied
knowledge, skills, experiences and viewpoints. It is important to provide a support
structure to facilitate the communication and interpretation of requirements
between stakeholders so that they can better monitor and manage the requirements
engineering activities efficiently and effectively. In Chap. 7, Allen Dutoit and
Barbara Paech focus on the importance of change in requirements and knowledge,
and how to manage this in requirements engineering activities. The article
provides a novel and comprehensive methodological development by capturing
not only standard explicit knowledge, but also the unique experiences from past
projects, the discussion between stakeholders, assumptions, the rationale, or chain
of reasoning in their decisions, as well as instances of the problem domain
structure and limitations.

Another example of knowledge management application is in the area of the
development of applications for the World Wide Web. Whilst there has been an
increasing focus on Web-supported knowledge management, particularly in terms
of facilitating learning, knowledge sharing and providing open resources and open
communication, to.software.developers;, little consideration has been given to
understanding the nature of how the knowledge itself emerges during the
development of Web systems and how this relates to the peculiarities of Web

72 Aurum

development practices and processes. In Chap. 8, David Lowe focuses on
knowledge underpinning the Web development process, examines the differences
between Web systems and conventional software systems, and explores the
implications of these differences for system modeling, development practices and
techniques, and overall development processes. The article introduces specific
problems in Web development and provides a good overview of Web
characteristics and impacts.

Reference

1. Aurum A., Handzic M., Land L.P.W. (2001) Knowledge management for disaster
planning: a case study. In: Proceedings of 2nd European conference on knowledge
management, Bled, Slovenia pp. 19-30

2. Basili V.R., Caldiera G.R., Rombach H.D. (1994) Experience Factory. In: Marciniak
J.J. (Ed.). Encyclopedia of software engineering, John Wiley and Sons, pp. 469-476

3. Henninger S. (1997) Case-based knowledge management tools for sofiware
development. Automated software engineering 4:319-340

4. King W.R., Marks P.V., McCoy S. (2002) The most important issues in knowledge
management. Communications of the ACM 45:93-97

5. Land P.W.L., Aurum A., Handzic M. (2001) Capturing implicit software engineering
knowledge. In: Proceedings of the Australian software engineering conference,
Canberra, Australia, pp. 108-114

Editor Biography

Dr. Aybiike Aurum is a senior lecturer at the School of Information Systems,
Technology and Management, University of New South Wales, Australia. She
received her B.Sc. and M.Sc. in geological engineering, and M.E. and Ph.D. in
computer science. She is the deputy director of the Center for Advanced Empirical
Software Engineering Research Group (CAESER). She is also the founder and
group leader of the Requirements Engineering Research Group (ReqEng) at the
University of New South Wales. Dr. Aurum is an editorial board member of the
Asian Academy of Management Journal. She is also a member of IEEE and ACM.
Dr. Aurum has published various papers in books, journals and international
conference proceedings. Her research interests include management of the
software development process, software inspections, requirements engineering,
decision making and knowledge management.

4 Knowledge Management for Software Organizations

Mikael Lindvall and loana Rus

Abstract: This chapter presents an introduction to the topic of knowledge
management (KM) in software engineering. It identifies the need for knowledge,
knowledge items and sources, and discusses the importance of knowledge capture,
organization, retrieval, access, and evolution in software development
organizations. KM activities and supporting tools for software development and
inter- and intra-organization learning are presented. The state of the
implementation of KM in software organizations is examined, together with
benefits, challenges, and lessons learned.

Keywords: Knowledge management, Software engineering, Software
development organizations, Individual and organizational learning

4.1 Introduction

Software engineering is a fast-paced, changing and knowledge-intensive business,
involving many people working in different phases and activities. Since
individuals are the ones developing software, the ultimate goal is for them to have
access to the right knowledge at the right time. Thus, new knowledge might be
acquired, and existing individual knowledge must be leveraged to the
organizational level and then distributed back to the individuals who need it. This
has to be done in an organized manner because software knowledge is diverse and
its proportions immense and steadily growing. At the same time, knowledge is
crucial for success. From a business perspective, knowledge is needed, for
example, to improve the process and facilitate better decisions. From an
operational perspective, the knowledge is needed to master new technologies and
problem domains, and to understand and apply local procedures and policies.
There is also a need to reuse existing assets and find local expertise.

In this chapter, we identify and analyze knowledge needs in software
organizations, identify knowledge objects and sources, and examine how software
organizations could manage this knowledge to retain and enhance their intellectual
assets, thereby increasing their competitiveness. We also discuss what some
organizations are already doing and present their results and the lessons learned.
This chapter provides an overview of several areas related to knowledge
management (KM) that are covered in more detail in other chapters of this book.

74 Lindvall and Rus

4.2 Business and Knowledge Needs

A software organization has many different needs related to knowledge. These
needs can be viewed from a business and from a skills and practice perspective.
From a business perspective, the main needs are to produce better, faster, and
cheaper software and to make better decisions. Software organizations have and
require vast amounts of knowledge to support the business objectives for which
technology, process, project, product, and domain knowledge are the most critical
areas.

4.2.1 The Need to Decrease Development Time and Cost and Increase
Quality

Besides the overall needs of acquiring new business, keeping customers satisfied,
and protecting organizational resources in software organizations, there is a
constant need to decrease development time and cost in software projects. At the
same time, product quality must increase. Reusing previous work and avoiding
mistakes would reduce the amount of rework. Repeating successful processes
would increase productivity, quality and the likelihood of further success. In order
to avoid repeating mistakes but to actively repeat successes, knowledge gained in
previous projects could be used to guide and improve future projects. In reality,
development teams do not take full advantage of existing experience, but repeat
mistakes over and over again [8]. Valuable individual experience is acquired with
each project, and much more could be gained if there were a systematic way to
efficiently share this diverse knowledge.

4.2.2 The Need for Making Better Decisions

Software development is a process where every person involved constantly makes
decisions, either technical or managerial. Most of the time, decisions are based on
personal knowledge and experience or on knowledge gained using informal
contacts. This is feasible in small and localized organizations, but as organizations
grow larger and/or become distributed, more and more people and information
must be handled, often over a distance. Large organizations are suboptimizing if
they only rely on informally shared personal knowledge. Individual knowledge
should be shared and leveraged at project and organization levels, and formal
ways of sharing knowledge must be defined to complement informal sharing so
that correct decisions can be made throughout the organization.

4.2.2.1 Need for Knowledge about New Technologies

Software engineers learn basic software methods and technologies in school, but
new ones are constantly developed. A software engineer who does not keep up

4 Knowledge Management for Software Organizations 75

with the latest technology developments quickly becomes out of date. The
emergence of new technologies makes software more powerful, but at the same
time, new technologies could be “the project manager’s worst nightmare” [8]. It
takes time to become proficient with a new technology, understand its impact, and
estimate the cost of applying it. When developers or project managers use a
technology that is new to the project’s team members, the engineers frequently
resort to the “learning by doing” approach that often results in serious delays.
There is thus a need to acquire and master knowledge about new technologies.

4.2.2.2 Need for Problem Domain Knowledge

Software development requires knowledge not only about its own domain and
software technologies, but also about the domain for which software is being
developed. “Writing code is not the problem, understanding the problem is the
problem” [10]. When a new project in a new domain is launched, considerable
amounts of time are spent on understanding the problem domain. Thus, there is a
need to manage problem domain knowledge better.

4.2.2.3 Need for Knowledge about Local Policies, Practices, and Past
Projects

Every organization has its own specific culture, policies, and practices, not only
technical but also managerial and administrative. In order to perform well at the
workplace, each employee must know and practice local rules and policies. New
developers especially need knowledge concerning the existing software base and
local programming conventions. This type of knowledge might exist only as
folklore and is often disseminated to inexperienced developers through ad hoc
informal meetings; consequently, not everyone has access to the knowledge they
need [32]. Passing knowledge informally is an important aspect of a knowledge-
sharing culture that must be encouraged. Nonetheless, formal knowledge
capturing and sharing is necessary to ensure its availability to all employees.
There is thus a need to formalize knowledge sharing of local policies and practices
while also supporting informal and ad hoc knowledge sharing.

4.2.2.4 Need to Locate Sources of Knowledge

Some of the organizational knowledge is captured on different media (paper,
electronic files, tapes, and so on). Individuals search for such knowledge in order
to learn from it and reuse it, but in order to do so they must know where to search.
There is thus a need to efficiently locate and access captured knowledge. At the
same time, not all knowledge is captured, and software organizations are heavily
dependent on knowledge that lies within knowledgeable people [33]. These people
are important for the success of projects, but it can be difficult to identify and

76 Lindvall and Rus

access them. One study found that software developers apply just as much effort
and attention to determining whom to contact in the organization as to getting the
job done [23]. If a person with critical knowledge leaves, severe knowledge gaps
are created [8]. The problem is that often no one in the organization is even aware
of what knowledge was lost. [4]. Knowing what employees know is a necessity in
order to create a strategy for preventing knowledge from disappearing. Knowing
who has what knowledge is a requirement for efficiently staffing projects,
identifying training needs, and matching employees with training offers.

4.2.2.5 Need to Share Knowledge in a Distributed Manner

Software development is a group activity. Group members are often spread out
geographically and work in different time zones and need to communicate,
collaborate, and coordinate. Communication is often related to the transfer of
knowledge. Collaboration is related to mutual sharing of knowledge. Coordination
independent of time and space is facilitated if work artifacts are easily accessible.
There is thus a need to collaborate and share knowledge independent of time and
space.

4.3 Knowledge Management in Software Engineering

In software engineering, different approaches have been proposed for achieving
business and knowledge needs. These approaches address factors such as process
improvement, introduction of new technologies, and “peopleware.” Knowledge
management (KM) mainly addresses peopleware in that it focuses on how to
facilitate individuals® access to the right knowledge at the right time. Software
engineering has actually engaged for years in KM-related activities aimed at
learning, capturing, and reusing experience, although not using the phrase
“knowledge management.” Examples of such activities are process improvement,
best practices, and the experience factory [2]. What makes KM unique is its focus
on the individual as a consumer of knowledge and as bearer and provider of
important knowledge that could systematically be shared throughout the
organization. The scope of KM is organization-wide, as the knowledge and the
knowledge needs within an organization can be managed in a more organized way
than knowledge outside the organization. KM does not disagree with the value of
— or the need for — addressing other aspects of software development, such as
process and technology, nor does it seek to replace them. KM is rather an
approach to achieve software process improvement and to facilitate adoption of
new technologies. KM does this by explicitly and systematically addressing the
management of the organizational knowledge from the point of view of its
acquisition, storage, organization, evolution, and accessibility. Software process
improvement approaches, for example CMM [22], often suggest that knowledge
be managed, but do not bring it down to an operational level. KM, on the other

4 Knowledge Management for Software Organizations 77

hand, explicitly states what knowledge needs to be managed, how, when, where,
by whom, and for whom. KM is the “glue” that ties together the daily production
activities to improvement initiatives and business goals, supporting the evolution
of learning organizations.

In software organizations, knowledge is very diverse and exists in multiple
forms. Some of the technical, product and project knowledge is already captured
in the documents produced by projects such as project plans, and requirements,
design, and testing specifications. In addition to the software product itself, the
documents capture some of the knowledge that emerged from solving problems
encountered in the project. This documented knowledge can be leveraged by a
KM initiative that systematically organizes and makes knowledge available to
employees who need it. An optional but highly recommended task the
organization can conduct is ensuring that knowledge gained during the project is
not lost. This task can be conducted during the project and shortly after its
completion. It addresses the acquisition of knowledge that was not documented as
part of the core activities as well as the analysis of documents in order to create
new knowledge. Included here are all forms of lessons learned and post mortem
analyses, as presented for example in [6], that identify what went right or wrong in
the project related to both software product and process. Tasks in this category
collect and create knowledge about one particular project and can be performed by
any organization. The results are useful by themselves but also can be the basis for
further learning. They can be stored in repositories and experience bases. Once
captured, the knowledge becomes explicit [21] and can be reused by subsequent
projects, for example, by analyzing solutions to different problems. The benefit of
explicit knowledge and experience is that it can be stored, organized, and
disseminated to a third party without the involvement of the originator. One
drawback, however, is that considerable effort is required to produce explicit
knowledge. Knowledge that was not explicitly captured (that is, tacit knowledge
[21]) is still owned by individuals and can only be accessed and leveraged if the
organization can identify these individuals, and if they chose to share their
knowledge.

4.4 KM Activities and Tools

As a result of a study of the current KM activities and tools, we identified two
classes: basic KM not specific to software organizations that can support any type
of organization, and KM that specifically support software development. We
grouped the latter in three categories by the scope of their inputs (i.e., one or
multiple projects); by the purpose of their outcome (i.e., to support core SE
activities, to support project improvement, or organizational improvement); and
by the level of effort required for processing the inputs in order to serve SE needs.
For more extensive discussions of tools and case studies, we refer to [19, 29].

78 Lindvall and Rus

4.4.1 Basic KM

In this category we include KM activities that can be applied to any type of
organization, especially to knowledge-intensive industries (e.g., legal services,
consulting, or advertising). We emphasize, however, how these activities and tools
(asset reuse, document management, competence management, and expert
networks) serve the needs of software organizations.

4.4.1.1 Asset Reuse

One of the approaches in the software engineering community that is related to
KM is software reuse. There are endless stories about programmers who
reimplement the same solutions over and over again and in slightly different ways.
Software reuse aims to reduce this rework by establishing a reuse repository to
which programmers submit software assets they believe would be useful to others.
The software development process is changed so that instead of developing all
software from scratch, the employee first searches the repository for reusable
artifacts. Only if nothing useful were found would the software be written from
scratch. The same concept can be applied to all software engineering artifacts,
such as requirements documents, design, and test specifications. Many of the
activities and tools discussed below support asset reuse in one form or another.

44.1.2 Document Management

A variety of processes and activities are performed during a software development
project [7], many of which are document-driven. Work is many times focused on
authoring, reviewing, editing, and using these documents. These documents
become the assets of the organization in capturing explicit knowledge. Document
management systems help organizations manage these invaluable assets, enable
knowledge transferal from experts to novices, and support the location,
organization, and reuse of documented knowledge. Common needs that arise in a
document-sharing environment are related to identifying the latest version of a
document, accessing documents remotely, and sharing the documents in
workgroups. Document management systems offer features that include storing
and uploading of documents and files; version control, organization of documents
in different ways, search and retrieval based on indexing techniques and advanced
searching mechanisms, and access from any Internet-connected workstation.
Most document management systems also provide some kind of search for experts
based on authorship. Document management systems can aid learning software
organizations that need to capture and share process and product knowledge.

4 Knowledge Management for Software Organizations 79

4.4.1.3 Collaboration

Collaboration is increasingly required by software organizations. Software
projects often have many members that need to collaborate. Because of
globalization, software development working groups are often spread out
geographically and work in different time zones. Collaboration tools help people
communicate, collaborate, and coordinate, often independently of time and place.
Tools in this category connect employees by providing a computer-based
communication channel. This communication can be synchronous or
asynchronous. Collaboration using a chat tool or a messenger tool are examples of
synchronous tools, while e-mail, bulletin boards, and newsgroups are examples of
asynchronous tools. Some tools are designed to capture communication and work
results for further use and refinement, for example, a tool that supports electronic
workshops (e-workshops) in on-line moderated meetings between expert
participants [5]. The results of such e-workshops are captured and analyzed in
order to generate new knowledge in a particular area. This illustrates that
technology and process can be used to bring people together and generate new
knowledge. Features for collaboration and communication, both synchronous and
asynchronous, are part of many other tools discussed in Sect. 4.5.

4.4.1.4 Competence Management

Far from all the tacit knowledge in an organization can be made explicit, and far
from all explicit knowledge can be documented. In order to utilize undocumented
knowledge, the organization needs to keep track of who knows what. A solution to
this problem is competence management, also called skills management, which
can be based on expert identification. While document management deals with
explicit knowledge assets, competence management keeps track of tacit
knowledge. Organizations need to develop knowledge maps and identify sources
of knowledge in terms of know-who and know-where. Once such a knowledge
map is in place it can be used to identify appointed and de facto experts, staff new
projects based on skills and experience required, and identify knowledge gaps that
indicate the need to hire new people or to develop training programs. Tools that
support competence management can be helpful, especially for large
organizations, where people do not know each other. Their necessity also becomes
obvious in any distributed, decentralized, and mobile organization. A typical
feature of these tools is profiling or expert identification. Profiles of employees,
customers, subcontractors, vendors, partners, projects, and positions can be
generated, which also leads to identification of and searches for experts. Some
tools automatically create competence profiles by mining various sources of
information. Profiling mechanisms extract terms and phrases from e-mail
communications and documents produced or shared by individuals. Each user
profile provides.a detailed.index of an individual’s knowledge, experience, and
work focus. A set of profiles, therefore, represents a composite snapshot of the
expertise within an organization.

80 Lindvall and Rus

4.4.1.5 Expert Networks

Expert networks provide a forum for people who need to establish knowledge
sharing focused on solving a problem. Expert networks are typically based on
peer-to-peer support and can reduce the time spent by software engineers in
looking for specific domain knowledge. They can also be used to efficiently
transfer knowledge regarding local policies and new technologies. These kinds of
systems help geographically distributed organizations communicate and
collaborate. Common features of tools supporting expert networks are expertise
brokerage, expert identification, communication and collaboration between
people, and capture of questions and answers. These tools typically track and rate
expertise, customer satisfaction, and rewards that are given to people who
contribute to the success of the system.

4.42 KM in Software Organizations

With each project, software developers and managers acquire invaluable
experience. Learning from experience requires a memory or experience base that
captures process-, product- and project-related events. The environment in which
software engineers conduct their daily work often supports creating such a
memory, which could be leveraged in order to implement KM and learn more
about the organization. Version control, change management, documenting design
decisions, and requirements traceability are software engineering practices that
help build such memories as a direct or side effect of using these tools in software
development. Other tools, such as document management tools, defect tracking
tools, and competence management tools also build memories in similar ways.

4.4.2.1 Configuration Management and Version Control

Configuration management (CM) keeps track of a project documents and relates
them to each other. Version control systems such as the Source Code Control
System (SCCS) [27] represent a class of tools that indirectly create a project
memory. Each version of the documents has a record attached with information
about who made the change and when it was made, together with a comment
stating why the change was made. This “memory” indicates the software
evolution. This information has been used for advanced analysis of software
products and processes, [13, 18]. Software engineers can use the information
stored in these memories, for example, to look at who made a certain change in
order to identify experts for solving the related problem.

4 Knowledge Management for Software Organizations 81

4.42.2 Design Rationale

Design rationale [24] is an example of an approach that explicitly captures design
decisions in order to create a product memory. During design, different technical
solutions are tested and decisions are made based on the results of these tests.
Unfortunately, these decisions are rarely captured, making it very hard for
someone else to understand the reasons behind the solutions. Design rationale
captures this information as well as information about solutions that were
considered and tested but not implemented. This process can be helpful for
making better decisions and avoiding repetition of mistakes in future maintenance
and evolution of the software system.

4.4.2.3 Traceability

Software requirements drive the development of software systems, but the
connection between the final system and its requirements is often fuzzy [31].
Traceability is an approach that makes the connection between requirements and
the final software system explicit [20, 26]. Traceability indirectly contributes to
“product memory” and helps answer questions such as “What requirements led to
a particular piece of source code?” and “What code was developed in order to
satisfy this particular requirement?” This is crucial information for developers
adding new capabilities to the software.

4.4.2.4 Trouble Reports and Defect Tracking

Trouble reports and systems for defect tracking are good sources of negative
knowledge that can be turned into positive knowledge. They contain knowledge
about product features and properties with which users have difficulties as well as
knowledge regarding the organization’s management of past complaints. By
analyzing this knowledge, the organization can learn from past experience and
design their products and process better in order to increase both customer
satisfaction as well as the efficiency of their processes. Common needs that arise
in this environment are registering trouble reports, describing the nature of the
issue and how it occurred so it can be reproduced, and if possible, identifying its
likely cause. Systems in this category offer features that support searching for a
specific trouble report, and report generation for a certain version of a product
during a certain period of time.

4.4.2.5 CASE Tools and Software Development Environments
Computer-aided software engineering (CASE) tools and environments for

software development primarily support the design, generation, implementation,
and debugging of software, but they also support the creation of product and

82 Lindvall and Rus

process knowledge in terms of the artifacts that are created. By explicitly
capturing design, for example, the organization enables knowledge sharing across
time and space. By using a CASE tool, the design is not only documented and
thereby memorized, but also captured in a formal way, ensuring that its semantic
meaning is well defined. By analyzing the knowledge captured in these systems,
the organization can improve product and process design in order to increase their
quality and efficiency, respectively. Common needs that arise in this environment
are to share design environments among members of a team that might not be
physically co-located. These development environments often offer features that
support: version management of artifacts, design verification based on design
rules, generation of source code based on design, and debugging.

For more information on these technologies we refer to the following chapters
in this book: Chap. 7 on knowledge for requirements evolution, Chap. 11 on
quality assurance, and Chap. 5 on knowledge creation.

4.4.3 KM to Support Organization and Industry Learning and
Decision Making

Many different technologies create knowledge based on results from previous
projects. Examples are prediction models, lessons learned and best practices, case-
based reasoning, and data and knowledge discovery.

4.4.3.1 Prediction Models

Project managers need to make decisions, both at the beginning as well as during
projects. Typically, they use their personal experience and their “gut feelings” to
guide decisions. But since software development is such a complex and diverse
process, “gut feelings” may be insufficient, and not all managers have extensive
experience. For these reasons, prediction models that transform data into
knowledge can guide decision making for future projects based on past projects.
This requires implementing a metrics program, collecting data from multiple
projects with a well-defined goal, and then analyzing and processing the data to
generate predictive models [3]. The inputs and outputs of these models can be
quantitative or qualitative. Input data are analyzed, synthesized, and processed
using different methods, depending on the purpose of the model and the type of
inputs and outputs. For example, analytical models take numerical data (or
qualitative data converted into quantitative levels) from a large number of projects
and try to find formulae to correlate inputs and outputs. By using these formulae
for the data that characterize a new project, one can make estimations for cost,
effort, defects, reliability, and other product and project parameters. Building,
using, and improving these models become a natural part of the KM strategy. The
drawback is that the quality of the predictions offered by these models depends on
the quality of the collected data.

4 Knowledge Management for Software Organizations 83

4.4.3.2 Lessons Learned and Best Practices

Information collected from projects can also be in a qualitative form, such as cases
and lessons learned, success and failure stories, and problems and corresponding
solutions as well as defect tracking, and decisions histories captured by design
rationale. This information is usually in textual format such as rules, indexed
cases, or semantic networks. By applying generalization and abstraction, new
knowledge can be generated (manually, or automatically by applying Artificial
Intelligence (AI) techniques) that can be later applied to similar problems, in
similar contexts. This is how patterns, best-practice guidelines, handbooks, and
standards can be derived.

4.4.3.3 Case-based Systems

For example, in case-based systems, project experiences are captured in the form
of “cases” in order to accommodate software development process diversity while
retaining a level of discipline and standard [15]. These experiences are
disseminated to developers to provide knowledge of previous development issues
in the organization. Deviations from the standard process are opportunities to
improve the process itself. Apart from refining the process, the deviations also
work as cases in the experience base. As more and more experience is acquired in
the form of cases, the development process becomes iteratively more refined. For
more information on case-based reasoning we refer to Chap. 9 in this book.

4.4.3.4 Data and Knowledge Discovery

To automatically generate new knowledge from existing data, information, and
knowledge bases, there are tools that include visualization and data mining, as
well as analysis and synthesis. Data mining tools try to reveal patterns and
relationships between data and generate new knowledge about the data and what it
represents. Such tools can be used to identify patterns related to both the content
and the usage of knowledge. Knowledge discovery also identifies groups of users
and their profiles, as well as de facto experts. Thus, more complex knowledge
items are generated, for example, through deriving best practices based on lessons
learned and frequently asked questions. Tools in this category often provide data
visualization. Features for statistical analysis are also common, along with
decision support features. These features are sometimes based on Al techniques
that can help in the discovery process. Another group of tools analyze multimedia
content and transcribe it into text, identify and rank the main concepts within it,
and automatically personalize and deliver that information to those who need it.

84 Lindvall and Rus

4.4.4 KM at a Corporate Level

In addition to the KM activities directly related to software development presented
above, an organization must also perform additional tasks that support
development, such as customer relationship management, intellectual property
management, and training and education.

4.4.4.1 Customer Relationship Management

Customer support can help keep customers satisfied and help the organization get
new business. There are mainly two forms of customer support tools: tools that
enable customers to self-help and tools that help customer support personnel
(help-desk). In some cases, vendors set up areas for customers to help each other,
i.e., to share knowledge about products and services (peer-to-peer). There are
many cases where high repeatability in the support process can be leveraged by
reusing answers to the most common questions. Over time, support personnel
acquire a vast amount of knowledge about the products and services the
organization offers, as well as information about customers and their behavior.
This knowledge is a resource for the organization as a whole and should be
captured and spread. Systems that support help desks typically have features that
direct customer requests to representatives based on customer profiles and the
representatives’ expertise. Knowledge bases typically provide an interface to
capture knowledge about products, services, and their use so that new cases, new
incidents, and new lessons learned can be captured and shared.

4.4.4.2 Intellectual Property Management

Software organizations need to protect their intellectual property (IP) in the form
of patents, copyrights, trademarks, and service marks. Organizations that own
intellectual property need ways to automate workflow and support the
management and analysis of inventions, patents, and related matters. It often takes
a long time to file and obtain approved rights to intellectual property, and
organizations need support to track this process. Intellectual property regulations
require owners of copyrights, trademarks, and service marks to pay legal fees at
specific points in time, otherwise the rights can be lost. For licensing issues, it is
also important to track licensees and royalties. Another aspect of intellectual
property is the protection of digital content covered by copyright. IP tools can help
software organizations better manage their intellectual property. Typical IP tools
include searching for patents capabilities, support filing for patents, searchable
knowledge bases with rules and regulations and support for legal help, as well as
accessing collections of forms and standard letters. Other related issues that these
tools support are licensing of patents and tracking of licenses, as well as
calculation of fees.

4 Knowledge Management for Software Organizations 85

4.4.4.3 Knowledge Portals

A study found that people in software organizations spent 40% of their time
searching for different types of information related to their projects [14].
Employees make decisions every day, but not all of them are based on complete
and correct information. When critical data is hard to find, or takes too long to
locate, it will not be available when it is needed to make a decision. Making the
best decision requires current and relevant information, which is what portals
deliver. Portals help organizations provide information to employees in a simple,
user-friendly and consistent way, thereby reducing the time spent looking for
information. In the search for knowledge, workers use many different computer-
based information sources that need to be integrated and accessed through a
common interface. Portals create a customized single gateway to a wide and
heterogeneous collection of data, information, and knowledge. They also provide
different kinds of personalization so that content is presented in a manner that
suits the individual’s role within the organization and reflects personal
preferences. Both the organization and the user can control what information is
made available and how it is displayed.

4.5 KM in Support of Learning

New employees must learn about their organization in order to get up to speed in
their new job, and existing employees must learn in order to perform their tasks
better. From an individual’s perspective, learning involves acquisition,
assimilation, and application of knowledge. Once an individual has knowledge, it
must be shared with peers within a working group or organization in order to
increase collective knowledge and performance. We examine how individuals
learn and how the knowledge is leveraged at an organizational level. This is
intracompany learning, but there is also interorganizational learning. We look at
both these processes and also discuss e-learning as a means of using available
technology to enable self- and distance learning.

Individuals can acquire knowledge and expertise through organized training or
by learning-by-doing as needed. Each of these approaches has strengths and
weaknesses. For both, KM helps reduce some drawbacks. For example, organized
training is often both time-consuming and expensive and, if done externally to the
organization, does not cover local knowledge. KM, by capturing, storing, and
organizing knowledge, makes it possible to provide the basis for internal training
courses. Learning by doing might be risky due to the fact that mistakes are often
made until people find the right solution, and learning occurs in limited amounts
because only the knowledge needed to solve the current task is being acquired. In
support of this type of learning, KM provides knowledge or pointers to knowledge
sources, when and where they are needed.

86 Lindvall and Rus

4.5.1 Intraorganizational Learning (Internal)

Knowledge transfer between individuals can take various forms. Most models that
support experience reuse and KM make the assumption that all relevant
experience can be collected and recorded, but this does not hold true in practice
[34]. There are a variety of more or less automated solutions to KM, addressing
different aspects and tasks, and they address both tacit and explicit knowledge.

For example, Ericsson Software Technology AB has implemented a version of
the Experience Factory called the Experience Engine [16]. Instead of relying on
experience stored in experience bases, the Experience Engine relies on tacit
knowledge. Two roles were created in order to make the tacit knowledge
accessible to a larger group of employees. The experience communicator is a
person who has in-depth knowledge on one or more topics. The experience broker
connects the experience communicator with the person owning the problem. The
communicator should not solve the problem, but educate the problem owner in
how to solve it. A similar approach has been implemented at sd&m AG
(Germany) [8]. The idea of relying on tacit rather than explicit knowledge is
appealing because it relaxes the requirement to document knowledge extensively.
Although it utilizes knowledge, this approach still does not solve the problem of
the organization being dependent on its employees. We refer to Chap. 13 in this
book for more information on this topic.

Knowledge sharing occurs informally at coffee tables, in the lounge, and
around the water cooler. When an employee tells a colleague how a particular
problem was solved, knowledge is shared. Some development practices, such as
pair programming, facilitate knowledge sharing between peers, while pair rotation
helps its spread throughout the project or organization [35]. Software
organizations should encourage these habits in order to create a knowledge
sharing culture. To reach maximum knowledge sharing, employees should also be
encouraged to document and store their knowledge in a KM repository. They
should be encouraged to deposit information into the knowledge base of the
organization whenever they help somebody. By doing so, they ensure that the
information is recorded and will help other employees as well, since what is a
problem for one can also be a problem for others [32].

4.5.2 Interorganizational Learning (External)

An important part of learning is learning from sources outside the organization.
Such learning can occur by sharing knowledge with outside peers, by sharing
knowledge with vendors and customers, and by sharing knowledge with the
industry as a whole, through industry-wide communities.

Software organizations have formed numerous useful communities. Examples
of communities are the Software Program Managers Network! (SPMN) for project

L http://www.spmn.com/| (accessed on 14th April 2003)

4 Knowledge Management for Software Organizations 87

managers, the Software Experience Consortium? (SEC) for companies seeking to
share experience, Sun’s community for Java programmers,? the Software Process
Improvement Network,* (SPIN) and the special interest groups of IEEE or ACM.’

Organizations may learn from external sources, typically vendors of
technology. In support of this, several software vendors provide Web-based
knowledge bases. Examples are Microsoft’s Knowledge Base®, Oracle’s Support
Center’, and Perl’s Frequently Asked Questions®. Such knowledge bases are often
open to the public and enable software engineers to search for knowledge
themselves. These knowledge bases result from capturing product knowledge
owned by representatives at the vendor organizations that is then made available
to the customers.

At the software industry level, committees or groups of experts identify
patterns (e.g., software design patterns) and generate handbooks and standards
(e.g. IEEE, ISO) generally applicable to software development in order to leverage
the experience and knowledge of all software development organizations. This is
not something any individual or organization can perform, as it takes much effort
and requires considerable amounts of knowledge about software engineering as
well as access to project data. The Software Engineering Body of Knowledge®
(SWEBOK) defines the knowledge that a practicing software engineer needs to
master on a daily basis. Other examples of comprehensive collections of software
engineering (SE) knowledge are ISO 15504 (SPICE), describes “all” processes
related to SE, and the Capability Maturity Model CMM [22]. The Center for
Empirically Based Software Engineering (CeBASE) and ViSEK!? are examples of
projects whose goal is to build sofiware engineering knowledge bases. They
accumulate empirical models in order to provide validated guidelines for selecting
techniques and models, supporting technology transfer, recommending areas for
research, and supporting software engineering education.

4.5.3 E-Learning

KM aims to help people acquire new knowledge, as well as package and deliver
existing knowledge through teaching. e-learning can help software organizations
organize their knowledge transfer and conduct it more effectively by using
information technology. It is a relatively new area that includes computer-based
and on-line training tools. E-learning is appealing because it offers flexibility in

2 http://fc-md.umd.edu/ (accessed on 14th April 2003)

3 http://developer.java.sun.com/developer/community/ (accessed on 14th April 2003)

4 hitp://www.sei.cmu.edu/collaborating/spins/ (accessed on 14th April 2003)

5 http://www.acm.org/sigs/guide98.html (accessed on 14th April 2003)

S http://search.support.microsoft.com/kb/ (accessed on 14th April 2003)

7 http://www.oracle.com/support/index.html?content.html (accessed on 14th April 2003)
8 hitp://www.perl.com/pub/q/fags (accessed on 14th April 2003)

° http://www.swebok.org/ (accessed on 14th April 2003)

10 hitp://www.icse. fhg.de/Projects/ViSEK/ (accessed on 14th April 2003)

88 Lindvall and Rus

time and space, as well as collaboration between students and tutors. Many of the
collaboration and communication tools mentioned before can be used to support
this activity. Common features include reusable learning object libraries; adaptive
Web-based course delivery; component-based authoring, scheduling, and
reporting tools; student evaluation and progress tracking; and building of skills
inventories. E-learning systems often include collaboration tools and support for
different types of content, i.e., video, audio, documents and so on.

4.6 Challenges and Obstacles

Implementing KM involves many challenges and obstacles. Some of the most
important issues identified by [17] are:

e Technology issues: KM is supported by software technology, but it is not
always possible to integrate all the different subsystems and tools to achieve the
desired level of knowledge access and delivery.

e Organizational issues: It is a mistake to focus only on technology and not on
methodology. It is easy to fall into the technology trap and devote all resources
to technology development, without planning for a KM strategy and
implementation process.

e Individual issues: Employees do not have time to input or search for
knowledge, do not want to give away their knowledge, or do not want to reuse
someone else’s knowledge.

We discuss some of these issues in terms of KM as a commitment and
investment that requires a good strategy and appropriate resources. It takes time to
see the benefits from KM activities, and a “champion” is required, who constantly
“guards” the KM initiative. Employees need to be rewarded for contributing to the
KM effort and a general cultural change might be needed.

4.6.1 KM as an Investment

Planning, implementing, and sustaining KM is challenging because resources,
time, and effort are required before benefits become visible. KM is simply an
investment. Often this is considered a burden to project managers, who focus on
completing the current project on time, not on helping the next project succeed. In
KM systems that have been implemented so far, KM activities are often
performed by a different set of people, other than developers, e.g., the chief
knowledge officer (CKO) and his staff, the experience factory (EF) group, the
software engineering process group (SEPG), or the software process improvement
(SPI) group. This is to support the developers in their daily work instead of
requiring additional effort.

4 Knowledge Management for Software Organizations 89

4.6.2 Lightweight Approaches to Knowledge Management

For knowledge bases, it generally takes too long to build a critical mass of
knowledge before users perceive it to be useful. Lightweight approaches to
knowledge capturing and sharing address this issue, allowing for quick and easy
implementation. They have the potential to pay off quickly [30], while at the same
time enabling long-term goals. An example of a lightweight approach is the
Knowledge Dust Collector [19], which that supports peer-to-peer knowledge
sharing. It captures and makes available knowledge that employees exchange and
use every day. The knowledge “dust” evolves over time into well-packaged
experience in the form of knowledge “pearls,” a refined form of knowledge. An
example is captured dialogues regarding technical problems (knowledge dust) that
are analyzed and turned into frequently asked questions (FAQ, knowledge pearls).
These FAQs are further analyzed and turned into best practices (extended
knowledge pearls).

4.6.3 The Importance of a Champion

Earlier KM initiatives recognized that any KM initiative requires an evangelist or
a champion. This person needs to encourage employees to contribute and use the
system, and must always be its proponent. As was noted by the champion of one
of the KM initiatives at Hewlett-Packard, “the participation numbers are still
creeping up, but this would have failed without an evangelist. Even at this
advanced stage, if I got run over by a beer truck, this [knowledge] database would
be in trouble”, [11]. Many companies realized that such a job requires a lot of
effort and they created specialized positions such as KM officer or chief
knowledge officer (CKO).

4.6.4 Creating a Culture of Sharing

Although new technology has made it easier than ever to share knowledge,
organizational cultures might not promote sharing. Some cultures even encourage
individualism and ban cooperative work. Lack of a “knowledge culture” was
frequently cited as a critical obstacle to a successful KM [1]. Cultural obstacle
occurs, for example, when employees feel possessive about their knowledge and
may not be forthcoming in sharing it. Their knowledge is why they are valuable to
the organization; they may fear that they will be considered redundant and
disposable as soon as the employer has captured their knowledge. Employees
might not be willing to share negative experiences and lessons learned based on
failures because of their negative connotation. So although the purpose is to avoid
similar mistakes, employees might fear that such information could be used
against them. Another hurdle is the “not invented here” syndrome. There are

90 Lindvall and Rus

beliefs that the SE community has more fun reinventing solutions rather than
reusing existing experience. Although change is hard, such beliefs have to be
revisited and replaced by a positive attitude, oriented toward a sharing culture.

4.6.5 Implicit-to-Explicit Knowledge Conversion

Another obstacle is that most of the knowledge in software organizations is not
explicit. There is little time to make knowledge explicit, there are very few
approaches and tools for turning tacit into explicit knowledge, and most of the
tacit knowledge is tacit in the most extreme way, being even difficult to be
expressed and made explicit. Quick changes in technology often discourage
software engineers from reflecting on the knowledge they gained during a project,
believing that it will not be useful to share this knowledge in the future.

4.6.6 Reward Systems

It is important that the organization not only encourages but also rewards
employees who are willing to share their knowledge, to search for knowledge, and
to reuse their peers’ knowledge. To encourage sharing and reusing of knowledge,
Xerox recommends the creation of a “hall of fame” for those people whose
contributions have solved real business problems. Xerox rewards staff that
regularly share useful information and identifies them as key contributors to the
program. At Hewlett Packard, the main evangelist of the KM initiative gave out
free Lotus Notes licenses to prospective users, as well as free airline miles [11].
Infosys rewards contribution and usage of knowledge with “knowledge currency
units,” eventually converted into a cash equivalent [25]. Another type of reward
system is the “points system” used by ExpertExchange,!' where experts are
rewarded with points for answering questions. The experts with the highest
numbers of points have answered the most questions and are often recognized on
the front page of the Web site.

4.7 State of the Practice

Many organizations have experiences from implementing KM. One of the more
interesting case studies is British Petroleum’s story on how they implemented KM
[9]. A limited, but increasing, number of software organizations report from their
KM efforts. Software development companies have realized the importance and
potential of implementing KM systems for years. There are reports published in
the 1990s.regarding KM case studies-in-large companies such as Microsoft [12]

11 www.expertexchange.com

4 Knowledge Management for Software Organizations 91

and Hewlett-Packard [11]. Some of the KM activities that they implemented were
document management, expert networks, competence management (linked with
training and education), and product development. More recently, software
organizations from around the world (USA, Europe, and Asia) are actively
reporting on their KM activities, results, and lessons learned [28]. These are
commercial and government organizations, developing software for diverse
domains such as satellites, cars, electronics, telecommunications, and for the
Internet. The growing number of publications and events on this topic indicates an
increasing interest from practitioners, consultants, and researchers in applying KM
at different levels from project-level knowledge to organization-wide initiatives.
Various activities are implemented, from local project analysis and traceability to
expert networks, to complex and highly automated knowledge and experience
repositories. Companies reported that the introduction of KM activities allowed
them to achieve business goals by decreasing the number of defects, increasing
productivity, and decreasing cost (mainly by reducing mistakes and rework), as
well as reducing the frequency of delayed responses to customer inquiries or
complaints. These improvements were due to increased understanding and
experience sharing, increased knowledge availability, and reduced production
interruptions caused by lack of knowledge, enhanced collaboration and
communication, new knowledge creation, and knowledge retention. Learning has
become part of daily routine, leading to process improvements, better teamwork,
and increased job satisfaction.

4.8 Conclusions

We have analyzed the need for knowledge in software organizations and how
leveraging existing knowledge as well as implementing additional KM practices
and tools could accommodate those needs. We have discussed different
approaches to implementing KM and what organizations have experienced from
that work.

There are some lessons learned from implementing KM, useful for
organizations that are embarking in such activities. Although technology support
is important and must exist, human and social factors are of utmost importance.
Some key factors for a successful implementation of KM in software development
companies are the acquisition of knowledge performed during projects, not after
their completion; the existence of a good atmosphere for discussing issues within
the project team; the understanding that KM (similarly to process improvement,
for example) implies change and is difficult unless integrated smoothly with the
daily activities; and finally the recognition that improvement takes time and
results might not be immediately visible, therefore the need for upper management
long-term commitment. KM is not a “one size fits all” approach. KM requires an
implementation strategy that must address local needs, goals, problems, and
specific contexts. KM should start by being focused, evaluate the results of its
implementation in order to see what| works in a specific environment, and then

92 Lindvall and Rus

identify the next steps. KM results must convince developers to use it and prove to
them that it is really supporting their daily work. It also must convince
management and financial decision makers that it is worth the investment and the
effort.

Despite the challenges faced by the introduction of KM initiatives, there are
good reasons to believe that KM for software organizations will succeed if
appropriately focused and implemented. One of the main arguments is that KM
systems must be supported by appropriate information technology [8]. IT might be
intimidating to many people, but not to software engineers [30]. Instead, it can be
expected that they benefit even more from advanced technology. Another
supporting fact is that all software-related artifacts are already in electronic form
and thus can easily be distributed and shared. Also, knowledge sharing between
software engineers already occurs to a large degree in some environments. A good
example is Google Groups '? (former Usenet discussion groups), where software
engineers actively share knowledge by answering questions and helping solve
problems that other software engineers post, without any form of compensation.
This instance shows that software engineers are willing to share their knowledge
with other people, even outside their company, and that it is worth the effort to
capture knowledge. Any organization that can adopt and adapt such a knowledge-
sharing philosophy should be successful in implementing KM.

Acknowledgements

We would like to thank Jennifer Dix for proofreading.

References

1. Agresti W., (2000) Knowledge management. Advances in computers, 53: 171-283

2. Basili V.R,, Caldiera G., Rombach D.H. (1994) The experience factory. Encyclopedia
of software engineering, John Wiley and Sons, UK, pp. 469-476

3. Basili VIR, Caldiera G., Rombach D.H. (1994) The goal question metric approach.
Encyclopedia of software engineering, John Wiley and Sons, UK, pp. 528-532

4. Basili VR, Lindvall M., Costa P. (2001) Implementing the experience factory
concepts as a set of experience bases. Knowledge systems institute. In: Proceedings of
the 13th International conference on software engineering and knowledge engineering,
Buenos Aires, Argentina, pp. 102-109

5. Basili V.R,, Tesoriero R., Costa P., Lindvall M., Rus I, Shull F., Zelkowitz M.V.
(2001) Building an experience base for software engineering: a report on the first
CeBASE eWorkshop. In: Bomarius F., Komi-Sirvié S. (Eds.). Proceedings of
PROFES 2001, Kaiserslautern, Germany, pp. 110-125

6. Birk A., Dingsoyr T., Stalhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19:43-45

12 www.google.com

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

4 Knowledge Management for Software Organizations 93

Birk A., Surmann D., Althoff K.-D. (1999) Applications of knowledge acquisition in
experimental software engineering. In: Proceedings of the 11th European workshop on
knowledge acquisition, modeling, and management, Dagstuhl, Germany, pp. 67-84
Bréssler P. (1999) Knowledge management at a software engineering company - an
experience report. In: Proceedings of the workshop on learning software organizations,
Kaiserslautern, Germany, pp. 163-170

Collison C., Parcell G. (2001) Learning to fly. Capstone publishing, Milford, USA
Curtis B., Krasner H., Iscoe N. (1988) A field study of the software design process for
large systems. Communications of the ACM, 31:1268-1289

Davenport T. (1996) Knowledge management at Hewlett-Packard. Knowledge
Management Case Study, http://www.bus.utexas.eduw/kman/hpcase.htm (accessed 17th
April, 2003)

Davenport T. (1997) Knowledge management at Microsoft. Knowledge management
case study. http://www.bus.utexas.edu/kman/microsofthtm (accessed 17th April,
2003)

Eick S.G., Graves T.L., Karr A.F., Marron J.S., Mockus A. (2000) Does code decay?
Assessing the evidence from change management data. IEEE transactions on software
engineering, 27: 1-12

Henninger S. (1997) Case-base knowledge management tools for software
development. Automated software engineering, 4: 319-340

Henninger S. (2000) Using sofiware process to support learning software
organizations. In: Proceedings of the 25th Annual NASA Goddard software
engineering workshop, Greenbelt, MD, USA

Johansson C., Hall P.C.M. (1999) Talk to Paula and Peter-they are experienced, In: the
Proceedings of the workshop on learning sofiware organizations, Kaiserslautern,
Germany, pp. 171-185

Lawton G. (2001) Knowledge management: ready for prime time? IEEE Computer,
34:12-14

Lindvall M. (1998) Are large C++ classes change-prone? An empirical investigation.
Software practice and experience, 28:1551-1558

Lindvall M., Rus I., Jammalamadaka R., Thakker R. (2001) Sofiware tools for
knowledge management. In: Data and analysis center for software (DACS): state-of-
the-art-report, Fraunhofer Center for experimental software engineering, University of
Maryland, Maryland, USA. Prepared for Air force research laboratory, Information
directorate, Rome, NY 13441-4505

Lindvall M., Sandahl K. (1996): Practical implications of traceability. Software
practice and experience, 26:1161-1180

Nonaka I., Takeuchi H. (1995) The knowledge creating company, Oxford university
press, USA

Paulk M.C. (1993) Key practices of the capability maturity model, Version 1.1. In:
SEI, Carnegie Mellon University, technical report, CMU/SEI-93-TR-25

Perry D.E., Staudenmayer N., Votta L. (1994) People, organizations, and process
improvement. IEEE Software, 11: 36-45

Potts C., Bruns G. (1988) Recording the reasons for design decisions. In: Proceedings
of the 10th International conference on software engineering, pp. 418-427
RamasubramaniansSsydagadeesanG:(2002) Knowledge management at Infosys. IEEE
Software, 19: 53-55

94 Lindvall and Rus

26. Ramesh B. (2002) Process knowledge management with traceability. IEEE Software,
19: 50-52

27. Rochkind M.J. (1975) The source code control system. IEEE transactions on sofiware
engineering, 1: 364-370

28. Rus I, Lindvall M. (2002) Knowledge management in softiware engineering. IEEE
Software, 19: 26-38

29. Rus L, Lindvall M., Sinha S. (2001) Knowledge management in software engineering.
Data and analysis center for software (DACS) State-of-the-art-report, Fraunhofer
center for experimental software engineering, University of Maryland, USA. Prepared
for Air Force research laboratory, Information directorate, Rome, NY 13441-4505

30. Schneider K.(2001) Experience magnets - attracting experiences, not just storing them.
In: Proceedings of the product focused software process improvement, Kaiserslautern,
Germany, pp. 126-140

31. Soloway E. (1987) I can't tell what in the code implements what in the specs. In:
Proceedings of the 2nd international conference on human-computer interaction,
Honolulu, Hawaii, USA, pp. 317-328

32. Terveen L.G., Sefridge P.G., Long M.D. (1993) From “folklore” to “living design
memory”. In: Proceedings of the ACM conference on human factors in computing
systems, Amsterdam, The Netherlands, pp. 15-22

33. Tiwana A. (2000) The knowledge management toolkit: practical techniques for
building a knowledge management system, Prentice Hall PTR, Upper Saddle River,
NJ, USA

34. Wieser E., Houdek F., Schneider K. (1999) Systematic experience transfer - three
cases from the cognitive point of view. International conference on product focused
software process improvement, Oulu, Finland, pp. 323-344

35. Williams L., Kessler R.R., Cunningham W., Jeffries R. (2000) Strengthening the case
for pair programming. IEEE Software, 17:19-25

Author Biography

Mikael Lindvall is a scientist at the Fraunhofer Center for Experimental Software
Engineering Maryland. Dr. Lindvall specializes in work on experience and
knowledge management in software engineering. He is currently working on ways
of building experience bases to attract users to both contribute and use experience
bases. Dr. Lindvall received his Ph.D. in computer science from Linkdpings
University, Sweden in 1997. Lindvall’s Ph.D. work focused on the evolution of
object-oriented systems and was based on a commercial development project at
Ericsson Radio in Sweden.

Ioana Rus is a scientist for the Fraunhofer Center for Experimental Software
Engineering, Maryland. She graduated from Arizona State University with a Ph.D.
in computer science and engineering. Her research interests include software
process improvement, knowledge management, process modeling and simulation,
measurement and experimentation in software engineering, and artificial
intelligence.

S A Dynamic Model of Software Engineering
Knowledge Creation

Tore Dyba

Abstract: Software-intensive organizations that intend to excel in the twenty-first
century must learn to manage change in dynamic situations. Rather than seeking
stability, they should focus on creating software engineering knowledge and mind
sets that embrace environmental change. The model developed in this chapter
supports this shift by directing attention to the need for communication,
coordination, and collaboration. The key to successful knowledge creation is
continuous and simultaneous dialectic interplay between the knowledge that the
organization has established over time, and the knowing of the organization’s
members in their respective contexts.

Keywords: Software engineering, Knowledge management, Knowledge creation,
Organizational learning, Software process improvement.

5.1 Introduction

Current models of change, which are founded on the old “unfreeze move refreeze”
paradigm [35], provide insufficient guidance in a constantly changing and
increasingly unpredictable environment. Rather than seeking an unachievable
stability, software organizations should focus on creating software engineering
(SE) knowledge and mind-sets that embrace environmental change.

The model developed in this chapter supports this shift by directing attention to
the needs for communication, coordination, and collaboration within and between
software teams. The model is about how software teams acquire and use
knowledge in an organizational setting in order to improve their software
processes. Verbs like “knowing” or “learning” are used to emphasize action-
oriented and dynamic properties, while the noun “knowledge” is used to describe
static properties.

In developing the model, we have emphasized the fundamental principle of the
hermeneutic circle [29] in which knowledge is gained dialectically by proceeding
from the whole to its parts and then back again. This is also what happens in
practice; each time incongruence occurs between part and whole, a
reconceptualization takes place. The frequency of such reconceptualizations
decreases as the match improves between the conceptualization of the
organization and that held by the organization’s members.

Another important principle behind the model is the focus on context-specific
needs. The knowledge that the software organization creates, its methods for
creating it, and the criteria by which these methods are considered valid are all
based on the organization’s prior experience for dealing with “problematic

96 Dyba

situations” [16]. As situations that the organization considers problematic, change,
so may its methods for dealing with them and the criteria for judging them as
valid. The uncertainty about situations or what actions to take in them is what
makes them problematic. This is the point from which SE knowledge creation
begins and is very different from current models in which improvement is seen as
starting with the implementation of “best practices” according to a predetermined
scheme, independent of the organization’s experience of problematic situations.

A critical element in our model, therefore, is the integration of knowledge-
creating activities with the “real work” of software development. This way, we
consider software teams and their projects as the baseline for knowledge creation
and software process improvement (SPI) and as primarily responsible for keeping
the organization’s processes on the leading edge of technology.

Figure 5.1 presents an overview of the dynamic model of software engineering
knowledge creation. The model contains the following four major elements:

e Organizational context: This is the general environment that imposes
constraints and opportunities about what the organization can and cannot do.
Furthermore, since we perceive the organization as an open system, the reality
experienced by the various software teams contains elements from outside the
organization as well as from the organization itself.

o Learning cycle: The organization’s learning cycle is a dialectical process that
integrates local experience and organizational concepts. All members and
groups of members in the organization contribute in the social construction of
the software organization’s knowledge. At the same time, the organization’s
memory limits the range of the possible actions for its members.

e Organizational performance: This is the performance or results of the
organization’s improvement activities. It is the dependent variable that is used
to measure whether gains have in fact been made with respect to organizational
behavior and performance, and not merely at the cognitive level.

e Facilitating factors: These are the conditions that facilitate or enable
knowledge creation and SPI. They are the key factors for success that the
software organization must put in place in order to facilitate the organization’s
learning cycle and improve its development process.

According to this model, SE knowledge creation is defined as a dynamic
interplay between two primary dialectics. The first is that between the local and
organizational level. The other is that between generating and interpreting
organizational knowledge. These dialectics represent the interplay between the
knowing of the organization’s members in their respective contexts and the
knowledge that the organization has established over time. This interplay is a
dynamic and simultaneous two-way relationship between the organization and its
members that combines local transformation with the evolution of the
organization® Thistis'similartorPiaget’si[43] description of the learning process as
a dialectic between assimilating experience into concepts and accommodating
concepts to experience. In our model, knowledge is created from the balanced

5 A Dynamic Model of Software Engineering Knowledge Creation 97

tension between these two processes. Our emphasis is thus on knowledge creation
as a dialectic process that integrates local experience and organizational concepts.

Organizational
memory
]
% g
£ E
c
3]
S £
& o
s Generating Facilitating Interpreting -
S
3 '—_—> knowledge 1 factors [> knowledge g
g]
2 | ;
S §
o

Local knowing

Fig. 5.1. A dynamic model of software engineering knowledge creation

The model presented in this chapter has several advantages compared with
current best-practice models. First, it should be clear that organizational
knowledge is not being created to mirror a reality that is independent of human
action, but to deal with it. Second, starting SPI from problematic situations in
software teams reduces the risk that SE knowledge creation will be detached from
action, and undertaken to build knowledge for its own sake. Third, it increases the
likelihood that knowledge intended for application to practical problems will
ultimately serve its purpose, given that knowledge gained from concrete situations
is more likely to remain applicable to future concrete situations.

5.2 Organizational Context

Generally, quality management literature supports the proposition that ideal
quality management should not be affected by contextual variables. Juran and
Godfrey [27], for example, stated that ideal quality management is “universal” and
suggested that the expectations regarding quality management should be the same
regardless of the context “no matter what is the industry, function, culture, or
whatever” [25, p. 2.5]. Crosby [10, 11], Deming [15], and Feigenbaum [22] also
support this context-free view of quality management. However, empirical studies
have indicated that nevertheless, organizational context influence managers’
perceptions of both ideal and actual quality management, and that contextual
variables are useful for explaining and predicting quality management
practices [5].

98 Dyba

Like most of the quality management approaches, a context-free view of
process improvement is at the heart of the best-practice paradigm and models like
CMM, ISO/IEC 15504, Trillium, and Bootstrap. In contrast to the best-practice or
model-based approach to SPI, the analytic approach [9] is more concerned with
the contingent characteristics of individual organizations. For example, the
importance of context is made explicit in the different steps of quantum
information processing (QIP) [2] and also in the various templates and guidelines
for the use of goals question metrics (GQM) [3, 55].

However, despite important differences, both the model-based and analytical
approach to SPI seem to be most concerned with solving the needs of large
organizations operating in highly stable environments with long-term contracts
(e.g., the US Department of Defense and NASA). This is further confirmed by
famous cases of successful SPI such as Alcatel [14], Hewlett-Packard [24],
Hughes [26], Motorola [13], Philips [44], Raytheon [18], and Siemens [39], which
are veritable giants compared to small and medium-sized enterprises (SMEs).

Most SMEs face two challenges: an ever-changing environment, and few
projects running at any given point in time. As a result, they have few data that
they can analyze and use to build up an experience base. In addition, collected
data soon becomes outdated and left irrelevant or— in the best case— uncertain.
Taken together, this implies that SMEs cannot base their improvement actions on
collecting long time series or amass large amounts of data needed for a tradition
statistical improvement approach.

Thus, two contextual variables are included in the model to capture the most
influential sources of variation in software organizations: environmental
turbulence and organizational size.

5.2.1 Environmental Turbulence

The software organization’s environment refers to various characteristics outside
the control of the organization that are important to its performance. These
characteristics include the nature of the market, political climate, economic
conditions, and the kind of technologies on which the organization depends.

The environment of a particular software organization may range from stable
to dynamic, that is from predictable to unpredictable. In a stable environment the
software organization can predict its future conditions and rely on standardization
for coordination [40]. Certainly, a stable environment may change over time, but
the variations are still predictable. But when the conditions become dynamic, i.e.,
when the market is unstable, the need for product change is frequent and turnover
is high. Such change is highly unpredictable, and the software organization cannot
rely on standardization. Instead, it must remain flexible through the use of direct
supervision or mutual adjustment for coordination, calling for the use of a more
organic structure. Therefore, the effectiveness of a software organization’s
structure depends on the environment of the organization.

5 A Dynamic Model of Software Engineering Knowledge Creation 99

5.2.2 Organizational Size

Organizational literature suggests that large organizations are less likely to change
in response to environmental changes than small organizations. Tushman and
Romanelli [51], for example, argued that increased size leads to increased
complexity, increased convergence, and thus, increased inertia. Likewise,
Mintzberg [40] postulated that the larger an organization, the more formalized its
behavior. So, while small organizations can remain organic, large organizations
develop bureaucracies with job specialization and sharp divisions of labor,
emphasizing stability, order, and control. As a consequence, they often have great
difficulties in adapting to changing circumstances because they are designed to
achieve predetermined goals— they are not designed for innovation.

From a learning perspective, however, inertia develops as a result of the
organization’s performance history [33]. Large organizations tend to be successful
since an organization grows larger with repeated success. However, since success
reduces the probability of change in a target-oriented organization [12], large
software organizations less likely to change when the environment changes.

5.3 Learning Cycle

As we have already argued, SE knowledge creation is defined as a dynamic
interplay between two primary dialectics. The first is that between the local and
organizational level. The other is that between generating and interpreting
organizational knowledge. In this section, we make a detailed description of each
of these four elements of the learning cycle.

5.3.1 Local Knowing

The primary context within which meaning is constructed, new knowledge
created, and improved courses of action are taken, is the shared practice within
local software development teams. Software developers do not work in isolation;
they work together to develop products that they could not develop by working as
individuals. This focus on teams and their collaborative processes is important
because no single developer embodies the breadth and depth of knowledge
necessary to comprehend large and complex software systems. Also, it is
important because codified or explicit organizational knowledge is seldom
sufficient to solve a particular problem. Thus, just as a single soccer player cannot
play a game of soccer by himself or herself, only a group of software developers,
working as a team, can develop software of a certain size and complexity.

The software teams’ way of grasping the world and forming local realities is by
apprehension, in the present movement of ‘“here-and-now” [30]. They are
concerned with concrete situations as experienced in all their complexity during
software development. They act in a specific context in which reality is constantly

100 Dyba

being created and recreated. Local knowledge is therefore not an explicated and
static model of causal relationships for software development. Rather, it shows up
in the local actions taken by the developers in the team and can, thus, better be
characterized as “knowing.”

Therefore, by local knowing we refer to the knowledge-in-action associated
with participating in the collective practice of software development in a specific
context. It is important to stress this, since a software organization’s primary
concern is the actual practice of developing software, and not merely the creation
of knowledge on how to do it. Local knowing is, therefore, about how the
software organization works, or its theories-in-use, as seen from the local teams or
work groups in the organization. Participating in software teams is consequently
not only a matter of developing software, but also of changing the organization’s
knowledge about software development and to generate improvement.

The context in which software developers interact contributes to the
knowledge-creating process in several ways. First, each software team or work
group operates in a particular setting with a particular mix of people, tools, and
techniques to define and solve a particular software development problem. Also,
the way in which software developers use prior experience and available tools and
techniques varies with the particular, concrete circumstances. That is, software
developers will approach a certain problem depending on the actual setting
because each setting tends to evoke certain kinds of “appropriate” modes of
thought and action [52]. Moreover, software developers often take advantage of
the setting itself to help them define a problem or to discover solutions.

Also, software developers incorporate codified organizational routines into
local informal practices, freely adapting the routines as they work on solving
actual problems in their particular circumstances. Local knowing draws on both
the organizational members’ individual understandings of the situation and their
ability to use the relevant parts of organizational memory that is available in a
given context. Therefore, the context in which software development takes place
partly determines what the organization’s members can do, what they know, and
what they can learn. Moreover, since different local settings provide different
opportunities for learning, any SE knowledge creation activity will also be a
situated process.

Therefore, all software development and SE knowledge creation have an ad hoc
adroitness akin to improvisation because they mix together the contingency of the
present situation with lessons learned from prior experience [20]. Ryle described
this mixture as “paying heed” [45], to be thinking at what one is up against here
and now by adjusting oneself to the present situation, while at the same time
applying the lessons already learned. In other words, local knowing is affected by
the current setting as well as by the organization’s memory of its past experience.

Such an improvisational theory of local knowing has its roots in pragmatists’
notion that knowledge is not absolute, but rather can only be defined in relation to
a specific situation or context [17]. Questions about what is “true” are answered in
relation_to_what _works in_a_given setting. Consequently, local knowing is
pragmatic and produces actions that are oriented toward established goals,
directed at doing whatever is necessary to reach the objective.

5 A Dynamic Model of Software Engineering Knowledge Creation 101

Thus, SE knowledge creation occurs through people interacting in context or,
more precisely, in multiple contexts. This situated and pragmatic characteristic of
knowledge creation has important implications for how problem framing, problem
solving, and SPI take place in software organizations. Most importantly, this
perspective suggests that traditional decontextualized theories of SPI cannot
completely account for learning in software organizations. Rather, since learning
is an interactive social process, contextual factors affect both how and what
organizational members learn.

There are several social groups within a software organization that share
knowledge and that may be identified as having a distinct local reality. Examples
of such groups are formal project teams and informal groups of software
developers and managers. A group’s local reality can be seen as a way of acting in
relationship to the rest of the organization. However, shared practice by its very
nature creates boundaries [61].

There are two basic conditions for establishing connections across such
boundaries and making communications between the groups effective. First, each
group must respect the expertise of the other and must acknowledge the relevance
of that expertise to their own problems. Second, each group must have sufficient
knowledge and understanding of the other groups’ problems to be able to
communicate effectively with them. However, experience shows that these
conditions are unlikely to be satisfied unless a sufficient number of members of
each group have had actual experience with the activities and responsibilities of
the other groups [50].

Mutual adjustment [40], which largely depends on face-to-face contact, is the
richest communication channel we have and is by far the most effective form of
transferring and exchanging knowledge and experience in local teams. Also, face-
to-face experience and interaction are the keys to creating and diffusing tacit
knowledge. Therefore, people working together with frequent, easy contact will
more easily exchange knowledge and experience with each other than people that
are separated by time and space. This has important implications for SE
knowledge creation, since local software development teams can utilize the
flexibility of face-to-face communication and shed bureaucracy.

However, communication capacity rapidly becomes saturated as the group
grows. Without compromises, it is impossible to extend mutual adjustment in its
pure form to organizations larger than the small group. Nevertheless, with the
support of proper technology, considerable extension of the coordination of work
by mutual adjustment is possible if the adjustment is mediated by indirect
communication through a repository of externalized organizational memory. Such
implicit coordination [25)] of software developers working from a common
experience base greatly reduces the need for extra communication and direct
supervising efforts in the organizational learning process. Contrary to efforts to
provide better tools for handling the increased communication, such as groupware
solutions or efforts at standardizing the work process, the attack point in our
model.is.to.reduce. the volume of communication needed for coordination.

102 Dyba

In the next section, we describe the process of generating new explicit
knowledge based on local knowing so that lessons learned can be incorporated in
organizational memory and shared outside the team.

5.3.2 Generating Knowledge

Generating new explicit knowledge is a collective process where a group of
software developers attempts to externalize their local knowing. This means, for
example, that a software team must take time to express its shared practice in a
form that can meaningfully be understood and exploited by other organizational
members. This process involves the articulation of tacit knowledge into such
explicit knowledge as concepts, models, and routines through the use of words,
metaphors, analogies, narratives, or visuals. The result of this process is new
organizational knowledge and an extended range of explicit organizational
memory.

In practice, dialogue [7] and collective reflection [47], or reflective observation
to use Kolb’s terminology [30], triggers the articulation of explicit knowledge.
This process of generating new explicit knowledge brings some of what the
software team apprehends into what the team comprehends.

Dialogue is an important way of collectively grasping experience through
comprehension such that the software team is able to articulate and build models
of their experience and thereby communicate it to others. The team allows others
to predict and recreate knowledge to the extent that such experience models are
accurately constructed from the team’s local knowing.

Collective reflection and dialogue facilitate a greater coverage of past
experience, since individual developers can prompt each other to help remember
the past. In this sense, multiple and even conflicting individual experience enables
a more comprehensive recollection of past events. Such diversity in local knowing
between software teams should not be seen as a problem, but rather as a valuable
source for SE knowledge creation. It is the differences, not the agreements that are
the possibilities for learning and change.

One of the most effective ways of externalizing local knowledge in software
organizations is through the use of models, tools, and techniques. When
constructing models or systems, however, only parts of the local reality will be
externalized since “The program is forever limited to working within the world
determined by the programmer’s explicit articulation of possible objects,
properties, and relations among them.” [62, p. 97]. Such modeling creates a
blindness that limits it to what can be expressed in the terms that the organization
has adopted. Although this is an unavoidable property of models and technology,
the software organization should, nevertheless, be aware of the limitations that are
imposed.

We have used several knowledge-creation techniques to externalize, evaluate,
and organize new knowledge. Among the most widely used have been the GQM
approach [3, 55], the KJ Method [48], and Mind Maps [8]. Common to these
techniques is that they help a group of developers to create ideas and articulate

5 A Dynamic Model of Software Engineering Knowledge Creation 103

their knowledge through two phases. During the divergent thinking phase, the
participants articulate key words, phrases, goals, questions, or metrics that they
think are relevant for the dialogue. In GQM, these concepts are documented in
GQM abstraction sheets, while the KJ method uses less structured Post-it Notes,
and Mind Maps uses a picture of words.

During the convergent thinking phase, groups using GQM combine their
abstraction sheets into one sheet per goal and jointly try to resolve any conflicts
and inconsistencies. With the KJ method, the participants organize their Post-it
Notes into logical groups, which are then related into a diagram of concepts and
ideas as the conclusion. In a similar way, Mind Maps are used to organize
concepts by placing each idea next to the concept to which it is related.

This dialectic of divergent and convergent inquiry facilitates the surfacing of
hidden assumptions. The collaborative nature of these processes and the utilization
of figurative language for concept creation are what, in our experience, make these
techniques such powerful tools for collectively externalizing the tacit knowledge
of a group of software developers and, thus, generating new organizational
knowledge.

Articulating tacit knowledge and creating new explicit concepts is not enough.
For new knowledge to be useful for others outside the team, it must also be
packaged. Knowledge gained locally should be consolidated and globalized in the
form of experience packages and stored in an Organizational Memory Information
System, or Experience Base [4], so it is available for future projects. In principle,
most kinds of experience can be externalized, packaged, and made available in the
organization’s experience base.

Still, each organization must decide for itself what knowledge needs to be
packaged based on its business values and needs. Furthermore, since face-to-face
interactions need to be high when transferring new concepts to a different
location, each experience package should be indexed with local areas of expertise
and references to groups or individuals who can help the receiving unit. Moreover,
the organization should decide how its experience packages should be stored in
organizational memory.

However useful the techniques a software organization might use for the
articulation of explicit knowledge and experience packaging, the local knowing
can never be fully represented in organizational memory. Contextual information
is inevitably lost in this process, and what is stored in organizational memory is a
decontextualized subset of local knowledge. Therefore, proper consideration of
how memory objects will be decontextualized and then recontextualized in future
use is necessary. In other words, we must be able to consider the present through
the lens of future activity [1].

In the next section, we describe the process of incorporating experience
packages into organizational memory together with examples of typical memory
categories.

104 Dyba

5.3.3 Organizational Memory

Organizational memory is a generic concept used to describe an organization’s
capability for adoption, representation, and sharing of new beliefs, knowledge, or
patterns for action. It is essential for SE knowledge creation to occur by
embedding organizational members’ discoveries, inventions, and evaluations.
Sometimes this may require official action and issuing revised regulations or
operating guidelines. However, since each local group within an organization has
its own culture, it also requires informal acceptance by enough opinion leaders
and rank and file members for it to be disseminated as valid and valued
knowledge.

In other words, that which is accepted in one part of an organization may or
may not be passed on to other units or parts of the organization— one unit’s
knowing could be another unit’s rubbish or heresy. Thus, lessons learned cannot
easily be transferred from one setting to another. Also, higher levels of the power
structure can destroy the learning of lower levels as a matter of policy, or even as
a matter of neglect or indifference— except sometimes in the case of a strong
counter-culture arising out of long conflict and shared grievance. Thus, memories
are cooperatively created and used throughout the organization. In turn, they
influence the learning and subsequent actions that are taken by the local groups in
the organization.

Each time a software organization restructures itself, the contents of its memory
are affected. Since much of the organization’s memory is stored in human heads,
and little is put down on paper or held in computer memories, turnover of
personnel is a great threat to long-term organizational memory. When experts
leave, the costs to the organization are even greater because it takes years of
education, training, and experience to become an expert [50]. Loss of such
knowledge can undermine the competence and competitiveness of the
organization, and can also have a serious impact on cultural norms and values.
However, we should be careful not to assume that the availability of
organizational memory necessarily leads to organizations that are effective; it can
also lead to lower levels of effectiveness and inflexibility [59].

Based on Walsh and Ungson’s definition [58], we focus on organizational
memory as the means by which a software organization’s knowledge from the past
is brought to bear on present activities. This definition makes no assumptions
regarding the impact of organizational memory on organizational effectiveness,
since this depends on the ways in which the memory is brought to use. For
example, when organizational knowledge is consistent with the goals of the
organization, organizational memory can be said to contribute to organizational
effectiveness. At the other extreme, organizational memory can be seen as a
structure that objectivates a fixed response to standard problems that constrains
and threatens the viability of organizations operating in turbulent environments.

Therefore, the members of the software organization must themselves
determine what to_do with_the knowledge they acquire in order to meet the
incompatible demands of change and stability. Organizational memory can be
viewed as a structure that both enables action within the software organization by

5 A Dynamic Model of Software Engineering Knowledge Creation 105

providing a framework for common orientation and, at the same time, limits the
range of action by constraining the possible ways of developing software. Thus,
just as organizational memory provides stability, it can also serve to block change.

To be useful for the software organization as a whole, newly created concepts
have to be communicated and explained to others who have not shared the
concrete experience. This makes justification an essential process since the
organization must decide whether new concepts and beliefs are worthy of further
attention and investment [56]. There is an inherent dialectic here that the
justification process tries to balance. On the one hand, newly generated knowledge
has to be related to existing organizational knowledge in order to be acceptable
and understandable. On the other hand, new knowledge challenges the
organization’s existing understanding of the world through its novelty, provoking
complex processes of argumentation and justification, to be decided in favor of the
existing or the newly emerging views.

Justification processes are therefore important for the software organization’s
memory since they decide whether new knowledge is rejected as irrelevant or
uninteresting, returned to the local team for further elaboration, or appropriated as
justified true belief and therefore integrated into organizational memory.

However, for a software development team to be able to reuse a memory object
like an experience package (see Table 5.1 for typical examples), it must be
recontextualized and made relevant for the new situation. That is, the memory
object must be reunderstood for the developers’ current purpose. A proper
understanding of how local knowing is first decontextualized and adopted as
organizational memory and then recontextualized into new local knowing is of
critical importance for the utilization of organizational memory. This problem has
largely been unnoticed in contemporary debates on experience bases within SPI,
which is often limited to the technical challenges of implementing a database.
However, if we do not address the problems of recontextualization, the whole
concept of organizational memory and experience bases will be more or less
useless.

The next section describes how the organization’s memory can be put back into
use and become part of local knowing through a process of collective
interpretation.

5.3.4 Interpreting Knowledge

The collective interpretation of knowledge is the process of making organizational
memory an integral part of local knowing by making sense out of the actions,
systems, structures, plans, models, and routines in the organization. Through this
process, the organization’s memory is recontextualized and taken up into the
practice of local software development teams. It is a process of “re-experiencing”
[42] other teams’ experiences.

106 Dyba

Table 5.1. Memory categories and examples of typical elements

Memory Category Typical Elements

Worldview Culture, beliefs, assumptions, values, norms, strategies, power
relations, symbols, habits, expectations

Structure Task structure, roles, behavior formalization, coordinating
mechanisms, unit grouping, workplace ecology

Plans and models Life cycle models, assessment models, project plans, milestone
plans, quality plans, improvement plans, measurement plans,
action plans

Systems Information systems, tools and techniques, quality control
systems, training systems, social systems

Routines Rules, standard operating procedures, development processes

Lessons learned Experience reports, articles, memos, newsletters, stories, feedback

sessions, peer reviews, post mortem reviews

A major confusion in much of the thinking in contemporary knowledge
management and SPI is equating easy access of information with learning.
However, there is an important difference between passively receiving
information and actively interpreting and making sense of it. When an individual
software developer receives information, he or she relates that information to past
moments of experience in order to make sense of it. It is the differences from what
is expected, and not the agreements, that provide the possibilities for SE
knowledge creation. Therefore, we attend to that which is different from our
current understandings and from our expectations in order to compare it with
already extracted cues. Learning can only be said to have taken place when the
individual has formed new networks of meaning and new reference points for
future sense-making processes from the information encountered.

Collective interpretation processes are still more complex. Not only must each
software developer engage in an individual process of sense-making, he or she
must do so while simultaneously interacting with other developers. By engaging in
collective interpretation, each developer is influenced by the meanings held by
others, and in turn influences the meanings of others. This way, each developer
can better understand the experiences and reasoning the other developers are using
in their interpretations and by comparison understand each other’s meanings more
fully. Based on these interactions, the developers are in a position to form a
collective interpretation of the organizational knowledge that is available to them.

Therefore, collectively interpreting organizational knowledge involves active
construction of knowledge in the form of active formulation and solution to
problems with the help of explicit models, guiding routines, and feedback. This
highlights an important aspect of SE knowledge creation: collective interpretation
is effective not necessarily as a function of simple internalization, with modeled
information being transferred across a barrier from the organization to the inside
of a team, or with information being transmitted. Rather, these interpretations are
effective through peripheral and active participation [34], whereby the members of
a team collectively transform their understandings and skills in framing and
solving a problem. According to this view, it is the active construction through

5 A Dynamic Model of Software Engineering Knowledge Creation 107

first-hand experience that is so crucial to SE knowledge creation, not some distant
guidance or universal rule.

Rather than being transmitted or internalized, knowledge becomes jointly
constructed in the sense that it is neither handed down ready-made from the
organization, nor something a team constructs purely on its own. Knowledge,
understandings, and meanings gradually emerge through interaction and become
distributed among those interacting rather than individually constructed or
possessed. Furthermore, since knowledge is distributed among participants in a
specific activity context it is necessarily situated as well. That is, intimately
welded to the context and the activity in which and by means of which it is
constructed. Therefore it is important that participation becomes the key concept
here, as contrasted with acquisition, with conceptual change serving as both the
process and the goal of learning.

In the process of forming collective interpretations, it is important that we
distinguish between reducing ambiguity and reducing uncertainty. Ambiguity is
the lack of clarity about the technologies and processes of software development
when the environment is difficult to interpret, and when cause and effect are
disconnected so that the organization is unable to link its actions to their
consequences. It has more to do with the confusion of multiple meanings than
with the absence of sufficient quantities of information. The lack of meaning
drives sense-making, while the lack of certainty drives data collection and
information gathering: “In the case of ambiguity, people engage in sense-making
because they are confused by too many interpretations, whereas in the case of
uncertainty, they do so because they are ignorant of any interpretations” [60, p.
91]. Thus, approaches to measurement-driven SPI can support the reduction of
uncertainty, but they don’t necessarily assist the software organization in reducing
the ambiguity that is essential for SE knowledge creation.

The process of “re-experiencing” other teams’ experiences involves
experimenting with organizational knowledge in local contexts by “giving it a
try.” Based on the concepts of ambiguity and uncertainty, we can distinguish
between two types of such experiments that are crucial for SE knowledge creation:
hypothesis-testing experiments and exploratory experiments. Hypothesis-testing
experiments are field experiments designed to reduce the organization’s
uncertainty by discriminating among alternative explanations or solutions from
many possibilities. This is the usual way of conducting process improvement
experiments according to the experimental approach. Of special concern to us
here, therefore, is conducting exploratory experiments to reduce ambiguity.

Exploratory experiments involve learning through discovery, encouraging the
flexibility and resilience needed to cope with the situation at hand. When
ambiguity is high, the knowledge represented by the organization’s memory
provides little support. So, during this phase of the learning cycle the focus shifts
from justification and exploitation of existing knowledge to skepticism and
exploration of new opportunities.

Such _exploration or “learning by doing” is of utmost importance in unfamiliar
and ambiguous situations and only works when a team receives rapid and
unambiguous feedback on its actions. However, in the complex reality

108 Dyba

experienced by most software teams, the consequences of their actions are neither
immediate nor unambiguous. Nevertheless, in these situations, effective learning
can be achieved by the use of simulated environments, what Nonaka and Konno
termed “exercising ba” [41], or “microworlds” to use Senge’s terminology [49]. In
such microworlds, it becomes possible for software teams to learn about future
and distant consequences of their actions by experimenting in environments that
“compress time and space” [49].

Prototypes are examples of microworlds that enable the collective interpretation
of knowledge. Developing a prototype is an experimental activity mainly
concerned with reducing the inherent uncertainty and ambiguity of specifications
[38], thus facilitating a shared understanding of the system to be developed.

There are two main approaches to exploration in which prototypes serve an
important role: probing and learning, and pilot projects. In probing and learning
the software organization constructs “quick-and-dirty”” mock-ups. To be useful for
the learning process, these prototypes still have to be close enough approximations
of the final product or development process. Otherwise, such experimentation will
be of little value since generalizations will be virtually impossible. Furthermore,
the probing and learning process should be designed as an iterative process, since
it is hardly possible to “get it right the first time” in an ambiguous environment.

Pilot projects are projects aimed at on-line experimentation in real software
projects or large-scale simulations in separate demonstration projects (see [21]).
Typically, they are the first projects to embody principles and approaches that the
organization hopes to adopt later on a larger scale. They implicitly establish policy
guidelines and decision rules for later projects. They often encounter severe tests
of commitment from employees who wish to see whether the rules and practices
have, in fact, changed. They are normally developed by strong multifunctional
teams reporting directly to senior management. Finally, they tend to have only
limited impact on the rest of the organization if they are not accompanied
by explicit strategies for the diffusion of knowledge gained from the pilot
projects [23].

The context-dependent inferences of prior experience and memory objects can
only be carried over from one organizational situation to another through “seeing-
as” [47]. When a software team makes sense of a situation it perceives to be
unique, it sees it as something already present in the repertoire represented by
organizational memory. Therefore, “Seeing this situation as that one, one may also
do in this situation as in that one” [47, p. 139, italics in original].

Consequently, in order to learn and improve their software processes, software
teams can sometimes figure out how to solve unique problems or make sense of
puzzling phenomena by modeling the unfamiliar on the familiar. Depending on
the initial proximity or distance of the two things perceived as similar, the familiar
may serve as an “exemplar” or as a “generative metaphor” for the unfamiliar [47].
In both cases, the software team arrives at a new interpretation of the phenomena
before it by “reflecting-in-action” on an earlier perception of similarity.

The utility of an experience package lies in its ability to generate explanation
and experimentation in a new situation. When the experience package is carried
over to the new situation, its validity must be established there by a new round of

5 A Dynamic Model of Software Engineering Knowledge Creation 109

experimentation through which it is very likely to be modified. The modified
experience package that results from this new round of experimentation may, in
turn, serve as a basis for transfer and recreation to a new situation.

So, for SE knowledge creation to happen, organizational members must act on
the collective interpretations they have made, starting a new cycle of
organizational learning. Thus, purposeful action at the local level is a means for
the interpretation of organizational knowledge as well as for the generation of new
knowledge. Consequently, it is essential for organizational learning and SPI.

5.4 Organizational Performance

Organizational performance is the ultimate criterion for SE knowledge creation.
Performance is a complex construct, however, reflecting the criteria and standards
used by decision-makers to assess the functioning of a software organization. That
is, performance is a value judgment on the results desired from an organization
[53].

Traditionally, the assessment of organizational performance has focused on
long-term profitability and financial measures. However, in today’s
technologically and customer-driven global competition, financial measures often
provide incomplete guides to performance, i.e., they are insufficient to predict
future competitiveness in the software business.

As a fundamental part of our model, therefore, we need a dynamic concept of
success that represents a software organization’s competitiveness. Performance,
which is something an organization does (process) or achieves (outcome), is a
concept that can better serve as an operational tool for improvement of
competitiveness than pure financial measures.

Furthermore, having satisfied customers is an important asset for a software
organization, it is the cornerstone of any TQM program, and it is the most
important principle in the recent revision of ISO 9000:2000. Therefore, the
customer perspective should be a central part in any model of a software
organization’s performance.

Lynch and Cross [36] defined customer satisfaction as the difference between
the customers’ perceived performance and their needs and expectations:

Customer satisfaction = Perceived performance — Expectations

A classic problem, however, is that both performance and expectations are
subjective terms, and that performance as seen from the software organization can
be viewed differently than performance as seen from the customer. Typically, the
customer focuses on external performance measures such as price and delivery
time, while the sofiware organization focuses on internal performance measures
such as cost and lead time. Therefore, the relationships between such external and
internal performance measures are critical for the integration of customer
satisfaction in any model that purports to measure success. However, improved

110 Dyba

profitability is not an automatic outcome of organizational programs to improve
customer satisfaction.

All software processes are expected to deliver a quality product on schedule
and on budget in order to achieve customer satisfaction and thereby to ensure
long-term profitability for the software organization. Moreover, these fundamental
characteristics have importance to both customers and the software organization.
Therefore, they are important for the understanding and definition of
organizational performance. In other words, SE knowledge creation should lead to
“better, faster, [and] cheaper software development” [46]. This is also clear in
Krasner’s [32] model of the challenges in software development projects, which
focuses on the dynamic relationships between software processes and the three
outcome factors: cost, schedule, and quality (Fig. 5.2).

Time

Software
process

Cost Quality

Fig. 5.2. The organizational performance dimension of SPI success [32]

From the preceding discussion we have identified organizational performance
as an important dimension in the measurement of successful SE knowledge
creation. Furthermore, we have identified the following three elements as central
constituents of organizational performance as seen from a customer satisfaction
perspective:

o Time: Time to market has become a critical measure for software organizations
in today’s turbulent markets. Being able to respond rapidly and reliably to
customer requests and changing market conditions is often critical for a
software organization’s competitiveness. Including time-based metrics as part
of the organizational performance measure, therefore, signals the importance of
achieving and continually reducing lead times for meeting targeted customers’
expectations. Yet, other customers may be more concerned with the reliability
of lead times than with just obtaining the shortest possible lead-time. In
addition. to_lead-time.or.cycle-time.reductions, therefore, measures of on-time
delivery rate improvements and schedule slippage rate reductions can also be
useful time-based indicators of customer satisfaction and retention.

5 A Dynamic Model of Software Engineering Knowledge Creation 111

e Cost: Customers will always be concerned with the price they pay for products
and services. Long-term profitability, therefore, requires that there is a healthy
relationship between price and cost and, consequently, that we include process
cost metrics as part of the organizational performance measure. Process cost
includes the cost of primary activities (marketing and sales, inbound logistics,
operations, outbound logistics, and service) and support activities
(infrastructure, human resource management, technology development, and
procurement) in the software development value chain [6]. Although the major
source of software costs is the operations component, virtually all components
are still highly labor-intensive. Thus, effort is frequently the predominant cost
driver for most software processes. Examples of potentially useful cost metrics
are: ratio of actual versus planned cost of work effort, development hours
saved, productivity increases, rework cost reduction, and reuse increases.

e Quality: Using the Kano model as the frame of reference [28], we have
witnessed a tendency among large customer groups that quality is not always
expressed as an explicit requirement— it is so obvious that it is often not even
mentioned. Nevertheless, the customers’ expectations consist of both the
explicitly stated functional and nonfunctional, requirements and the obvious
implicit, or tacit, requirements. However, in certain parts of the sofiware
industry, the situation is such that excellent quality may still offer opportunities
for companies to distinguish themselves from their competitors. In any case,
customer-perceived quality is always relevant for inclusion as an organizational
performance measure. Examples of such quality metrics are defect density
reductions and customer satisfaction increases. An important part of this
picture, however, is that the software organization may not even be aware of
the unsatisfied customers; they simply cease to use the organization’s products
or services. Interestingly, an American study revealed that 96% of unhappy
customers never tell the company [31].

To summarize, if our goal is to assess the improvement of software
development processes, the ability to answer the following three questions should
be regarded as a central concern for the measurement of organizational
performance:

1. Are software projects delivered on time?
2. Are software projects delivered on budget?
3. Are customers satisfied with the delivered software?

Using organizational performance as the only dimension of success can entail
some adverse complications. These complications include the instabilities of
performance advantages, the causal complexity surrounding performance, and the
limitations of using data based on retrospective recall of informants [37].
Furthermore, the extent to which organizational members’ perceptions of SPI
success reflect organizational performance is unclear, as is the extent to which
perceptionsyarevinfluenced-by-the-software organizations’ standards. Besides,
research on both individual and organizational learning indicates that items that

112 Dyba

are perceived to be important by the persons concerned will be paid more attention
to than items perceived as tangential to these persons [54].

If organizational members’ perceptions do not reflect organizational
performance, then increases (or decreases) in performance will not necessarily be
translated into increased (or decreased) levels of perceived success. A decrease in
the perceived level of success, for example, may occur either because the software
organization’s performance has decreased, or because the organization has not
adequately managed the perceptions of its members. Assessment of success is a
guestion of both organizational performance and the perceptions of the
organization’s members in the absence of data about the relationships between
actual performance, perceived performance, and customer satisfaction.

5.5 Facilitating Factors

SE knowledge creation cannot simply be managed like any other project. This is
due to the simple fact that the term “manage” typically implies control, while the
nature of the learning process is typically uncontrollable or, at the least, stifled by
heavy-handed direction [57]. From our perspective, therefore, software
organizations need to acknowledge that SE knowledge creation needs to be
enabled rather than controlled. We have identified six facilitating factors during
our investigations [19].

e Business orientation: The extent to which SE knowledge creation goals and
actions are aligned with explicit and implicit business goals and strategies

e Involved leadership: The extent to which leaders at all levels in the
organization are genuinely committed to and actively participate in SE
knowledge creation

o Employee participation: The extent to which employees use their knowledge
and experience to decide, act, and take responsibility for SE knowledge
creation

o Concern for measurement: The extent to which the software organization
collects and utilizes quality data to guide and assess the effects of SE
knowledge creation

e Exploitation: The extent to which the software organization is engaged in the
exploitation of existing knowledge

o Exploration: The extent to which the software organization is engaged in the
exploration of new knowledge

The links between the knowledge creating processes and the facilitating factors
that, according to our experience, are the most important are revealed by the 6%4
grid in Table 5.2.

A clear business orientation legitimizes the knowledge-creating initiative
throughout_the _software_organization.. It has a relatively low impact on local
knowing but may, nevertheless, help software teams articulate the knowledge
created in local groups. Business orientation is especially important in justifying

5 A Dynamic Model of Software Engineering Knowledge Creation 113

concepts for inclusion in the organization’s memory, since concepts must be
selected that help the organization achieve its business goals. Therefore, a clear
business orientation also encourages better utilization of organizational knowledge
and facilitate the collective interpretation of knowledge.

Involved leadership is important for any organizational learning initiative. By
involving themselves in the challenges of software development and allowing
software teams to act autonomously, the organization’s leadership facilitates local
knowing. Furthermore, they have an important role in facilitating the generation of
new knowledge by creating a context that prioritizes and encourages dialogue and
collective reflection. Also, the degree of leadership involvement influences what is
considered important for inclusion in organizational memory.

Employee participation is the cornerstone of our model. It is important for all
the knowledge-creating activities in the learning cycle. It is the basis for local
knowing, since it is only through participation that collective action can be taken
and tacit knowledge can be shared. Dialogue and collective reflection are
meaningless concepts without participation, and it is therefore an important
facilitator for the generation of valid organizational knowledge. Likewise, it is
through collective processes of sense-making and active participation through,
e.g., personnel rotation programs, that organizational knowledge is diffused and
brought to use in new situations.

In addition to personal and collective experience, a concern for measurement is
important in order to validate the newly created knowledge and to ensure that
gains have in fact been made. Most important, a concern for measurement
facilitates local knowing by acting as a foundation for the collection, analysis, and
feedback of data. Ongoing feedback as a group process is particularly important,
since it can be an effective tool for bringing about changes in the way work is
done as well as in establishing causal relationships and generating new
knowledge.

The exploitation of existing knowledge is closely tied to all the knowledge-
creating activities in the learning cycle. It facilitates local knowing by presenting a
set of previously learned lessons that can be used in exploring the contingencies of
the current setting. It is particularly important in facilitating the generation of new
organizational knowledge, since this involves the articulation and packaging of
local knowledge and experience. Furthermore, before locally created knowledge is
appropriated as part of the organization’s memory, it must be related to the
existing knowledge. Also, the interpretation of knowledge necessarily involves a
relation between new and existing knowledge.

Exploration of new knowledge is particularly important in facilitating the
collective interpretation of knowledge through exploratory experiments and
prototyping. It is also the basis for local knowing by mixing together the
contingency of the present situation with the lessons learned from prior
experience [20].

114 Dyba

Table 5.2. Links between knowledge creating processes and facilitating factors'

Local Generating Organizational Interpreting
Facilitating factors knowing knowledge memory knowledge
Business orientation v vV v
Involved leadership v 4 v
Employee participation 44 44 v vy
Concern for measurement v'v' v
Exploitation of existing v a4 v v
knowledge
Exploration of new v v
knowledge

1v denotes an important link, v'v" denotes a very important link

5.6 Summary

In this chapter, we have developed a dynamic model of SE knowledge creation. A
critical element for developing the model was the integration of SPI activities with
the real, situated nature of software development, and focusing on the role of
certain facilitating factors in the diffusion of knowledge and experience within and
between groups of software developers.

First, organizational context was described as an important element that
imposes constraints and opportunities about what and how the organization can
learn. Two contextual variables were included in the model to capture the most
influential sources of variation: environmental turbulence and organizational size.
Then, we emphasized the importance of acknowledging that the learning process
is a dynamic interplay between two primary dialectics: one between the local and
organizational level, the other between generating and interpreting knowledge.
Next, the success of an organization’s knowledge creation was described in terms
of organizational performance and the software organization’s perceived level of
success. Finally, we described the key factors of success in SE knowledge creation
and their links with the learning processes in the model.

References

1. Ackerman M.S., Halverson C.A. (2000) Reexamining organizational memory
Communications of the ACM, 43:58-64

2. Basili V.R,, Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sloan management review, 37: 55-64

3. Basili V.R., Weiss D. (1984) A methodology for collecting valid software engineering
data. IEEE transactions on software engineering, 10: 728-738

4. Basili V.R,, Caldiera G., Rombach H.D. (1994) Experience factory. In: Marciniak J.J.
(Ed:); Encyclopediaof Software Engineering, John Wiley and Sons, UK, pp. 469-476

11.

12

13.

14.

15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

27.

28.

5 A Dynamic Model of Software Engineering Knowledge Creation 115

Benson P.G., Saraph J. V., Schroeder R.G. (1991) The effects of organizational
context on quality management: an empirical investigation. Management science, 37:
1107-1124

Boehm B.W., Papaccio P.N. (1988) Understanding and controlling software costs.
IEEE transactions on software engineering, 4: 1462-1477

Bohm, D., Peat, F.D. (2000) Science, order, and creativity. Routledge London, UK
Buzan T., Buzan B. (2000) The mind map book. Millenium edition, BBC books,
London, UK

Card D. (1991) Understanding process improvement. IEEE Software, 8: 102-103

. Crosby P.B. (1979) Quality is free: the art of making quality certain. McGraw-Hill

New York

Crosby P.B. (1996) Quality is still free: making quality certain in uncertain times.
McGraw-Hill New York

Cyert RM., March J.G. (1992) A behavioral theory of the firm. Blackwell,
Oxford, UK

Daskalantonakis M.K. (1992) A practical view of sofiware measurement and
implementation experiences within Motorola. IEEE transactions on software
engineering, 18: 998-1010.

Debou C., Courtel D., Lambert H.-B., Fuchs N., Haux M. (1999) Alcatel's experience
with process improvement. In: Messnarz R., Tully C. (Eds.), Better software practice
for business benefit: principles and experience, IEEE computer society press, Los
Alamitos, California, US, pp. 281-301

Deming W.E. (1986) Out of the crisis. MIT center for advanced engineering study,
Cambridge, MA

Dewey J. (1929) The quest for certainty. Lame Duck books, New York, Balch, Minton

Dewey J. (1938) Logic: the theory of inquiry. Holt and Company New York

Dion R. (1993) Process improvement and the corporate balance sheet. IEEE Software,
10: 28-35

Dyba T. (2000a) An instrument for measuring the key factors of success in software
process improvement. Empirical software engineering, 5: 357-390

Dybé T. (2000b) Improvisation in small software organizations. IEEE Software,
17: 82-87

Dyba T. (Ed.) (2000c) SPIQ - Software process improvement for better quality.
Methodology handbook (in Norwegian), IDI report 2/2000, Norwegian University of
Science and Technology Trondheim, Norway

Feigenbaum A.V. (1991) Total quality control. McGraw-Hill, New York, USA

Garvin D.A. (2000) Learning in action: A guide to putting the learning organization to
work. Harvard business school press, Boston, MA

Grady R.B. (1997) Successful software process improvement. Prentice-Hall New
Jersey, USA

Groth L. (1999) Future organizational design: the scope for the IT-based enterprise,
John Wiley and Sons, Chichester, UK

Humphrey W.S., Snyder T., Willis R. (1991) Sofiware process improvement at
Hughes Aircraft. IEEE Software, 8:11-23

Juran J..M., Godfrey A.B. (Eds.) (1999) Juran’s quality handbook. McGraw-Hill, New
York, USA

Kano N., Nobuhiro S., Takahashi F., Tsuji S. (1984) Attractive quality and must be
quality. Quality magazine, 14: 39-48

116

29.

30.

3L

32.

33.
34.

35.
36.

37.
38.

39.

40.
41.

42,

43.

45.

46.

47.

48.

49.

50,

Dyba

Klein HK., Myers M.D. (1999) A set of principles for conducting and evaluating:
interpretive field studies in information systems. MIS quarterly, 23: 67-93

Kolb D.A. (1984) Experiential learning: experience as the source of learning and
development. Prentice-Hall, Englewood Cliffs, New Jersey USA

Kotler P. (1988) Marketing management: analysis, planning, implementation, and
control. Prentice-Hall, Englewood Cliffs, New Jersey, USA

Krasner H. (1999) The payoff for software process improvement: what it is and how to
get it. In: El Emam, K., Madhavji, N.H. (Eds.), Elements of software process
assessment and improvement, IEEE computer society press, Los Alamitos, CA, USA,
pp. 151-176

Lant T.K., Mezias S.J. (1992) An organizational learning model of convergence and
reorientation. Organization science, 3: 47-71

Lave J., Wenger E. (1991) Situated learning: legitimate peripheral participation.
Cambridge University Press, Cambridge, UK

Lewin K. (1951) Field theory in social sciences. Harper and Row, New York, USA
Lynch R.L., Cross K.C. (1991) Measure up! Yardstick for continuous improvement.
Blackwell Business, Cambridge, MA, USA

March J.G., Sutton R.I. (1997) Organizational performance as a dependent variable.
Organization science, 8: 698-706

Mathiassen L., Stage J. (1992) The principle of limited reduction in software design.
Information technology and people, 6: 171-185

Mehner T. (1999) Siemens process assessment approach In: Messnarz R., Tully C.
(Eds.), Better software practice for business benefit: principles and experience, IEEE
Computer society press, Los Alamitos, CA, USA, pp. 199-212

Mintzberg H. (1989) Mintzberg on management: inside our strange world of
organizations. The free press, New York, USA

Nonaka I., Konno N. (1998) The concept of "Ba": building a foundation for knowledge
creation. California management review, 40: 40-54

Nonaka 1., Takeuchi H. (1995) The knowledge-creating company: how Japanese
companies create the dynamics of innovation. Oxford university press, New York,
USA

Piaget J. (1970) Genetic epistemology. Columbia university press New York, USA
Rooijmans J., Aerts H., van Genuchten M. (1996) Software quality in consumer
electronics products. IEEE Software, 13: 55-64

Ryle G. (1979) Improvisation. In: Ryle G. (Ed.), On thinking, Blackwell, London, UK,
pp. 121-130

Sanders M. (Ed.) (1998) The SPIRE handbook: better, faster, cheaper software
development in small organizations. Centre for Software Engineering Ltd., Dublin,
Ireland

Schén D.A. (1983) The reflective practitioner: how professionals. Think in action,
Basic Books, New York, USA

Scupin R. (1997) The KJ method: a technique for analyzing data derived from
Japanese ethnology. Human organization, 56: 233-237

Senge P.M. (1990) The fifth discipline: the art and practice of the learning
organization, Doubleday, New York, USA

Simon_H.A. (1991) Bounded. rationality and organizational learning. Organization
science, 2: 125-134

5 A Dynamic Model of Software Engineering Knowledge Creation 117

51. Tushman M.L., Romanelli E. (1985) Organizational evolution: a metamorphosis
model of convergence and reorientation. In: Cummings L.L., Staw B.M. (Eds.),
Research in organizational behavior, JAI Press, Greenwich, Connecticut, 7: 171-222

52. Tyre M.J.,, von Hippel E. (1997) The situated nature of adaptive learning in
organizations. Organization science, 8: 71-83

53. van de Ven A.H., Ferry D.L. (1980) Measuring and assessing organization, John Wiley
and Sons, New York, USA

54. van der Bent J., Paauwe J., Williams R. (1999) Organizational learning: an exploration
of organizational memory and its role in organizational change processes. Journal of
organizational change management, 12: 377-404

55. van Solingen R., Berghout E. (1999) The Goal/Question/Metric method: a practical
guide for quality improvement of software development. McGraw-Hill, London, UK

56. von Krogh G., Grand S. (2000) Justification in knowledge creation: dominant logic in
management discourses. In von Krogh G., Nonaka I., Nishiguchi, T. (Eds.),
Knowledge creation: a source of value, MacMillan, London, UK, pp. 13-35

57. von Krogh G., Ichijo K., Nonaka I. (2000) Enabling knowledge creation: how to
unlock the mystery of tacit knowledge and release the power of innovation. Oxford
university press, New York, USA

58. Walsh J.P., Ungson G.D. (1991) Organizational memory. Academy of management
review, 16: 57-91 .

59. Weick K.E. (1979) The social psychology of organizing. Addison-Wesley, Reading,
MA, USA

60. Weick K.E. (1995) Sense-making in organizations. Sage Publications, California, USA

61. Wenger E. (1998) Communities of practice: learning, meaning, and identity.
Cambridge university press, Cambridge, UK

62. Winograd T.A., Flores F. (1986) Understanding computers and cognition: a new
foundation for design, reading. Addison-Wesley, MA, USA

Author Biography

Dr. Tore Dyb4 is a senior scientist at Department of Computer Science at SINTEF
and a visiting research scientist at the SIMULA Research Laboratory. He received
his M.Sc. degree in computer science and telematics from the Norwegian Institute
of Technology in 1986 and his Ph.D. in computer science from the Norwegian
University of Science and Technology in 2001. Dr. Dyba worked as a consultant
for eight years both in Norway and in Saudi Arabia before he joined SINTEF in
1994. He has been responsible for and worked in several large national and
international projects concerning software and business process improvement,
organizational learning and knowledge management, software quality assurance
and measurement, and empirical software engineering. Dr. Dyb4 is the author of
several publications appearing in international journals and conference
proceedings in the field of software engineering.

6 Evaluating an Approach to Sharing Software
Engineering Knowledge to Facilitate Learning

Gary R. Oliver, John D’Ambra and Christine Van Toorn

Abstract: This chapter explores learning from repositories of software
engineering knowledge— stores of practice created through knowledge sharing
over time. Knowledge sharing is acknowledged as one of the most important
processes to enhance organizational knowledge. A general model describing how
the unique aspects of a software engineering environment shape knowledge
sharing is introduced; this framework is known as software engineering
knowledge sharing. In addition, CORONET, a system that provides functionality
for knowledge sharing and for lifelong learning of software engineers in an
organizational context, is briefly addressed. CORONET is a Web-based
environment and incorporates knowledge management as an integral component.
This chapter seeks to associate the two by fitting CORONET into the software
engineering knowledge-sharing framework. We believe that the proposed model is
useful for small projects, even those with different characteristics, and has the
potential to be extended and refined by other researchers and practitioners.

Keywords: CORONET system, Intellectual capital, Knowledge sharing,
Organizational learning, SEKS, Software engineering

6.1 Introduction

The Corporate Software Engineering Knowledge Network for Improved Training
of the Workforce (CORONET), is designed to support life long learning of
software engineers in an organizational context via the World Wide Web. The
European research project is the focus in this paper for learning in software
engineering (SE). Learning occurs through sharing and utilization of knowledge
accessed from software engineering repositories. Readers seeking details of the
CORONET approach to knowledge management (KM) are directed to Part 3 of
this volume, where a full description is provided.

In this chapter we demonstrate that a knowledge-sharing perspective highlights
important relationships between individuals and team members concerning
software engineering and organizational learning, which has many overlooked
dimensions. We discuss the general relationship between software engineering and
KM with reference to the knowledge economy in this section, thereby establishing
the importance of knowledge sharing. In Sect. 6.2, a model is proposed with the
dual capability for knowledge sharing and organizational learning. This model is
then tested against the CORONET system in Sect. 6.3. The paper concludes with a
discussion of the fit between the software engineering knowledge sharing (SEKS)

120 Oliver, D’Ambra and Toorn

model and CORONET. Finally, some limitations of the paper and opportunities
for further research in KM are presented.

6.1.1 Theoretical Foundations of Knowledge Management in Software
Engineering

In order to maximize organizational performance, KM embraces activities aimed
at capturing and reusing experience. In a knowledge economy [17] “the only thing
that increasingly will matter in national as well as international economics is
management’s performance in making knowledge productive” [13]. Software
engineering and KM are related [27] through their common recognition that
competencies to enable organizational capabilities are “scarce resources” [29]. In
an environment where strategy is likely to amalgamate intentions and eventualities
[21], KM has the capability of contributing to organizational success. This will be
attained via maximizing learning opportunities by individuals and within teams
through a sharing perspective. Thus KM is the catalyst allowing connections to be
made between the experiences and perspectives of software engineers with events
requiring an innovative or creative response.

6.1.2 Knowledge and the Potential of Knowledge Management in Software
Engineering Processes

From the theoretical foundations of KM, applications supporting organizations
and the individuals within them are now emerging. Typically these applications
serve to store and retrieve knowledge, codify knowledge and encourage and
ensure knowledge sharing in an organizational context. It is through the use of
such applications that organizations compete to ensure their position and success
in the marketplace. SE has long recognized such initiatives, the Software
Experience Factory [4] being one example of making experience available to other
individuals in an organizational context [16]. Recent initiatives include project
post mortems [5] to assist experience sharing for improvement. Traditional KM
activities supporting SE include document management, identification of expertise
and reuse of software or components [28]. Both organizational and external
standards form an important element of the SE knowledge repository. Thus KM
provides an implicit guide for determining whether or not software needs to be
developed from scratch and how available technology can be harnessed.

6.1.3 Knowledge Management Applications in Software Engineering

The need for evaluation of knowledge management systems is more salient on
considering the expected roles and outcomes of knowledge management
applications within organizational contexts. All new information technologies
change human behavior within both the organizational and individual domains {7].

6 Evaluating an Approach to Sharing Software Engineering 121

These changes in behavior should realize outcomes that justify investment in new
information technologies. Therefore the measurement and evaluation of these
changes and the match between these changes and expected outcomes must be
undertaken. Evaluation of knowledge management systems should be undertaken
on two levels: the efficacy of technologies implementing knowledge management
theories and principles, and the evaluation of technologies in the implementation
context.

6.1.4 Software Engineering, Knowledge Assets and People

Among the most important knowledge assets are the stored repositories of
experience and knowledge available to an organization, usually after capture and
codification. According to Wiig, the components include “experience, expertise,
proficiency, competency, skills, capabilities and embedded knowledge of all
kinds” [35]. People are an essential component of the software engineering
discipline, making a significant contribution to the organization. This is the
intellectual capital view advocated by Edvinsson [15] and Sveiby [31]. Through
emphasis on competence and knowledge, distinctive capabilities emerge from
learning since it creates value from the intangible assets of an organization. Thus
learning and knowledge sharing are often closely intertwined.

6.1.5 Reframing Knowledge Sharing

Many discussions concerning knowledge sharing depend upon definitional
distinctions between knowledge and information. A distinction must therefore be
drawn between KM and information management. Information management is
characterized by the use of preplanned responses or techniques to generate new
insights. Knowledge creation and flow are factors in codification and abstraction.
The two reinforce each other with both functional and dynamic relationships. This
view is an elaboration of the distinction between explicit and tacit knowledge as
drawn by Polanyi [26]. Influential thinkers in KM, notably Nonaka [22], argue for
knowledge conversion (socialization, externalization, combination and
internalization) overlaid with the knowledge spiral to emphasize that knowledge
creation may begin at any of the four modes. However, it is purported that
“organizational knowledge creation usually starts with sharing tacit knowledge,
which roughly corresponds to socialization [so] the key is to develop methods for
sharing it and amplifying it” [23]. Challenges are offered by the resource view and
the organizational learning view. Knowledge possessed by individuals may be
transformed into routine practices through initiatives of individuals themselves.
Forms of organization learning (single-loop, double-loop and deutero-loop) [2] are
associated with cognitive and behavioral change. While imperfect performance
may occur, learning still takes place and thus an asset evolves [10, 11]. In turn,
this asset is capable of being shared and is of value to the organization.

122 Oliver, D’Ambra and Toorn

6.2 Knowledge-Sharing Models

While there is no generic agreement on the form of the knowledge cycle, the
essential components comprise capture, dissemination and use, with the common
underlying aspect being the sharing of knowledge. The direct impact is upon
processes by which knowledge is mobilized, conserved, leveraged and embraced
within organizations. More research is required in the areas of knowledge
creation, diffusion and use within and across organizations and cultures, and in
identifying the nature of relationships with customers, suppliers and other
stakeholders. In this section the visual model is first presented, then the constructs
within the model are discussed and the operation of the overall model is examined.

6.2.1 Software Engineering Knowledge Sharing Model

The SEKS model of knowledge sharing demonstrates how the unique aspects of a
software engineering environment shape knowledge sharing. In essence, the
model recognizes the interaction between individuals and within teams. It is the
product of three factors: motivation to discover knowledge, supportive culture and
prior experience. Associated with these factors is the desire and opportunity to
learn. The model depicted in Fig. 6.1 can be read as a series of processes with
inputs and outputs, which are discussed in the following subsections.

6.2.1.1 Desire and Opportunity to Learn

Desire and opportunity to learn is an overarching factor in SEKS; generally,
individuals learn by themselves or together. A number of recent initiatives in
software development (pair programming and extreme programming) affirm the
value of situating learning between solo effort and large teams. Traditional
organizational learning theory [2] confirms the benefit of cognitive change,
combined with behavioral change. Disseminating knowledge is insufficient for
ensuring that it can be used productively. Much knowledge is fragmented [9],
therefore integration or contextualization contributes to understanding. Traditional
organizational methods for providing opportunities to learn, such as job rotation
and frequent meetings, are potentially disruptive to both the organization and the
individual. KM approaches include knowledge sponsors and pinpointing
knowledge advisors.

In the knowledge economy it is inevitable that the tacit knowledge possessed
by employees can be lost through career-based shifts in employment. While
controls may be introduced to protect the loss of strategic knowledge to
competitors, a KM approach seeks active sharing. Employees conscious of their
value may be assisted by cultural support, perhaps together with emphasis on
personaltransfer rather than.computer-mediated [19, 32] transfer.

6 Evaluating an Approach to Sharing Software Engineering 123

Supportive culture
Opportunity to learn N (Organization level

and Peer level)

I

.. Software
. Motivation to .
Desire to learn . Engineering
discover kowledge .
Knowledge sharing
Prior experience

Fig. 6.1. Software engineering knowledge-sharing (SEKS) model

6.2.1.2 Supportive Culture

A supportive culture may emanate from a number of sources, the organizational
culture, peer culture and the recipient’s environment. Within an organizational
context, the first two factors are crucial and may vary even in different geographic
locations. There is considerable theoretical and empirical research that places
culture ahead of structures and systems [33]. By viewing culture as the context, a
connection is made with the informal, fluid aspects of interpersonal relationships.
Some studies [3, 30, 33] identify the benefit of using a community to structure
knowledge and thus introduce a vertical dimension to the organizational levels.
Information-seeking behavior [8], together with affective responses, is one
characteristic of a community of practice. There is an expectation that while some
information will be redundant, it may still have value in building confidence [23].
The use of best practices is regarded as a related form of learning [1, 20]. This
may unfortunately be inhibited through the ignorance of better practices and the
difficulty in transferring perceived best practices to a new operating environment
[30]. For this reason, the informal grouping of people into networks where
practice can be shared is an important facilitator of learning and is less likely to

124 Oliver, D’Ambra and Toorn

encounter disruptive influences [19]. In addition, there is a connection with
competencies, that is, in “learning how to learn” one accepts uncertainty in the
organizational environment. This view of culture is significantly different from the
culture-as-tools view since it avoids privileging technology as a knowledge
discovery motivator.

6.2.1.3 Motivation to Discover Knowledge

Motivation to discover knowledge is an impetus to selectively form cooperative
arrangements. Individuals make decisions about knowledge sharing based on their
view of their own motives and those around them. One form of motivation is that
of organizational learning, although reward is also significant. Knowledge transfer
has several rewards for the recipient when it can be leveraged [18]. Social
psychology indicates that the motivations themselves are manifold, including:
enhanced personal reputation, direct task benefit and recognition of the
contribution as a performance factor. Managing knowledge strategically can
enhance organizational capabilities and generate new processes. Organizational
recognition and reward systems provide positive support for knowledge sharing.
Paradoxically, sharing knowledge may create the situation where the employee is
both recognized for the worth of their tacit knowledge, while being targeted by
competitors. Organizations in partnership or alliance may be able to overcome this
effect through moving toward similar structures and processes. On the other hand,
wholly technological solutions may be perceived as disembodied asset repositories
and left impoverished. Of course, it must be remembered that there is a close
relationship with culture and prior experience.

Table 6.1. Examples of artifacts demonstrating prior relationships

Source Category Example

Organization documentation Explici Guidelines, handbooks,
(Formal or informal) procedure manuals
Results of empirical work Explicit Metrics for estimation
Published evaluations of experience ~ Explicit Lessons learned
Publicly available information Explicit IEEE standards
Specialist information Explicit f:)g\évsgle(sengineering

6 Evaluating an Approach to Sharing Software Engineering 125

6.2.1.4 Prior Experience

Prior experience in SEKS concerns the extent to which the prior relationship in
knowledge sharing facilitates cooperation by reducing uncertainty and
accelerating productivity. The lessons learnt from knowledge sharing may well
affect future knowledge sharing. In such circumstances, the experience itself is
transformed into useful knowledge, the existence of prior artifacts and
demonstrates the existence of prior relationships. Examples of these artifacts are
included in Table 6.1.

6.2.2 Sharing Software Engineering Knowledge

The result of this software engineering knowledge-sharing process is the ability to
share knowledge without being totally conscious of the existence of the process.
By internalizing the principles associated with the activity or event, it reinforces
awareness of knowledge and can contribute to the desire to learn, thus reopening
the cycle [6]. Our discussion now moves from the theoretical foundations of the
knowledge-sharing model to assessing its usefulness in the context of the
CORONET software engineering system.

6.3 Applying SEKS to CORONET

In this section, the characteristics of CORONET are outlined and an evaluation of
the efficacy of CORONET is presented. CORONET components are analyzed and
mapped to the SEKS model as presented in Sect. 6.2. In addition, some
propositions for the evaluation of CORONET in an implementation context are
provided. The impetus for applying SEKS to CORONET originated from its
reliance on learning through knowledge, which has been contributed to and
distributed in a computer-mediated environment.

6.3.1 An Overview of CORONET

CORONET is a collaboration between a consortium of member nations of the EC
and one non-European partner [12, 24, 25]. It was funded under the European
Community's Fifth Framework Program (FFP), a structure to implement the EC’s
research and development policy.

One approach to understanding the development and implementation of
CORONET-Train, is to view it as a strategic tool. Using the framework of
knowledge with strategic value suggested by Earl [14], it fulfils all four aspects of
strategic knowledge:

126 Oliver, D’Ambra and Toorn

e Knowledge system: A hypermedia learning environment incorporating
knowledge sharing to suppott the training/learning needs of soﬂware engineers
in an organizational context.

e Knowledge network: A corporate knowledge network, provides multiple
learning environments and utilizes an infrastructure connecting experts and
novices to support on-demand, career-long training in the domain of software
engineering with group interaction.

o Learning organizations: A common reference model is developed, including
the process of courseware development, collaborative training with group
interaction and knowledge sharing via corporate knowledge networks. Different
industrial environments validate the new training approach, and organizational
and individual learning are integrated in the one platform. The benefits are
demonstrated based on empirical data gathered during industrial validation.

o Knowledge workers: The target group is software engineers. Addressing
training and learning needs as they occur in the workplace— learning on
demand — across all organizational levels.

These four dimensions support the main objective of the CORONET system, to
improve the efficiency of Web-based training of employees in the area of software
engineering, and to ensure knowledge sharing.

Fig. 6.2. Interrelationship of key components of CORONET [24]

CORONET-Train encourages knowledge sharing in two main capabilities.
First, by harnessing the expertise on software quality within corporate networks.
This is achieved by integrating all the hard and soft knowledge stored within the
tegrated learning environment. Second,

6 Evaluating an Approach to Sharing Software Engineering 127

does CORONET retrieve knowledge from the corporate knowledge base, it also
maintains this knowledge base. The components of this integrated learning
environment are illustrated in Fig. 6.2.

These components of CORONET can be mapped to Earl’s four components

[14]:

Methodology supports the learning organization: The approach relies on
identifying roles within the organization’s sofiware engineering domain. Based
on these roles, scenarios of learning have been developed. These range from
highly structured learning tasks to highly unstructured learning tasks. These
scenarios represent learning needs that participants will encounter within their
work-based context. CORONET will then support each one of these scenarios
(learning needs/tasks) by connecting users to corporate knowledge networks via
pedagogically sound learning processes.

Infrastructure connects users to the system: The infrastructure will provide the
multi-media learning environment to support on-the-job learning needs. This
environment will support the integration of human networks and tacit
knowledge in the corporate knowledge networks and will support knowledge
usage by new forms of individual knowledge visualization. Fig. 6.3 provides an
overview of the CORONET infrastructure, showing the relationship between
the knowledge base and the courseware from which training is selected.

X

>

Collaborative
Environments
Training nowledge
Platform Tools
Courseware nowledge
Base Base
CORONET
Infrastructure T

e
Enterprise
Resources

Fig. 6.3. Infrastructure of CORONET [24]

Hypermedia courseware facilitates involvement of knowledge employees:
Collaboration is one-to-one, one-to-many and many-to-many didactics through
communication media.

128 Oliver, D’Ambra and Toorn

o Evaluation is on-going to assess learning within a corporate environment: In
order to measure the outcome of this objective, on-going evaluation is required.
This evaluation will take place within the context of the learning scenarios and
the processes used. The generic processes are resource retrieval, the value of
the resource in the learning context, facilitating communication and
contributing to corporate knowledge.

In summary, knowledge sharing within CORONET is facilitated by features of the
system and reinforced by the learning gains of the participants.

6.3.2 Evaluation of CORONET

This section evaluates the CORONET approach to KM outlined in Sect. 6.3.1,
with the SEKS model outlined in Sect. 6.2. Previously illustrated in Fig. 6.1, the
SEKS model recognizes the unique processes of a software engineering
environment and the requirements for knowledge sharing. In essence, the model
recognizes that the interaction between individuals and within teams is the product
of three factors: motivation to discover knowledge, a supportive culture and prior
experience. Associated with these factors is the desire and opportunity to learn.
We will now explore how well these requirements are reflected in CORONET.
The methodology for this exploration considers the level-of-fit of each of the
components of CORONET to the SEKS model. This is achieved by considering
the components of KM within the implementation platform of CORONET-Train
(and associated software, including WBT-Master), and the efficacy of each of
these components to the referential model, SEKS. For consistency, the material on
CORONET is sourced from Part 3 in this book.

6.3.2.1 Desire to Learn

Desire to learn is very much an intrinsic motivation of the individual, although
there is no clear view on the role of external inducements and whether they will
return a positive or negative value. However, as software engineering undergoes
continuous change in terms of tools and application domains, there is a need to
provide opportunities for learning and relearning in many different contexts.
CORONET will not only connect individuals with formal learning resources, but
will also support mentoring of individuals by experts with given domains of
knowledge. The innovative characteristics of CORONET-Train can be
summarized as follows:

¢ Offers a long-term approach to learning by providing a career-path to subject
matter expertise (systematic development of competencies)

o Focuses on Web-based collaboration between learners on different competence
levels, and uses corporate knowledge

6 Evaluating an Approach to Sharing Software Engineering 129

In terms of the model, the greatest strength of CORONET is that the desire to
learn is itself encouraged by having a system that is capable of satisfying and
further igniting the desire (provided there is access to the Web-based learning
environment).

6.3.2.2 Opportunities to Learn

Learning is provided on-demand as software engineers become aware of their own
learning needs, recognizing the different contexts in which learning should take
place and the modes of interaction that can take place to satisfy that learning need.
These include:

¢ Interaction with formal resources (self-learning)

o Interaction with a learning process supported by a tutor (dyadic learning)

e A supported network approach to learning in which individuals can contact
content experts with specific domain expertise (collaborative learning)

A comprehensive suite of methods is available:

e Five learning methods (case-based learning, theme-based learning, knowledge
sharing, Web-based learning and Web-based tutoring)

e Three knowledge transfer methods (training, tutoring and mentoring)

o Two knowledge-based engineering methods (authoring courseware and
structuring knowledge)

It is important to note that these opportunities exist across all organizational levels
(from operational staff to senior management).

6.3.2.3 Prior Experience in Knowledge Sharing

Prior experience in using CORONET is captured, stored and made available as
required. Individuals with prior experience are also made available to learners
through the infrastructure supporting dyadic and collaborative learning. The
knowledge card is used to track this information.

The knowledge card is more than a means of indexing knowledge for storage
and retrieval in the repository. It does more than just serve to provide an
algorithm for the codification of knowledge its primary and major role is to
facilitate the sharing of knowledge. This is achieved by the provision of “learning
maps” to link a wide variety of learning resources, tutors and experts. For
example, a “Relational Data Model” learning course may be associated with the
“Relational Data Model” knowledge card. In turn, this knowledge card could also
be associated with other learning units, learning goals, discussion forums,
documents, and so on, thereby establishing a learning map. In addition, WBT-
Mastersregardssusersrasylearningsresources or peer helpers - which may also be
associated with a knowledge card, thus adding a further dimension and value to
the learning map.

130 Oliver, D’Ambra and Toorn

The creation of the learning map and the accumulation and addition of
resources of value enables the use of knowledge cards to support the three modes
of learning: self-learning, dyadic and collaborative learning.

Research has shown that capturing prior experience is integral to knowledge
sharing, since all relevant resources can be made available to the learner. By
providing road maps of knowledge domains, connecting learners with peers and
experts, and consolidating all related resources through the one entity, knowledge
cards are an integral component in the sharing of knowledge.

6.3.2.4 Supportive Culture

Being supported in learning and being provided with adequate and quality
resources are fundamental to learning outcomes. The CORONET infrastructure
aims to support the “networked organization”, connecting all software engineers
without regard to their role or level of expertise.

The learning methodology CORONET-Train promotes the integration of Web-
based training with collaborative learning in the workplace (work-based learning),
and provides a link to KM. It introduces the idea of reciprocal learning into
software organizations, since both of these events having implications for
organizational culture. They signal the value placed on learning through software
engineering knowledge sharing by management.

6.3.3 Software Engineering Knowledge Sharing

Knowledge sharing is facilitated via the learning methodology supported by
CORONET. On considering the artifacts used in Sect. 6.3 to demonstrate prior
experience, (organizational documentation, results of empirical work, published
evaluation of experience, publicly available information and specialist
information), it may be argued that CORONET goes beyond these boundaries.
Not only does it seek to link these artifacts, but also to link the tacit knowledge of
domain experts within its scope of functionality. CORONET recognizes the many
artifacts that contain and represent knowledge from previous relationships.
Essentially, these artifacts are managed through a hierarchical structure of
definition, and relationships. These are defined by the content-structuring model,
and superimposed by the logical and semantic structures of the WBT-Master.
Access to these artifacts can be via a variety of tools. These may be either system
tools, for logical and semantic access, or content management tools, to allow
browsing locally or by means of an FTP client.

In summary, the SEKS model of knowledge sharing presented in Sect. 6.2, can
be seen as useful in its own right. It can also be applied to an independently
developed knowledge-sharing tool.

6 Evaluating an Approach to Sharing Software Engineering 131

6.4 Conclusion and Implications for Further Research

This chapter has established a relationship between KM and knowledge sharing,
using the SEKS model as the framework to evaluate CORONET. This system is
both innovative and extensive in meeting the learning needs of professionals
working in the software engineering domain. From the analysis presented here, the
KM components map well to the constructs of the SEKS model, knowledge
representing a good fit. Through a comparison and analysis of the CORONET
components to the SEKS model, it appears that CORONET more than adequately
implements the theoretical foundations of KM.

The introduction of any new technology in the work place causes changes in
human behavior. According to the SEKS model, software engineering knowledge
sharing occurs in the context of individual and organizational learning. Although
this is a complex user task, the twin factors of a supportive culture and motivation
will produce a learning behavior. The detailed discussion of CORONET
demonstrates that in this case, learning and knowledge sharing occurred. This
ranged from short-term problem solving to long-term competency improvement.
Collaborative problem solving was also encouraged. Since CORONET is a
relatively small project, this suggests that SEKS is useful for small projects and
can be used, extended and refined by other researchers and practitioners in
projects with different characteristics.

In order to determine how well the CORONET system supports knowledge
sharing and learning in the workplace, it needs to be further evaluated in its
implementation environment. From a research perspective, it is important to know
how well the SEKS model fits CORONET, so that specific improvement areas can
be identified in the model or changes in the scope of the system can be suggested.
From a utility point of view, it is important to know how effective the SEKS
model is in supporting organizational learning. However, this evaluation goal can
only be realized by observing and evaluating the learning process in the
implementation environment. This falls outside the scope of this paper and is an
avenue of future investigation.

Software engineering knowledge sharing can be judged against the two
prerequisites:

o The learners accept and use CORONET-Train
e The competence level of the learners increases through the use of CORONET

Adult learning is a process that is embedded in individuals’ behavior within
their various life contexts. As a tool, CORONET aims to support the learning of
software professionals within their work environments. Sufficient time must be
allowed for users to integrate the CORONET tool within their learning and
information seeking behavior. The SEKS model is unbounded by time and thus
lacks an empirical base. On the other hand, as a training course, the duration and
sequence is integral to its own learning programme. This has been demonstrated in
the detailed discussion of CORONET in Part 3 of this book.

132 Oliver, D’Ambra and Toorn

The approach to KM taken in this chapter requires direct connection be made
between people and the benefits to be gained from the organizational learning that
occurs. From the detailed discussion in Sect. 6.3 it can be concluded that:

o Learners apply the knowledge they acquired through CORONET usage in their
work.

e CORONET supports Web-based collaborative learning.

e Web-based training with CORONET is at least as effective as classroom
training.

A knowledge-sharing approach to CORONET using the SEKS model should be
useful to practitioners who are concerned with the efficacy of KM approaches as
implemented in software systems. In addition, it should also provide some insight
on how these software systems may be evaluated post-implementation.

Acknowledgements

The participation of The University of New South Wales in the CORONET
project (EU-Project CORONET/Grant IST-1999-11634) was made possible by a
grant from the Australian Federal Government Department of Industry, Science
and Resources. We also wish to thank the three referees for their comments and
suggestions, which guided the reformulation of the paper in its current version.

References

1. Ahmed P.K, Kok LK., Loh A.Y.E. (2002) Learning through knowledge management.
Butterworth-Heinemann Boston, USA

2. Argyris C., Schon D. (1978) Organizational learning: a theory of action perspective.
Addison-Wesley, MA, USA

3. Baird L., Henderson J.C. (2001) The knowledge engine: how to create fast cycles of
knowledge-to-performance and performance-to-knowledge. Berret-Koehler, San
Francisco, CA, USA

4. Basili VR, Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sloan management review, 37: 56-64

5. Birk A; Torgeir D., Stalhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19: 43-45

6. Boisot M. (1998) Knowledge assets. Oxford university press, New York, USA

7. Buckland M. (1994) Information as thing. In: Buckland M., (Ed.) Information and
information systems. Praeger Westport, Connecticut, USA, pp. 43-54

8. Choo C.W. (1998) The knowing organization: how organizations use information to
construct meaning, create knowledge and make decisions. Oxford university press,
New York, USA

9. Crossan MM,, Inkpen A.C. (1992) Believing is seeing: an explanation of the
organizational-learning,concept-and-evidence from the case of joint venture learning.
Working paper, Western Business School, University of Western Ontario, Canada

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

6 Evaluating an Approach to Sharing Software Engineering 133

DiBella A.J., Nevis E.C. (1998) How organizations learn: an integrated strategy for
building learning capability. Jossey-Bass, San Francisco, USA

Dixon N. (1994) The organizational learning cycle: how we can learn collectively.
McGraw-Hill, London, UK

D'Ambra J., Jeffery R. (2001) CORONET: An Australian software engineering
experience in collaborative research with the European community. In: Proceedings of
the Australian software engineering conference, Canberra, Australia, pp. 255-261
Drucker P. (1998) From capitalism to knowledge society. In: Neef D. (Ed.) The
knowledge economy. Butterworth-Heinemann, Boston, pp. 15-34

Earl M. (1994) Knowledge as strategy: reflections on Skandia International and
Shorko films. In: Ciborra C., Jelassi T. (Eds.), Strategic information systems: A
European perspective. John Wiley and Sons, UK

Edvinsson L., Malone M.S (1997) Intellectual capital: the proven way to establish your
company’s real value by measuring its hidden brainpower. Piatkus, London, UK
Feldmann R.L., Tautz C. (1998) Improving best practices through explicit
documentation of experience about sofiware engineering technologies. In: Proceedings
of the international software process improvement conference in education and
research, UK, pp. 10-11

Grant R. M (2000) Shifts in the world economy: the drivers of knowledge
management. In: Despres C., Chauvel D. (Eds.), Knowledge horizons: the present and
promise of knowledge management. Butterworth-Heinemann, London, UK, pp. 27-53
Hamel G. (1991) Competition for competence and interpartner learning within
international alliances. Strategic management journal, 12: 8§3-103

Kollock P., Smith M. (1996) Managing the virtual commons: cooperation and conflict
in computer communities. In: Herring S. (Ed.), Computer-mediated communication:
linguistic, social and cross-cultural perspectives. John Benjamins Publishing
Company, Amsterdam, The Netherlands, pp. 109-128

Marquardt M.J (1996) Building the learning organization. McGraw-Hill, New York
Mintzberg H. 1994) The rise and fall of strategic planning. Prentice Hall, London, UK
Nonaka 1., Takeuchi H. (1995) The knowledge creating company: how Japanese
companies create the dynamics of innovation. Oxford university press, UK

Nonaka 1. (1998) The knowledge-creating company. Harvard business review:
Knowledge management. Harvard business school press, Boston, MA, USA, pp 25-40.
Pfahl D., Ankasaputra N., Differding C., Ruhe G. (2001) CORONET-Train: a
methodology for Web-based collaborative learning in software organizations. In:
Lecture notes in computer science, Springer, Berlin Heidelberg London, 2176: 37-51
Pfahl D., Trapp S., de Teresa J., Stupperich M., Rathert N., Molu R., Sherbakov N.,
D'Ambra J., (2002) CORONET Final report. Fraunhofer IESE, technical report no.
045.02/E.

Polanyi K. (1958) Personal knowledge. University of Chicago press, Chicago, USA
Robillard PN. (1999) The role of knowledge in software development.
Communications of the ACM, 42: 87-92

Rus 1. Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

Schneider K.; Hunnis J-Pe von, Basili V. R (2002) Experience in implementing a
learning software organization. IEEE Software: 19: 46-49

Szulanski G. (1996) Exploring internal stickiness: impediments to the transfer of best
practice within the firm. Strategic management journal, 17: 27-43

134 Oliver, D’Ambra and Toorn

31. Sveiby K.-E. (1997) The new organizational wealth: Managing and measuring
knowledge-based assets. Berrett-Koehler publishers, San Francisco, CA, USA

32. Weick K. (1997) Cosmos versus Chaos: sense and nonsense in electronic contexts. In:
Prusak, L. (Ed) Knowledge in organizations. Butterworth-Heinemann, Boston, USA,
pp- 213-226.

33. Wenger E (1996) Communities of practice: the social fabric of a learning organization.
Healthcare forum journal, 39: 20-26

34. Wiig K. (1993) Knowledge management: foundations. Schema press, Arlington,
Texas, USA

Author Biography

Gary R. Oliver is the Chief Information Officer at the Australian Graduate School
of Management, which is a school of both The University of New South Wales
and the University of Sydney. Prior to joining the school in 2002, he completed
over 20 years managing all aspects of computing, in private enterprise and
government, at state and international levels, including as a chief information
officer. Mr. Oliver’s current research focus concerns both practice and theory: the
behavior of people when faced with situations where knowledge sharing is
opportune and necessary for effective performance, and the part played by
knowledge frameworks in understanding and quantifying all the dimensions of
knowledge sharing.

Dr. John D’Ambra is a senior lecturer in the School of Information Systems,
Technology and Management at UNSW, Australia. Dr. D’ Ambra has considerable
commercial experience in the area of information technology. His research
interests include the study of computer-mediated communication within
organizations and evaluation of the World Wide Web as an information resource.
Dr. D’Ambra is also a member of the Centre for Advanced Software Engineering
Research (CAESER) where he has worked on several projects, including the
CORONET project.

Christine Van Toorn is a lecturer at the School of Information Systems,
Technology and Management, University of New South Wales, Australia. She has
extensive industry experience in the fields of information systems and information
technology. Her research interests lie in the areas of knowledge management and
decision support, with particular emphasis in relation to human computer
interaction. Ms. Van Toorn’s commercial background is diverse, and she has
considerable experience across a wide variety of industries. She is the Director of
the Business Information Technology and Information Systems and Management
Co-op Scholarship Programs at UNSW.

7 Eliciting and Maintaining Knowledge for
Requirements Evolution

Allen H. Dutoit and Barbara Paech

Abstract: Two of the biggest challenges in knowledge management are making
tacit knowledge explicit and keeping explicit knowledge up-to-date. In this
chapter, we focus on how to manage knowledge about a software system with
respect to change, so that changes can be evaluated and realized with less effort
and without reducing quality. We use a rationale-based approach for making
explicit change knowledge and the knowledge activities that need to occur during
requirements specification and evolution. The knowledge activities keep the
requirements and the change knowledge up-to-date. While these issues have been
examined to some extent independently in the requirements, change, and
knowledge management communities, we focus on the integration of methods
from all three communities. The goal of the chapter is to illustrate the synergy
effects and resulting benefits that occur when interleaving knowledge and
requirements activities.

Keywords: Requirements evolution, Knowledge management, Rationale,
Traceability, QOC, Use case

7.1 Introduction

Knowledge management (KM) in software engineering aims at decreasing time
and cost and increasing quality by supporting decision making [25]. There are
many different kinds of knowledge and many different knowledge activities that
could be useful for this purpose. All of them face two major challenges, one well
known from knowledge management, the other from software development;

o Making tacit knowledge explicit: KM “focuses on the individual as a customer
of knowledge and as the bearer and provider of important knowledge that could
systematically be shared throughout an organization” [25]. Some of this
knowledge is made explicit during every day development activities, for
example, in the form of process and system models, templates, and documents.
Some of this knowledge, however, remains tacit, as it is difficult to express and
often depends much on beliefs, perspectives, and values. Examples of tacit
knowledge include crafts and skills, which can take years of apprenticeship to
transmit, knowledge about an organizations culture and procedures, necessary
for individuals to effectively collaborate with their colleagues, and knowledge
distributed among many.individuals.and geographical locations and not owned

136 Dutoit and Paech

by any specific individual. Tacit knowledge that is not made explicit is lost
when individuals leave the organization.

e Keeping explicit knowledge up-to-date: Over 50% of the software developers’
effort is dedicated to maintenance [34, 2]. As exemplified by the European
Space Agency’s Ariane 5 flight 501 incident (1996) poor change management
lead to the reuse of an older software component without sufficient validation
against new requirements, resulting in the loss of a launcher with its payload
and severe economic losses [26]. Thus, any activity during development must
be assessed against two important criteria: how to cope with changes of the
created artifacts and how much additional effort is necessary to keep the
artifacts up-to-date.

Requirements engineering is a specific area of software engineering in which
these two challenges are especially difficult. First, requirements engineering
features the collaboration of a variety of individuals with different technical
backgrounds and in different locations. Second, requirements engineering occurs
over the entire life cycle of the system, as requirements are updated and changed.
Examples of tacit knowledge in requirements engineering include:

o Application domain knowledge not accessible to developers: For example, this
knowledge is required to understand why specific requirements are included or
excluded from the system specification.

o Solution domain knowledge not accessible to the client: For example, this
knowledge is required to estimate the trade-offs in cost and functionality when
considering a new requirement.

o Relationships between the requirements and the design of existing system: For
example, this knowledge is required to understand the impact of a requirements
change on the performance of the system.

In practice, however, making the above knowledge explicit and up-to-date is
costly and difficult. Not all knowledge about the application domain or the
solution domain is required to understand the system. Making all of it explicit
would be wasteful. Identifying the relevant parts that are critical to requirements
decisions, however, is not trivial. Also, generating and maintaining more
documentation represents an overhead for clients and developers, who may not see
a short term incentive for accurately capturing this knowledge [16]. Finally,
capturing relationships among the requirements and the design may be difficult in
the absence of sufficient application- and solution-domain knowledge.

Developers and clients deal with tacit knowledge through close collaboration.
Informal communication among developers, through hallway conversations,
apprenticeships, or peer exchanges, ensures that at least some of this knowledge is
transmitted to the right developers. However, projects increase in duration and in
the number of locations where they are conducted. Thus, such informal exchange
of knowledge is not sufficient. To ensure a coherent and cost-effective approach, a
formal framework is needed, allowing developers to classify different pieces of
knowledge, make them explicit, relate them to the requirements and the system,

7 Eliciting and Maintaining Knowledge for Requirements Evolution 137

and finally, trace dependencies as changes are considered, and keep the
knowledge up-to-date.

In this chapter, we focus on such a knowledge framework for requirements
evolution. We first sketch the different change activities that occur in the context
of requirements evolution (Sect. 7.2). We then identify the types of knowledge
required to support requirements changes and emphasize the central role of
rationale for making this knowledge explicit and coherent (Sect. 7.3). Next,
describe an example for capturing, using, and preserving change knowledge in the
context of use-case based requirements specification (Sect. 7.4). We conclude this
chapter with a summary and a discussion of the open issues in dealing with
requirements change knowledge (Sect. 7.5).

7.2 Requirements Change

Software systems typically have an extended life cycle. The US air route traffic
control system includes hardware and software components that are more than 30
years old [14]. Operating systems such as Unix or Windows XP include code that
is several decades old. Even application software and custom software developed
for a single client see many years of operation before being replaced. Such an
extended life time results in the incorporation of many changes into the system.
Some changes result from changes in the environment or in the way clients
accomplish their work. Other changes repair requirements errors and improve the
system for the client. Yet other changes increase the scale or the quality of the
system as a result of increased workload or reliability requirements. In order to
discuss the types of knowledge and knowledge activities needed to support
requirements change, we first need to characterize the system knowledge gathered
during development that is relevant for requirements change, as well as the
activities for changing this knowledge.

Figure 7.1 gives an overview of the activities involved in requirements change.
Fig. 7.2 illustrates a meta model of system and change knowledge in which the
system knowledge consists of requirements and design elements. We do not
distinguish between different levels of requirements, e.g., user and developer
requirements. For the purpose of this paper it is sufficient to distinguish functional
requirements (FR) (i.e., tasks that the clients accomplish and the system functions
for supporting them) and non-functional requirements (NFR) (i.e., properties of
the application domain and quality criteria that the system must meet). Design
models describe the system from the developers® perspective. Design models
consist of design elements, each representing decisions about how to realize the
functional and nonfunctional requirements. In this paper, we use the phrase system
model elements to generally refer to both requirements and design elements.
System elements constitute the system knowledge necessary to understand and
describe the system.

138 Dutoit and Paech

For the purpose of this chapter we do not go into detail of the requirements
activities. We just stipulate an activity for the creation of the requirements from
some problem statement, where the latter may just be in the client’s head.

Prodem
statement

Create
Specification

y

Requirements

Change
request
Execute Yy
Change Change
A decision

Change Plan
plan Change

Fig. 7.1. Change process overview (UML activity diagram, additional knowledge
management activities shown in gray)

A change is initiated by a change request. The change request represents a
formal step in which the client asks the development organization to amend the
requirements specification and, as a result, to modify the system. The change
request may include examples or alternatives of how the requirements
specification could be changed, but remains a high-level description. As a result of
a change request, the development organization needs accomplish the following
activities (see elements in white in Fig. 7.1):

o Assess change: During this activity, the developers try to understand the change
request. They generate a list of change impacts, i.e., the system model elements
that would need to change. This is used to estimate the cost of the change.
Developers identify possible conflicts with other requirements that this change
would introduce. The client may also provide additional information with the
change request to denote how critical the realization of this change is with
respect to other changes or requirements. ’

e Decide_on_change: During this activity, the client and developers decide
whether to proceed with the change or not, based on the assessment knowledge.
If they decide to realize the change, they proceed to the next two activities.

7 Eliciting and Maintaining Knowledge for Requirements Evolution 139

e Plan change: During this activity, the developers refine the change assessment
so that the work related to the change realization can be divided and assigned to
individual developers. In particular, any remaining conflicts are resolved, and a
detailed description of how the change impacts need to be revised is written.

e Execute change: During this activity, the change plan is executed and the
changes are validated.

As described in IEEE Standard 1219-1998 [16, 17], a full maintenance process
is more complex than the activities sketched above. The above activities are
sufficient, however, to study the knowledge involved in requirements changes. In
particular, we do not go into details of changing design elements or other artifacts.
We only study how relationships between requirements and design elements
influence requirements change.

In practice, the main issue during the assessment, planning, and execution of
the change is to ensure that only the intended FR and NFR of the system change
and no more. Changes are difficult to localize, assess, and realize, as the system
under consideration has usually been developed by different sets of individuals
whose assumptions are not captured in the requirements specification or the
design documentation. Hence, changes are expensive and constitute the main
source of software defects [24], degrade the architecture of the system [13], and
eventually lead to the retirement of the current system and its replacement by a
completely reengineered system. Mékérdinen [28] describes further change
management problems having to do with the effectiveness, communication,
analysis and location, traceability, decision processes, and tools for change
management.

In the following section, we discuss how additional knowledge can be captured
before the change request to support the change activities. These additional
knowledge management products and their related activities are depicted in gray
in Fig. 7.1.

7.3 Knowledge for Requirements Evolution

There are five main types of knowledge that usually remain tacit in a development
project and that can be used for supporting a change (see Fig. 7.2):

o Sensitivity characterization [32]: This knowledge includes a list of changes that
are most likely in the future. Such knowledge can be extracted with sensitivity
analysis by studying the history of similar systems, identifying worst case
scenarios, and market research. Sensitivity analysis enables developers to focus
their resources, for example, when capturing additional knowledge (rationale,
traces).

o Rationale [11]: This knowledge consists of the reasons why developers have
made the decisions_they have. Rationale (represented as Questions, Options,
Arguments, and Decisions in Fig. 7.2) helps to retain the original concept as
much as possible and reduces the effort needed by developers to re-assess

140 Dutoit and Paech

different options using a new set of requirements. Often, errors can be avoided
by not re-evaluating an option that has already been discarded. In other cases, a
change can be realized by selecting a previously discarded option that has
become more relevant.

e Pre-traceability [18]: This knowledge consists of Contributor Links between
system model elements and the stakeholders that originated them. Such
dependencies make it easier to trace the human source of each requirement, the
reasons for including (or excluding) the requirement from the specification, and
to identify conflicts among stakeholders.

e Post traceability [18]: This knowledge consists of Trace Links among
requirements elements, and design elements. Such dependencies make it easier
to identify the elements impacted by the change.

e Change impacts [4]: This knowledge includes, for a given change, its impact
and cost. Impact analysis is often only performed as a result of a change
request. Here, however, we stipulate this activity during the initial development
of the system for a set of likely future changes to assess the modifiability of the
system.

Similar knowledge types and their related activities are described in [22] and
[6]. The latter focuses more on code changes and thus also includes program
understanding and truth maintenance. The former discusses the activities in the
context of the knowledge framework that helps to gather experiences from and for
change processes.

As depicted in Fig. 7.2, options are a central element of change knowledge.
Options briefly describe alternative requirements that can answer a change request
or a question raised by the client. Options, hence, can also be treated as potential
changes generated by the sensitivity analysis and can have attached change
impacts and argumentation knowledge. Options are usually left tacit in most
development processes. They are discussed, refined, and evaluated in the scope of
meetings and face-to-face negotiations, but are not documented or systematically
captured. By making options explicit and maintaining their dependencies to the
rest of the change and system knowledge, all other change activities become much
simpler as they leverage off existing knowledge and minimize the additional effort
needed to keep this knowledge up to date.

In the following, we examine in detail these five types of knowledge:
sensitivity characterization (Sect. 7.3.1), requirements rationale (Sect. 7.3.2),
pretraceability (Sect. 7.3.3), post-traceability (Sect. 7.3.4), and impact analysis
(Sect. 7.3.5). In particular, we discuss the obstacles in making this knowledge
explicit.

7.3.1 Sensitivity Characterization
Minimally, sensitivity characterization, the result of sensitivity analysis, is a list of

high-level requirements that are unstable or likely to change [35]. In most cases,
however, sensitivity analysis not only captures which requirements are likely to

7 Eliciting and Maintaining Knowledge for Requirements Evolution 141

change, but also sow they are anticipated to change. We can represent this type of
knowledge the same way as we represent requirements: Future changes are
represented as different options. As options are high-level descriptions, it costs
minimal effort from the part of the developers to document this knowledge.
Sensitivity analysis can be viewed as a simpler form of product line scoping [33].
The latter not only captures variabilities, but also commonalities.

Change Knowledge System Knowledge

Sensitivity : I*
characterization | I Twca Link |

| Contributor Link]|

sz : 2
anticipates . Change E 1| System model

Impact element

i assessed against Non-functional

; g *| requirement

* 11 iTs

*| requirement

_l considers
stion

justifies

i realized h ,
justifies J—! Design Element |

Fig. 7.2. Change knowledge and its relationship to system knowledge

As the goal of sensitivity analysis is to focus resources on the most likely
changes, a detailed sensitivity characterization also captures the likelihood and the
time frame of each possible change. For example, developers focus first on
changes that are very likely or changes that are likely to occur in the short term, as
opposed to changes that are unlikely or changes that will occur in the long term.

The main obstacle today for making sensitivity characterization explicit is that
there are no standard methods for this. Recently, risk management methods [20]
have become more popular which give some guidance on how to systematically
deal with expectations on system evolution. Even if developers and clients only
use personal heuristics, it is important to make this explicit so that the heuristics
can be improved.

7.3.2 Requirements Rationale

Rationale captures the options that were considered, the criteria used to evaluate
themy,and, the reasons,for.preferring,the,current options to the discarded options.
This can be represented in several different ways [36], including natural language,
rules in a knowledge-based system, or arguments structured in rhetorical steps.

142 Dutoit and Paech

The latter case, called argumentation-based rationale, represents rationale as a
graph of nodes and edges, each node representing a decision-making element or
rhetorical step and each edge representing a relationship between two elements.
For example, the questions, options, criteria (QOC) notation [27] uses the
following rhetorical steps:

o Questions represent problems to be solved, such as a requirements issue, a need
for clarification, or a disagreement.

o Options represent considered alternatives for answering a question. Options
include requirements, changes to a document, or clarifications. If a question is
closed, the chosen option is called decision.

o Criteria represent qualities that are used to evaluate options in a certain context.
Criteria are NFRs (e.g., reliability, cheapness, performance). The assessment of
an option against a set of criteria is represented with assessment links between
the option and the criteria nodes.

o Arguments represent the opinions of the participants. Arguments can support or
oppose another rhetorical node.

Developers first capture bits and pieces of rationale during review and
negotiation. These can take the form of lists of defects, change requests, proposed
alternatives, and argumentation that takes place electronically via e-mail or within
a tool-supporting rationale. Developers then consolidate these bits and pieces into
well-structured QOC models during revisions to the specification. The output of
rationale capture is a QOC model that can be used to organize the rest of the
change knowledge.

Argumentation-based representations are widely used in rationale management
[21, 27, 29]. One of the early drivers to capture rationale has been traceability,
e.g., in the REMAP approach [31].

Major problems for rationale capture involve cost (in particular, since the
rationale providers are often different from the rationale users), completeness
(because it is lost, if not captured early), and complexity (since rationale models
are larger than system models). In [11] we discuss process and tool integration as
a means to overcome these obstacles.

7.3.3 Pretraceability

Pretraceability enables a developer to follow a requirement back to its human
source and the context in which it was captured. Pretraceability is needed during
change assessment to identify conflicts between proposed requirements and
original stakeholder criteria, especially when some of the stakeholders are not
available for comment.

Capturing and representing pretraceability is a particularly difficult problem, as
requirements elicitation is a process driven by negotiation, brainstorming,
informal, contacts,,and,creativity.,Given,any specific requirements, there may be
many invisible individuals that contributed to it to various degrees. There are
several approaches to this problem.

7 Eliciting and Maintaining Knowledge for Requirements Evolution 143

Using WinWin [3], stakeholders initiate the elicitation process by posting win
conditions, which represent the stakeholders’ success criteria. Win conditions are
high-level NFR or FR, which, if not met, result in a system that fails to support the
stakeholder. During the elicitation, win conditions are refined into actual
requirements that are then organized in the requirements specification document.
Conflicting win conditions are detected and resolved through negotiation. The
options and their assessment are captured with an issue model similar to QOC,
discussed in Sect. 7.3.2. As a groupware tool supports the complete process, the
traceability from a specific requirement to a win condition is also captured. This
approach, however, assumes that the client that posts win conditions in the tool is
the stakeholder. In many situations, this is not the case, as stakeholder
requirements are elicited during face-to-face meetings or during task observation,
after which the analyst documents these requirements.

Using contribution structures [15], stakeholders indicate the different types of
contributions for different artifacts. The contribution structures framework
distinguishes three capacities:

o The principal motivates the requirement and is responsible for its effects and
consequences.

o The author develops the requirements structure and content and is responsible
for its form and semantics.

e The documentor records or transcribes the requirements content and is
responsible for its appearance.

Recording the role of a contributor with respect to a requirement provides a
simple way to document the commitment and responsibility of the contributor.
This enables change requests to be directed to the right contributor, based on the
nature of the change and the requirements being changed. Contribution structures
can also take advantage of relations between requirements. For example, if one
requirement is a specialization of another, more general, requirement, the
contributor for the general requirement retains some responsibility for the
specializations.

Recording traceability to human sources remains a difficult task because of
acceptance issues. Such knowledge reveals more detail about the social network in
the organization and the rate and quality of contribution of each participant. This
can only be alleviated through organizational measures as discussed in [25].

7.3.4 Post-traceability

Post-traceability enables a developer to follow a requirement to its corresponding
architecture, design, source code, and test elements. Given a requirement, a
developer can deduce which design elements realize the requirement and which
test cases check its realization. Similarly, given a test case, a developer can deduce
which set. requirements.are checked.and which are not. Post-traceability is needed
during impact analysis to identify the change impacts.

144 Dutoit and Paech

Capturing and representing post-traceability is a better-understood problem, as
the ability to explain and document the results of development activities has been
forced on industries in life-critical businesses, such as aerospace, pharmaceutical,
and medical application domains, for addressing liability and accountability
issues. However, the challenges of post-traceability are also not technical (i.e.,
post-traceability is essentially a link between two elements), but rather, related to
social and methodological factors. That is capturing all traceability links
introduces a large bureaucratic overhead on developers, traceability links need to
be related with other knowledge, such as rationale, to provide sufficient
information. This results in proposed methods that generate traceability links as a
side effect of developer activity or rationale [30, 31]. In [19], von Knethen
describes in detail a traceability approach for embedded systems and its empirical
evaluation.

7.3.5 Impact Analysis

Given a possible change, impact analysis results in the list of system elements that
could be affected by the change and an estimation of the cost required to revise
these elements. The input to impact analysis is typically a list of likely changes
from the sensitivity analysis, rationale, and post-traceability links generated during
development. For each change, developers follow traceability links from the
impacted requirement to other elements and use rationale and their experience to
assess how the target element is likely to be impacted. If the developer assesses
the target element as likely to change, the impact analysis is repeated recursively
[35]. Impact analysis provides initial cost estimates for changes. Since the impact
analysis knowledge was generated during development, the cost estimates are
more accurate than if performed during change assessment.

In the last few years, a number of approaches for impact analysis have been
developed; for an early overview see [4]. One major problem is that impact
analysis is an activity that requires much judgment from the developer. Simply
following all post-traceability links only yields all the elements that are potentially
impacted, hence, yielding cost estimates that overestimate the actual cost of
change. Moreover, in the event some post-traceability links have not been
captured, an automated approach could also yield an underestimate of the actual
cost. Similar to sensitivity analysis, it is important to make the personal heuristics
of experts explicit in order to improve them.

7.3.6 Summary

Table 7.1 summarizes the activities capturing the five types of knowledge
discussed in this section. Typically, capturing rationale and traceability occurs
during development. Sensitivity analysis occurs after a first stable version of the
requirements is completed, while impact analysis occurs once the software
architecture is defined. To ensure that the change knowledge remains up-to-date,

7 Eliciting and Maintaining Knowledge for Requirements Evolution

145

all five types of knowledge need to be revisited during requirements and design

change.

Table 7.1. Knowledge activities for supporting change

Sensitivity Capturing Capturing Capturing Impact
analysis rationale pre- post- analysis
traceability traceability
Specialist Requirements Requirements Developers Specialist
engineers, engineers
2 reviewers,
2 knowledge
consolidator
After first During During During After first
stable version requirements requirements design stable
g of review and elicitation version of
§ requirements requirements architecture
changes
Domain NFRs Stakeholders FRs and Sensitivity
model, NFRs, characteriz
£ history of architecture ation
8 similar rationale
— systems
Unstable or Questions, Contributor Trace links Cost
« likely to options, links to between estimate,
g change criteria, human requirements list of
5 requirements arguments, sources and design impacted
and decisions elements elements

To reduce the cost of capturing this knowledge and make it easier to keep it up

to date, we organize these five types of knowledge around options (Fig. 7.2):

Likely changes in sensitivity characterization are represented as options.

o Pretraceability is represented as a contributor link between each option and the

corresponding system model, including the contributing stakeholder. The
contributor link also includes the role the stakeholder had in the contribution.
The links between the rationale elements and the system elements represent
dependencies between the change knowledge and the system knowledge. If a
system model element is changed, the corresponding change knowledge that
needs to be updated can be found by identifying the corresponding option.
Traceability is not directly interconnected to options. Instead, trace links
connect two related system model elements. Note, however, that trace links can
be used to find indirect relationships between two options responding to
different questions.

The result of impact.analysis.is.represented as a change impact object linking
the option with the impacted elements.

146 Dutoit and Paech

In the next section, we describe an example for capturing and maintaining
requirements change knowledge in the context of use case-based requirements
specification.

7.4 Using Options for Dealing with Evolving Requirements

This section illustrates the change knowledge and the change activities identified
in the previous sections with a specific approach for capturing and evolving
change knowledge and requirements. The method and the REQuest tool used to
create the requirements documents and the options are described in detail in [12].
In the following, we first describe the representation and use of FR and NFR in
REQuest. Then, we sketch the process for changing the options and the
requirements. The latter is illustrated with the meeting scheduler example [23].

7.4.1 Rationale-based Use Case Specification with REQuest

In REQuest, we describe the functional aspects of a requirements specification
with user tasks, use cases, and system services. This is similar to other use case-
based approaches. User tasks are similar to Cockburn’s Summary Goal Use Cases
[8]. We use the term user task because we rely on techniques from task analysis
for their identification [10]. Only by knowing the user tasks in detail can a system
with maximal support to the client be designed. The use cases correspond to
Cockburn’s user goal use case, and the system services to Cockburn’s subfunction
goal use cases [8]. Table 7.2 depicts as an example the user task “manage
interaction among participants”.

Table 7.2. User task: manage interactions among participants

User task name Manage interaction among participants

Initiating actor Meeting facilitator (MF)

Participating actors Meeting participant (MP)

Task description The MF is responsible for getting replies from MPs who have

not reacted promptly, for notifying MPs of changes of date or
location, and for keeping MPs aware of current unresolved
conflicts or delays in the scheduling process
Realized in use cases Handle replies, remind participant, react to replan request
Referenced NFR None

Table 7.3 shows as an example the “handle replies” use case. We use the
essential use case style of [9], where each use case step has a number, and actor
and system steps are explicitly distinguished.

7 Eliciting and Maintaining Knowledge for Requirements Evolution 147

Table 7.3. Use case: handle replies

Name Handle replies

Realized user task Manage interaction among participants
Initiating actor Meeting facilitator (MF)

Participating actors Meeting participant (MP)

Flow of events Actors System

1. The MP selects
“Handle Replies” for a
meeting and a question
2. The system checks if all MP
replied (Exception: slow
participant)
3. The system starts the “close
question service” and notifies
the MF accordingly
Exceptions (Slow participant) The MF decides whether to remind the
MPs or to close the question and possibly disqualify the
MP. In the first case they remind the MP. In the second
case they disqualify the MP. Then they enter the
disqualification into the system through the “disqualify
participant” service and then selects the “close question

service”

Precondition The meeting initiator has initiated the meeting and asked
some question

Postcondition The MPs have been reminded or the question is closed

Includes use cases None

Used services Check participant replies, remind participant, close
question, disqualify participant

Referenced NFRs Response time, minimize amount of messages, flexibility

In contrast to goal-oriented approaches to requirements engineering (e.g.,
GBRAM [1] or KAOS [23]), where NFRs are used to drive the requirements
elicitation, we use user tasks to drive the elicitation. NFRs are only used as criteria
for the evaluation of the adequacy of use case or service design with respect to
user tasks and use cases, respectively.

In REQuest, we use the QOC model to represent the rationale for a specific
requirements element [12]. As criteria we use NFRs. In addition, we use a special
kind of question type, called justifications. These are used to summarize the
arguments as to why a specific use case or system service is preferred against its
alternatives. For example, Table 7.4 depicts the justification of the handle replies
use case of Table 7.3.

Typically, REQuest specifications are created in two ways:

e Either different options are first created and assessed, and then one of these
options is chosen and refined into a full-fledged use case. During refinement
newsinsightsimight:besgainedithatilead:to changes on the options.

148 Dutoit and Paech

o Alternatively, a use case is first created and then justified. During the
justification other options are made explicit and evaluated. This might lead to
an adaptation of the use case.

Table 7.4. QOC model: justification for the handle replies use case

Justification =~ What is the best option for the system boundary within in the “handle
replies use case” satisfying the NFRs?

Criteria: Response Minimize Flexibility
time amount of
messages

Option 1 (fully automatic): The system + - -
collects’ replies and reminds slow MPs
automatically during a given time within a
given interval. The system then closes the
question, disqualifies all MPs who did not
respond from the meeting, and informs the
MF
Decision (fully manual): The MF chooses - + +
when to handle replies, checks status
accordingly, and decides whether to remind
MPs personally, or to close the question and
disqualify MPs personally
Legend: + Option complies with criterion,
— Option fails to meet criterion

7.4.2 Change Management in REQuest

In REQuest, rationale and trace links are captured to support change. This is
facilitated through the tool. For example, glossary terms are identified in the text
and linked automatically. When creating or editing an element a template is
provided that includes references to the other elements. As soon as a link in one
direction is created (e.g., between user task and a use case), the other direction is
automatically also created.

These links can then be used for impact analysis. REQuest recommends
carrying this out early for likely changes. This information can then be used as
arguments in the evaluation of different design options. REQuest does not give
particular support for sensitivity analysis.

To reduce the effort for creating the change knowledge for the developers, we
introduce the role of a change knowledge consolidator. The task of this role is to
identify missing knowledge (such as missing decisions or missing links) and to
consolidate the knowledge (e.g., unifying similar options).

This role can also carry out the impact analysis for likely changes identified
during sensitivity analysis. However, typically requirements engineers or
developers;carry-out:impact-analysisssince it not only provides input necessary to
plan and execute changes. Its main contribution is to the design activity, because it

7 Eliciting and Maintaining Knowledge for Requirements Evolution 149

enables design for change. In the following we give an example how a change
request is handled in REQuest, in particular how options support this step.

Table 7.5. Change request

Change request: new quality constraint minimize facilitator effort

Objective Improve use cases from the viewpoint of the meeting facilitator
Originator Meeting facilitator

Current system In the current system the meeting facilitator has to spend too much
behavior time on interaction with the meeting participants

Desired system New quality constraint on the user task and therefore on all use
behavior cases: minimize the time the meeting facilitator has to be spend on

interacting with meeting participants
Needed change Find a new solution so that the new quality constraint and all
existing constraints are satisfied

Table 7.5 shows an example change request to the use cases of the meeting
scheduler. It mainly impacts the existing use case handle replies (see Table 7.3).
This use case realizes the fully manual (FM) option, since the fully automatic (FA)
option severely restricts the user flexibility criterion. The reason is that it is not
tolerable for the users to be disqualified by the system. The change request
basically consists of adding a new quality constraint. In the following we explain
how this change request is processed.

The requirements engineer proposes different options to implement a change
request. One possibility that is always available is the status quo, that is, not to
change the specification. Other possibilities arise from reevaluating existing
options in the context of the change. If neither of these is satisfying, then new
options have to be devised. In the example, a new option for the handle replies use
case has to be created, because neither of the given ones satisfies all constraints.
The FA option invalidates the user flexibility, and the FM option invalidates the
new constraint minimal facilitator effort. Therefore new options have to be
generated. Table 7.6 shows the option informed and manual (IM) that satisfies all
the constraints. For each option proposed, the requirements engineers need to
evaluate it and refine it to satisfy the NFRs. The evaluation of the new option is
also shown in Table 7.6.

In addition, requirements engineers create arguments supporting and opposing
options. This helps to validate the evaluations and to prioritize criteria. Once
requirements engineers have evaluated and refined (most or) all options, they
create a decision by selecting an option. This can result in minor or substantial
change in the requirements specification. The decision to realize the change with a
given option is not only based on the rationale (that makes explicit which option
best satisfies all the criteria), but is also based on effort and cost considerations
(which have to be validated later with the change plans). In particular, an impact
analysis for the options is carried out. The impacts are documented as a list of
elementsitorberchangedraccordingtortherchosen option. In particular, this includes
elements arising from trace links indicating dependencies that have to be assured

150 Dutoit and Paech

in spite of the change. The cost and effort considerations are recorded elsewhere,

e.g., in a system or project planning document.

Table 7.6. New justification for use case handle replies

Decision (fully manual): The Meeting Facilitator
chooses when to handle replies and accordingly checks
the status and decides whether to remind participants

personally

personally, close the question, or disqualify participants

Justification: What is the best option for the system boundary within in the
“handle replies use case” satisfying the NFRs?
Criteria
2 | 8%y 2 83
=] 2 4
2ol £3 g TRk
B SEH S8 54
Option 1 (fully automatic): The system collects replies + | - - +
and reminds slow participants automatically within a
given interval. The system then closes the question,
disqualifies all participants who did not respond from the
meeting and informs the meeting facilitator
Option 2 (informed and manual): The system collects + - + +
replies and automatically reminds the participants. After
a given interval it informs the meeting facilitator about
the status. The meeting facilitator closes the question
and decides whether to disqualify the participants who
did not respond
- + + -

Legend: + Option complies with criterion,
— Option fails to meet criterion

Based on this, detailed change plans are created that list the change steps
necessary to implement the options. Table 7.7 shows the change plan of the new
option (IM). It requires only few changes to the handle replies use case and the
corresponding rationale. In addition to the direct impact, the impact on related use
cases also has to be treated. In the example, the handle replies is included in the
schedule meeting use case. Thus, the latter has to be reconsidered. In this case the
use case itself need not be changed, but the evaluation of the new constraint has to
be added to its rationale. Note that not all use cases are evaluated against all
criteria, because not all criteria are relevant. The traces capture the knowledge
necessary to propagate the relevance of criteria. Based on the change plans, the
cost and effort estimates are also reconsidered. Finally, the change plans are
executed. In addition, the changes have to be validated, e.g., through inspections.

7 Eliciting and Maintaining Knowledge for Requirements Evolution 151

Table 7.7. Change plan for option IM

Change Facet Type Description

Impact

UC handle 1 Del The meeting facilitator does not need to

replies initiate the check

UC handle 2 Mod The system checks according to a given

replies interval

UC handle 2 Mod If a participant did not reply, they are

replies reminded by the system

UC handle 3 Add After another given interval the system

replies checks again. It informs the meeting
facilitator about the status

UC handle 3 Add The meeting facilitator closes the question

replies and decides whether to disqualify
participants who did not respond

UC handle | Exception Mod The meeting facilitator does not remind the

replies participant again

UC handle | Post- Mod The question is closed

replies condition

Justification | Optionand | Add New option: informed and manual,

handle evaluation Evaluation for the new option +,—,+,+

replies Evaluation for the new criteria —,+,+

Justification | Evaluation | Add Evaluation for the new criteria :

schedule

meeting

Legend: Del = delete, Mod = modify, Add = add

7.4.3 Discussions of the REQuest Process

As discussed in [12], we have developed and refined the REQuest process and tool
for capturing change knowledge and requirements in a series of students’
experiments during projects, lectures, and seminars. These experiments have
enabled us to develop detailed guidance. This guidance improved the quality of
the use cases and the rationale written by the students. We have started
experiments with guidance for using change knowledge to process change
requests as described in the process above. Again, the feedback of the students is
positive in that they were able to define new options, assess and plan them, and
execute the change. They felt very positive about having detailed guidance for
change processing as they had not had such guidelines available to them before.
Of course, they also indicated many possibilities for improvement such as a
graphical representation of traceability links (similar to requirements management
tools like DOORS or RequistePro). Another idea is to standardize and improve the
structure of options. This would help to compare options and to identify the
detailed changes necessary to implement the option.

Severaliprocessesiforichanging requirements have been proposed, e.g., the NFR
Framework [7] or REMAP [31] or COMANCHE [5]. The main features of the
REQuest process are:

152 Dutoit and Paech

e NFR are used as criteria to compare different options for functionality.
Typically, NFR are only used to assess architectural decisions. We take the
view of the NFR framework that NFR should be refined in parallel with the
refinement of functional requirements.

e High-level options for use cases are created and maintained as change
knowledge. In contrast to the NFR-framework we do not focus on the
decomposition, but on the compact description of options and their evaluations.
Thus, we use the notion of user task and use case to cluster user-relevant
functionality. In the goal-graphs of the NFR framework several issues relevant
for one use case may be scattered around. The drawback of our approach is that
changing the use case structure impacts on many places. However, in our
experience the use case structure is typically quite stable (at least in cases
where the system has to support existing user tasks).

¢ In case of change the rationale is updated, but the old versions are not kept. The
reason is that the change knowledge always includes all options identified at a
specific point in time and the evaluations of these options. If the evaluations
change, then the old evaluations are outdated (or incorrect). If the options
change, then similarly, previous versions are outdated. Again this is a
difference from the NFR framework, which makes the changes explicit in the
goal graphs. This supports the detailed comparison of the impacts of different
changes, but after several changes the graphs will be overwhelmed with details.

7.5 Open Issues and Future Directions

In this chapter we discussed different kinds of knowledge necessary to support

change. We argued for the central role of options in making this knowledge

explicit. We also sketched a process for creating and using this knowledge during
use case based requirements engineering. First experiences indicate that this
process is feasible and supports making tacit knowledge explicit. Furthermore, this

explicit knowledge helps to keep the requirements up-to-date in that it provides a

basis for systematically assessing and planning change. With the role of the

change knowledge consolidator we propose to keep the effort for the requirements
engineers as small as possible. We see three challenges that require further
studies:

o Reliably predicting changes: An important factor in minimizing cost and effort
is to concentrate the change knowledge activities only on these parts of the
system that are most likely to change. The solution to drive the complete
change knowledge process by the sensitivity analysis is conceptually simple,
howeyver, reliable methods for sensitivity analysis are still an issue for further
research.

e Presenting change knowledge: An open question, in our opinion, is how to
structure and present the change knowledge so that it is of the highest benefit in
different change activities. This requires a detailed analysis of further change
types, like changes of user tasks, of use cases, and of system services as well as

7 Eliciting and Maintaining Knowledge for Requirements Evolution 153

changes of different kinds of quality criteria. Only after detailed guidance for
carrying out these different changes has been developed, the cost of the change
knowledge can be evaluated against its benefits. In particular, this is a
prerequisite for further studies in an industrial setting.

Recording invalid decisions: Capturing change knowledge makes explicit the
organization’s learning processes. Options that were prematurely discarded can
be revisited, actual costs can be compared with inaccurate change impact
estimates, overly cautious arguments can be contradicted, and invalid decisions
reopened. As the changes and rationale behind such improvements are
captured, the organization can learn and make better decisions in the future.
However, an individual’s view of this process can be that mistakes are
documented and never forgotten, hence reducing the individual’s incentive for
making tacit knowledge explicit.

Similar to [25], we are convinced that in spite of these challenges, the benefit of

making software engineering knowledge explicit exceeds its cost. Since change is
a particularly prevalent problem during software development, it seems especially
important to further explore the benefits and costs of change knowledge
management.

References

1.

fad

Anton A., Potts C. (1998) The use of goals to surface requirements for evolving
systems. In: Proceedings of international conference on software engineering, Kyoto,
Japan, pp. 157-166

Bennett K.H., Rajlich V.T. (2000) Software maintenance and evolution: a roadmap.
In: Proceedings of international conference on software engineering, Limerick, Ireland
pp. 75-87

Boehm B., Egyed A., Kwan J., Port D., Shah A., Madachy R. (1998) Using the
winwin spiral model: a case study. IEEE Computer, 31: 33-44

Bohner S.A., Arnold R.S. (1996) Software change impact analysis. IEEE computer
science press, Los Alamitos, CA, USA

Canfora G., Casazza G., de Lucia A. (2000) A design rationale based environment for
cooperative maintenance. International journal of software engineering and knowledge
engineering, 10: 627-245

Chandra C., Ramamoorthy C.V. (1996) An evaluation of knowledge engineering
approaches to the maintenance of evolutionary software. In: Proceedings of the
international conference on software engineering and knowledge engineering, Lake
Tahoe, Nevada, USA, pp. 181-188

Chung L., Nixon B.A., Yu E. (1996) Dealing with change: an approach using non-
functional requirements. Requirements engineering journal, 1: 238-260

Cockburn A. (2001) Writing effective use cases. Addison Wesley, Reading, MA, USA
Constantine L.L., Lockwood L.A.D. (2001) Structure and style in use cases for user
interface design. In: van Harmelen (Ed.) Object-oriented user interface design,
Addison Wesley, Reading, MA, USA

10. Diaper D. (1989) Task analysis for human-computer interaction. Ellies, Horwood.

154

11.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

Dutoit and Paech

Dutoit A.H., Paech B. (2001) Rationale management in sofiware engineering. In
Chang S.K. (Ed.) Handbook of software engineering and knowledge engineering,
Vol. 1, World scientific publishing, Singapore

Dutoit A.H., Paech B. (2002) Rationale-based use case specification. Requirements
engineering journal, 7: 3-19

Eick S.G., Graves T.L., Karr A.F., Marron J.S., Mockus A. (2001) Does code decay?
Assessing the evidence from change management data. IEEE transactions on software
engineering 27: 1-12

FAA (1999) NAS architecture version 4.0, Blueprint for NAS modernization

Gotel O., Finkelstein A. (1995) Contribution structures. In: Proceedings of IEEE, 2nd
international symposium on requirements engineering, York, UK, pp. 100-107

Grudin J. (1996) Evaluating opportunities for design capture. In: [29]

IEEE (1998) IEEE Standard for sofiware maintenance, 1219-1998, IEEE

Jarke M. (1998) Requirements tracing. Communication of the ACM, 41: 32-36

von Knethen A. (2001) Change-oriented requirements traceability. Support for
evolution of embedded system. PhD thesis in experimental softiware engineering,
Fraunhofer IRB Verlag, Germany

Kontio J. (1997) The riskit method for software risk management. Version 1.00, CS-
TR-3782, Computer science technical reports, University of Maryland, USA

Kunz W, Rittel H. (1970) Issues as elements of information systems. In: working
paper No. 131, Institut fiir Grundlagen der Planung, Universitiit Stuttgart, Germany
Lam W., Shankararaman V. (1998) Managing change during software development:
an incremental, knowledge-based approach. In: Proceedings of the international
conference on software engineering and knowledge engineering, pp. 124-127

van Lamsweerde A., Darimont R., Massonet P. (1998) Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learned. In: Proceedings
of the international symposium on requirements engineering, pp. 194-203

Lindvall M., Sandahl K. (1998) How well do experienced software developers predict
software change? Journal of systems and software 43: 19-27

Lindvall M., Rus I. (2003) Knowledge management in software organizations. Chap. 4
in this book

Lions J.-L. (1996) ARIANE 5 Flight 501 Failure: Report by the Inquiry Board,"
http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf (accessed Sth May 2002)

MacLean A., Young R.M.,, Bellotti V., Moran T. (1991) Questions, options, and
criteria: elements of design space analysis. Human-computer interaction, 6: 201-250
Mikérdinen M. (2000) Software change management processes in the development of
embedded software. Espoo 2000, Technical research center of Finland, VTT
Publications, Turku, Finland

Moran T.P., Carroll J.M. (1996): Design rationale: concepts, techniques, and use.
Lawrence Erlbaum Associates, Mahwah, NJ, USA

Pohl, K. (1996): Process-centered requirements engineering. John Wiley and Sons,
New York, NY

Ramesh B., Dhar V. (1994) Representing and maintaining process: knowledge for
large scale system development. IEEE Expert 9: 54-59

Savolainen J., Kuusela J. (2001) Volatility analysis framework for product lines. In:
Proceedings of symposium on software reusability, Toronto, Canada

7 Eliciting and Maintaining Knowledge for Requirements Evolution 155

33. Schmid K. (2002) A comprehensive product line scoping approach and its validation.
In: Proceedings of international conference on software engineering, Orlando, FL,
USA, pp. 593-603

34. Sharon D. (1996) Meeting the challenge of software maintenance. IEEE Software, 13:
122-125

35. Strens M.R., Sugden R.C. (1996) Change analysis: a step towards meeting the
challenge of changing requirements. In: IEEE symposium and workshop on
engineering of computer based systems, Friedrichshafen, Germany, pp. 278-283

36. Shipman III F.M., McCall R.J. (1997) Integrating different perspectives on design
rationale: supporting the emergence of design rationale from design communication.
Artificial intelligence in engineering design, analysis, and manufacturing, 11: 141-154

Author Biography

Allen H. Dutoit is a research scientist in the Informatics Department of
Technische Universitaet Muenchen. His research interests include rationale
management, requirements engineering, tool support for distributed projects, and
empirical software engineering. He has been involved since 1993 with Prof.
Bruegge in teaching software engineering project courses in Carnegie Mellon
University and Technische Universitaet Muenchen. Allen Dutoit was previously
affiliated with the software engineering institute, where he investigated natural
language techniques for risk management. In the institute for complex engineered
systems at Carnegie Mellon University, he researched the use of communication
metrics as a diagnostic tool for software projects. During his stay at Carnegie
Mellon University, he also contributed to the development of several complex
information systems in collaboration with industry. Allen Dutoit received an
Engineering Diploma in Computer Science from the Swiss Federal Institute of
Technology and an M.S. and a Ph.D. in computer engineering at Carnegie Mellon
University.

Dr. habil Barbara Paech heads the Quality Software Development department at
the Fraunhofer Institute for Experimental Software Engineering (Fh IESE). Her
research interests include requirements engineering and management, rationale
and knowledge management, component-based software development, and
validation and verification through inspection and testing. She has studied
computer science at the TU Miinchen, University of Edinburgh (GB), and
University of Pennsylvania (US). She received her Ph.D. from the LMU
Miinchen. In 1998 she received the Habilitation in Computer Science from the TU
Miinchen. She heads research and transfer projects in cooperation with industry
and regularly holds seminars and lectures in both academic and industrial settings.

8 Emergent Knowledge in Web Development

David Lowe

Abstract: Although Web development can be considered a derivative of software
engineering, it exemplifies a class of development projects with some unique
characteristics that lead to changes in the development approach. Among other
factors, there is substantial volatility in clients’ articulation of their requirements,
particularly as their understanding evolves of the way in which the systems under
development might affect their client and stakeholder interactions, business
processes, and ultimately their business model. We discuss these differences and
the impact that they have on the development processes that are adopted for
commercial Web systems. Specifically, we look at the ways in which client
knowledge (and understanding) emerges progressively during the development
process, often as a consequence of the design process, and the ways in which this
results in a design-driven requirements process.

Keywords: Web development, Process, Design, Requirements

8.1 Introduction

Web systems were originally (i.e. in the early to mid 1990s) characterized by a
strong emphasis on content and information provision. As such, they were often
viewed not as software systems but as information systems. This characterization
was evidenced in the focus of most of the early Web design methods, such as
relationship management methodology (RMM) ([24] and object-oriented
hypermedia design model (OOHDM) [41] that emerged out of the hypertext
community and emphasized content modeling and information structuring.

As Web technologies matured and became more sophisticated, the systems
being developed exhibited increasingly complex functionality and consequently
more complex underlying software. Again, this was typified by the emergence of
Web design methods that aligned more closely with mainstream software design
approaches (such as a plethora of approaches based on unified modeling language
(UML)— see [2, 8, 22, 25, 30] for examples) and an increasing debate over
whether “Web engineering” can be viewed as a particular class of software
engineering (see [38, Chap. 29] for a discussion of this issue).

Whilst it is true to a limited extent that Web system development is primarily
the creation of software systems, there is a growing recognition that Web systems
— or rather that category of applications for which Web systems are an exemplar
— have various unique characteristics that are only poorly addressed by
conventional.development practices [31]..Among other factors, there is substantial
uncertainty in clients’ understanding of the ways in which the systems under
development might affect their client and stakeholder interactions, business

158 Lowe

processes, and ultimately their business model. This, in turn, has some major
implications for the ways in which, and particularly when, clients’ are able to
articulate their requirements during the development process.

Development practices from related domains (software engineering, graphic
design, marketing, etc.) do not typically address these differences particularly
well. Despite this, there has been little consideration within the research literature
of the implications of these characteristics on the development process. This is in
spite of the obvious growth in importance of these systems to business success.

In this chapter we begin by investigating some of main differences between
Web systems and other software systems. We then move on to explore the
implications of the key differences for the ways in which client’s knowledge
evolves during the development process and how this should be addressed. We
will, in particular, look at the role that the design process plays in this evolving
understanding.

Before starting to look at Web systems in more detail, one point of clarification
is worth raising. Whilst we use the term Web system in this paper for simplicity,
we see these systems (i.e. those that have an architecture based on the utilization
of Web technologies and protocols) as being exemplars of a much broader
category of applications. This broader category can be understood by looking at
the characteristics discussed in the next section, but can probably be best defined
by one key characteristic—that the system under development changes the nature
of the interaction with external stakeholders (such as clients, customers, and
business partners). Hence, it potentially triggers changes in business processes and
ultimately business models. In other words, the solution under development
inherently changes the nature of the problem that it was addressing. This can be
described as the problem domain and the solution domain being mutually
constituted—a concept that is well understood in the social informatics literature!
We will discuss this is much more in Sect. 8.3, but at this point it is simply worth
noting that where we refer to Web systems, this broader interpretation will often be
applicable.

8.2 Web System Characteristics and Implications

There is a growing body of research [5, 13, 35] that is attempting to understand
the differences between Web systems and more conventional software systems.
That is given the above comments at the end of the introduction, we describe as
conventional systems those that have minimal impact on the fundamental nature
of the interactions with external stakeholders and/or the nature of the problem
being addressed. In general, we can draw a distinction between the unique
characteristics of Web systems that are technical (that is, related to the specific
technologies that are used and how these impact on the structure of the
application) and those that are organizational (that is, related to the ways in which
organizations make use of these systems).

8 Emergent Knowledge in Web Development 159

It is also worth noting that although Web systems can be viewed as software
systems, this does not automatically imply that existing representations of various
aspects of these systems will be able to be directly applied. Indeed, to blindly
apply existing models to the representation of Web systems would encourage
developers to overlook the peculiarities of these Web systems, and hence not
address these peculiarities, leading to inappropriate solutions. This is not to say
that existing models should not be utilized — simply that we need to do so with an
awareness of their limitations with respect to the aspects of Web systems that we
wish to understand and document. We also need to understand how these
limitations may be circumvented by appropriately supplementing (or replacing,
where necessary) the models.

Further, improving the modeling support for the unique characteristics of Web
systems is a useful first step, but on its own, it is not sufficient. We also need to
consider how we actually carry out the development. This includes both the
specific activities and tasks that are desirable, as well as broader process issues
related to how we organize this work. We shall look at the various unique
characteristics of Web systems and investigate the impacts on both what we may
wish to represent and potential changes to the development process.

8.2.1 Technical Differences

There are obvious technical differences between Web systems and more
conventional software and IT systems. The most significant of these are as
follows:

8.2.1.1 Link Between Business Model and Technical Architecture

Possibly the most obvious difference between Web and traditional software
development is seen in regard to the specific technologies that are used and the
ways in which these are interconnected. For example, the technical structure of
Web systems merges a sophisticated business architecture (which usually implies
significant changes to the business model of the client) with both a complex
information architecture and a highly component-based technical architecture
[39]. The linkage between the business architecture and the technical design of the
system is much tighter than for conventional software systems (i.e. the technology
is more visible to users and influences an organizations interaction with its
stakeholders very significantly). Similarly, the information architecture (which
covers aspects such as the content viewpoints, interface metaphors and
navigational structures) is substantially more sophisticated than conventional
software systems.

The impact that Web systems have on business models implies that there is a
need to be able to understand (and document) the link between business models
and system architectures. This has typically been only implicitly addressed in
traditional development as the business models are well established and

160 Lowe

understood. This is less true for Web projects and, as a result we see a growing
body of work — largely emerging from large technology vendors such as IBM,
Sun and Microsoft — that considers how to represent supported business
functions and the technical architectures required to support these. The most
mature of these approaches is the patterns for e-Business work being developed by
IBM (see http://www.ibm.com/framework/patterns/). This work provides a
framework for identifying common patterns of business models. As stated in [28]:

The paths to creating e-businesses are repeatable. Many companies assume that

they are unique and that therefore every creation of an e-business has to be learned

as you go. In fact, there are lessons and architectural paths or patterns that can be

discerned from all these engagements.

For each business pattern, a number of logical architectures (or topologies) are
defined. These topologies provide a mechanism for fulfilling a particular business
need. In effect, these models provide a direct link between the business models
that underpin the systems being developed and the technical architecture that
supports these business models. One problem with these current approaches is that
the architectural models tend to emphasize functionality, with little consideration
of how to represent the information architecture. In particular, aspects such as
content modeling, information viewpoints and so on are not addressed.

Although the relationship between the business model and the system
architecture is beginning to be addressed at a notational level, there is little work
in this area in terms of processes that support the interpretation of business
requirements and the relationship that these have to the architecture. Even more
significantly, there is little understanding of the impact of a given architecture on
the business processes and models. The work that does exist tends to focus on the
design of architectures (see Sect. 8.2.1.2). One of the few exceptions is the IBM
work on patterns mentioned above. Although it does not provide a formal process,
it does suggest an implicit process whereby the broad business needs are used to
select a suitable business pattern, which is then used to guide the selection of
suitable architectures.

8.2.1.2 Open Modularized Architectures

Related to the above point is the emphasis that is typically placed on open and
modularized architectures for Web systems. Although this is not unique to Web
systems, it is often more pronounced. Web systems are often constructed from
multiple commercial off-the-shelf (COTS) components that are adapted and
integrated together, particularly for the system back-end middleware layers. This
implies that strong integration skills become much more critical in most Web
projects.

Although there is significant attention on modeling of open and component-
based systems, little attention has yet been applied to considering the modeling of
these systems or the associated development processes in the context of the Web.

Given' this'component-based development, strong integration skills become
much more critical in most Web)projects. The importance of a strong architectural

8 Emergent Knowledge in Web Development 161

design is also increased. Indeed, many see creating a solid architecture as the most
crucial component of a successful Web systems development. One aspect that is
yet to be effectively addressed is appropriate support (either as tasks or suitable
techniques) for the linking of the various disparate elements of the architecture
(i.e. informational and technical to the business architecture) [19].

8.2.1.3 Rapidly Changing Technologies

The technology that underpins most Web systems is changing very rapidly. This
has several consequences. First, it increases the importance of creating flexible
solutions that can be updated and migrated to new technologies with minimal
effort. For example, the need for reusable data formats (such as XML) increases
substantially. A second consequence is that developers’ understanding of these
technologies is often restricted, thus increasing project risks.

The work on detailed design notations for representing certain aspects of Web
systems may actually create problems in terms of the portability of designs into
new technologies. Alternatively, work on architectures and, more broadly, on
information models tends to create designs that are less dependent on specific
technologies, and hence more likely to be able to be adapted to changes.

8.2.1.4 Content is King

Of notable significance is the importance of content. Irrespective of the
sophistication of the functionality and the creativity of the interface, a site is likely
to fail without appropriate, substantial, and up-to-date content. This implies both
an effective information design as well as suitable content management. This
importance of content within Web sites also implies a need to at least consider
how we understand and represent the informational elements of a Web system. It
is not surprising therefore that that much of the earliest work on Web development
models focused on information modeling and structuring.

Early approaches in this area evolved out of work on data modeling (such as
entity-relationship models) and applied this to modeling the information domain
associated with applications. Indeed, much of this work predate the Web and
focused on hypermedia design. For example, RMM [24] claims to provide a
structured design model for hypermedia applications. In reality, the focus is very
much on modeling the underlying content, the user viewpoints onto this content
and the navigational structures that interlink the content. OOHDM [42] is a similar
approach, though somewhat richer in terms of the information representations and
based on object-oriented software modeling approaches. Other similar examples
include EORM [26] and work by Lee [27]. WSDM [11] attempts to model slightly
different characteristics beginning more explicitly from user requirements, but
these are only addressed in a very rudimentary fashion. In general, these notations
were either developed explicitly for modeling information in the context of the
Web, or have been adapted to this domain.

162 Lowe

More recently, work on both Web modeling Language (WebML) [6] and the
adaptation of UML [34], an emerging industry standard for modeling object-
oriented systems, (see for example [3]) has begun to amalgamate these concepts
into a richer modeling language for describing Web applications. However,
despite aims to support comprehensive descriptions, the focus (as with the above
techniques) is very much on content modeling rather than describing the
functionality that is a key element of most current commercial Web systems. This
leads on to the next point.

Even less consideration has been given to process related issues in terms of
dealing with content. Approaches such as usage-centered design [9] provide some
indications of suitable activities—though typically not as part of a broader
framework. The actual authoring of the content itself is also a significant
development issue that is often overlooked. With conventional software
development the population of the system with data is largely viewed as an
operational issue (or at best, part of deployment). With Web development, the
generation of “data” (i.e. content authoring) is fundamentally part of the
development process [18] which involves significant editing and layout of text,
preparation of images and other media, obtaining copyright clearances and so on.
The development processes that underpin some of the information management
approaches discussed earlier recognize this explicitly.

8.2.1.5 Increased Emphasis on User Interface -

With conventional software systems, users must make an often considerable
investment in time and effort to install and learn to use an application. With Web
applications, however, users can very quickly switch from one Web site to another
with minimal effort. As such, it becomes much more critical to engage users and
provide much more evident satisfaction of users’ needs and achievement of their
objectives. The result is an increased emphasis on the user interface and its
associated functionality. This is even more significant when it is recognized that
many direct users of the systems are external rather than internal stakeholders.

A little more subtly, the emergence of authoring tools has focused on
supporting rapid development and on visual design rather than functionality. This
in turn has promoted a greater use of designs as a part of a specification, which
allows a more interactive process between gathering requirements and building
solutions.

A key element of user interfaces is the functionality that they provide. A few
attempts have been made to integrate information modeling concepts with system
functionality [8, 45], though in general these approaches are still rather simplistic,
lack scalability, and focus on low-level design representations. Conallen’s [8]
work in particular is interesting insofar as it attempt to link a user’s view of the
system (as seen through the interaction with Web pages) to the back-end processes
that support this interaction.

Other researchers have looked at modeling the way in which systems are
utilized. For example, Guell et al. [20] extend OOHDM to include tools such as

8 Emergent Knowledge in Web Development 163

user scenarios and use cases. Vilain et al. [47] adapted UML to represent user
interactions. Other researchers have investigated the use of formal methods for
representing navigational requirements [17] or timing constraints [36], though
these tend to focus on ensuring consistency rather than directly addressing the
quality of the user interface. Possibly the most fruitful work in this area is usage-
centered design [9], although a rigorous analysis of the application of these
techniques to Web development has yet to be carried out.

The development process for user interface also raises numerous issues.
Effectively this brings together content authoring and software development or,
more precisely, creative design and technical development. It is worth noting that
this highlights the difficulties that occur when combining two different cuitures
together within the same project.

8.2.1.6. Increased Importance of Quality Attributes

Web systems represent an increase in mission-critical applications that are often,
as mentioned above, directly accessible to external users and customers. Flaws in
applications (be they usability, performance, or robustness) are therefore typically
more visible and hence are more problematic.

As with some other aspects, this has not been directly addressed at a modeling
level, except insofar as developing effective architectures that support
characteristics such as robustness, scalability, and reliability. These elements have
not been effectively woven into the detailed Web requirements or design models.

In terms of development processes, there is a need to address quality assurance
(QA) issues. Some work has been carried out looking explicitly at quality
assurance issues in Web development, though in general this has been restricted to
specific domains such as educational applications [12]. One key element of
effective QA is evaluation. Indeed, it has been claimed that the quality of
multimedia projects is directly determined by the effort put into evaluation [37].
For effective evaluation we need to establish suitable quality criteria —
particularly in terms of how the Web system will be actually tested against client
requirements. This also implies the need to actually understand client
requirements, an issue that we discuss further shortly.

Another important issue is the establishment of suitable standards in order to
ensure consistency, both from a usability perspective and from a development
perspective. It is worth noting that considerable attention is beginning to focus on
usability standards and, in particular, accessibility standards such as the World
Wide Web Consortium’s (W3C) Accessibility Initiative [7].

8.2.2 Organizational Differences
In addition to the technical differences, and possibly more important than them,

are a number of organizational characteristics that are either unique or heightened
in Web systems [5]. One of the key ones is the issue of client uncertainty. This,

164 Lowe

however, relates strongly to how client and developer knowledge emerges during
the project, and so will be discussed in the following section. Various other issues
are worth briefly considering.

8.2.2.1 Short Time Frames for Initial Delivery

Web development projects often have delivery schedules that are much shorter
than for conventional IT projects — often in the range of 1- 3 months. This is
partly a consequence of the rapid pace of technological development and partly
related to the rapid uptake of Web systems. This is an issue that has yet to be
considered in any substantive way in terms of how it impacts on Web design
models and notations.

In terms of processes, the shorter development timeframes increase the
importance of incremental development approaches and consequently also
increase (as discussed above) the reliance on flexible system architectures,
particularly with respect to the user interface and the way in which information is
managed within the site.

8.2.2.2 Highly Competitive

Web projects tend to be highly competitive. This is, of course, not new; in fact it is
typical of the IT industry in general. The nature of the competitiveness is,
however, somewhat different. There is regularly a perception that with simple
Web authoring tools anyone can create an effective site. This creates inappropriate
expectations from clients, coupled with numerous small start-up companies
claiming to be doing effective Web design, but in reality offering little more than
HTML skills and rudimentary graphic design. The result is a highly uninformed
competitiveness.

8.2.2.3 Fine-Grained Evolution and Maintenance

Web sites typically evolve in a much finer-grained manner than conventional IT
applications. The ability to make changes that are immediately accessible to all
users without their intervention means that, the nature of the maintenance process
changes. Rather than a conventional product maintenance/release cycle, we
typically have an ongoing process of content updating, editorial changes, interface
tuning, and so on. The result is a much more organic evolution. It is also useful to
note that a consequence of the emphasis on rapid development and fine-grained
development is that there can tend to be less thought given to formal evaluation as
this is often perceived as interrupting the build process.

As with many other aspects, this has yet to be considered in any substantial
detail. It is worth pointing out, however, that one aspect of modeling that actively
inhibits effective Web system maintenance is the lack of a cohesive architectural

8 Emergent Knowledge in Web Development 165

modeling language that actively links the information architecture with the
technical architecture [19]. Conversely, the information models, such as OOHDM
[42] and WebML [6], actively support a much clearer understanding of the
impacts of changes to various aspects of the underlying content, viewpoints, or
navigational structures.

One interesting avenue of work is that related to configuration management
(CM). Dart [10] argues that, because of the incremental nature of Web projects,
and the fine-grained way in which they change, CM is even more important than
for conventional projects. Only very rudimentary consideration is, however, given
to the way in which CM is integrated into the broader development process.

One unusual area that has been used as an analogy for Web development and
may provide some useful insights into maintenance processes is landscape
gardening [30]. Web site development is often about creating an infrastructure
(laying out the garden) and then “tending” the information that grows and blooms
within this garden. Over time the garden (i.e. the Web site) will continue to
evolve, change, and grow. A good initial architecture should allow this growth to
occur in a controlled and consistent manner. This analogy has been discussed in
terms of providing insights into how a site might be maintained.

8.3 Evolving Project Knowledge

The above discussion highlighted various aspects that characterize Web
development. Few, if any of these characteristics, are unique to Web projects.
When taken as a whole they tend, however, to characterize these projects.

There is a characteristic that was skimmed over, but is much more significant in
the overall impact that it is likely to have on the development process. This
characteristic is the impact that a developed system has on the nature of the
problem being addressed and how this relates to client uncertainty and emerging
knowledge. As we stated in Sect. 8.1, the solution being developed inherently
changes the nature of the problem that it addresses—i.e. the problem domain and
the solution domain are mutually constituted and interdependent! This will affect
not only the way in which the solution is developed, but more fundamentally the
way in which the problem itself is understood (and indeed, how this understanding
changes over time).

Whilst there has been substantial work on using the Web to manage knowledge
whilst carrying out development projects, there has been very little consideration
given to how knowledge about Web systems emerges and is managed during
development. To understand this a little better, we begin by considering the issue
of client uncertainty and requirements volatility.

166 Lowe

8.3.1 Client Uncertainty

It is often argued that with Internet and Web-based systems, the technology,
development skills, business models, and competing systems are changing so
rapidly that the domain is often not only poorly understood, but also constantly
evolving [43]. This can lead to a client not understanding their needs. Specifically,
clients often have difficulty not only articulating their needs, but also in
understanding whether a particular design will satisfy their needs. This is typically
a result of a poor understanding of the consequences of the given solution. It is
also worth noting that many Web projects are vision-driven rather than needs-
driven, leading to an initial lack of clarity.

This interpretation is, however, a little simplistic. More commonly, clients will
have sound knowledge about their own (current) business models, contexts,
processes, and hence the problem to which they are seeking a solution. Whilst it is
true that they may have difficulties in articulating this knowledge, there is a
plethora of work in the requirements engineering domain about how this particular
challenge can be addressed. A greater challenge arises in the situation where a
client does not initially comprehend that a given problem definition will result in a
solution that has impacts beyond the confines of the problem as defined, i.e. a
possible solution that adequately addresses the problem as defined by the client
will change or impact on other elements of the clients business model, processes,
or context. In this situation, the client’s knowledge of the solution impacts only
emerges progressively as possible designs are created by the developer and jointly
explored [44].

An alternative way of conceptualizing this is that the underpinning technology
that enables the solution implies certain linkages between different aspects of the
solution, and so when one of these aspects is addressed by a solution, the other
elements are also affected. This can possibly be clarified with a simple example.
Consider an existing company that does event promotion by regularly collecting
information from event venues and using this to construct promotional posters for
distribution, with advertising space available to generate an income stream.
Developing a Web-based system to support distribution of the event information
may seem like a relatively straightforward extension of existing business models
and processes, but the interaction with the customer base (i.e. event patrons) and
advertisers is changed by the nature of the Web. Specifically, it is likely that the
patrons will have new expectations regarding the ability to dynamically provide
feedback on events, which in turn will change the value of this information.
Advertisers will perceive differing value in a transient online presence as
compared to more permanent hardcopy advertising material. In other words, the
solution that is constructed will change the value chains that exist in the business
and possibly even ultimately the business model itself. The client’s knowledge
regarding these changes will only develop once the system itself takes form and
can be used to gain feedback.

8 Emergent Knowledge in Web Development 167

8.3.2 Addressing Client Uncertainty and Understanding Requirements

So, client uncertainty largely arises from a lack of understanding of the likely
broader impact on business problems of addressing a given set of business needs,
and client knowledge about their evolving needs emerges progressively during the
development. How is this issue addressed by current approaches? A useful place
to start in understanding this issue is to look at how requirements are handled in
Web projects. Stated rather simplistically, conventional development tends to
assume that requirements are known to clients, and they simply need to be elicited
and analyzed. Requirements processes usually differentiate (at least conceptually,
if not in the way they are represented) between user requirements that capture the
user understanding of their needs and the system specification that represents the
system that will meet these needs. The user requirements are often elicited and
formalized in a user requirements definition (URD) and then analyzed to construct
the system requirements which are formalized in a system requirements
specification (SRS). In effect, the two documents are different representations of
the same concepts.

One significant difficulty with this paradigm is that it presumes that clients
either understand their requirements, or at the very least understand the problem
that is being addressed and can be led through a process of articulating their needs.
Even when clients are not able to articulate their requirements precisely, they are
at least able te understand whether a given design will address their needs. In
cases such as these, the design may commence prior to full resolution of
requirements. The design will then be used to ascertain (from client feedback)
whether the proposed solution addresses the identified need.

Given the characteristics of Web projects that have been outlined, this will
problematic. A fundamental problem arises out of the evolving client knowledge
about the changes to the problem domain and the fact that this evolving
knowledge is actually triggered by the system designs, prototypes and
implementations.

Turning this around, we can see that it becomes impractical to resolve the
requirements (which in essence are an articulation of what needs to be done to
address the problem domain) without an understanding of the proposed solution
domain. In our research work we refer to this as a design-driven requirements
process [32]. An interesting analogy is found in the area of social informatics [40],
which encompasses the concept that technology and the use of that technology are
mutually constituted, i.e. the desired use defines the desired technological
solution, but the actual solution changes the usage. Web systems could be
described as an exemplar of that class of systems where the system and the
problem domain are mutually constituted.

Whilst there has been little work addressing this specific issue, some of the
techniques mentioned above that focus on modeling the way in which systems are
utilized [20, 47] may help reduce client uncertainty and allow clients to obtain a
clearer view of potential changes to their businesses. One avenue being pursued
by the authors is the investigation of a characterization model that represents the
key aspects that need to be woven into an evolving specification of a Web system

168 Lowe

[29] (see Table 8.1 for an example). The complete form of the model highlights
the links between the various characteristics, especially including the link between
the business architecture and the technical and information architectures. The
intention is that it be used to guide the formulation and evaluation of project

acceptance criteria, user requirements, and detailed contractual specifications.

Table 8.1. Acceptance criteria framework

Dimension I Possible Representations I Example Elements
Client/User '
Client problem (Natural language)
statement
Product vision (Natural language) Client needs and business
objectives
Users (Natural language) User descriptions and
models
Application
Content modeling Structured language, Existing content structure,
hypermedia/information information views,
modeling languages navigational structures,
(OOHDM, HDM, entity required content
modeling, etc.)
User interaction Modified TAM Usability and usefulness
metrics
Structured language, Access mechanisms, user
hypermedia modeling, control behavior, user
HCI models, etc orientation, search
requirements, security
control
Development Natural language, Adherence to corporate
constraints standards policies, resource
availability
Nonfunctional Natural language, quality | Reliability of content,
requirements metrics, adherence to copyright constraints
standards
Application evolution
Evolution directions | (Natural language) Expected content changes
Client adoption/ Business process Information dissemination
integration of Web reengineering paths, workflow changes
Maintenance Natural language, process | Content maintenance
processes models responsibility, Web
management cycles

8 Emergent Knowledge in Web Development 169
8.3.3 Development Processes

So what development approach can be used to address this “design-driven
requirements” process and assist clients in constructing knowledge about the
impacts of the solutions being developed? We can begin by considering the
increasing use of lightweight development processes for software projects [1, 15].
One of the approaches receiving the most attention is the use of eXtreme
Programming (XP) [4]. XP is based on the incremental development of partial
solutions that address component requirements. These partial solutions are then
integrated into the evolving system through refactoring of the current solution to
incorporate these components. When used in conventional software development
XP has (arguably) proven to be effective for projects that are initially ill-defined
— a characteristic of many Web projects. This is possibly because it allows a
client to see the emerging solution early in the development when further
clarification of the requirements is still possible. As a result, many of the
proponents of XP and similar approaches see them as ideal to be adopted for Web
development [46]. In effect, the emerging solution will facilitate the development
of client knowledge about the impacts of the solutions, and allow the refinement
of the system definition early in the development.

It can be argued, however, that there are certain problems that restrict the
applicability of approaches such as these to Web projects (see, for example [33]).
The first is that a number of studies have shown that approaches such as XP only
work effectively for projects that have cohesive development teams. This is often
not the case with Web projects, which often lack cohesiveness between the
technical development and the creative design as a result of the disparate
disciplinary backgrounds of the development team members. XP can also result in
a brittle architecture and poor documentation, which makes ongoing evolution of
the system difficult — something that is important for Web systems. Finally, and
perhaps most fundamentally, XP utilizes partial solutions to resolve uncertainty in
requirements, but does not inherently handle subsequent changes in these
requirements (i.e. requirements volatility) as the system evolves. In other words,
the incremental development implicit in XP can be viewed as a form of
prototyping that aims to either consider the applicability of a given design to a
known problem, or to assist the developers in ensuring that they have understood
the clients’ problem. The prototyping in Web development however aims to help a
client develop an understanding of how different solutions may impact on the
nature of the problem being addressed.

A useful divergence at this point is to consider a comparison with the approach
that is often referred to as “Ready - Fire - Aim” [23]. This essentially is referring
to approaches where the design is commenced prior to a full understanding of the
requirements (or coding commenced prior to a full design, depending on the
interpretation) as a way of informing clients in the presence of uncertainty. In
contrast, commercial Web development is typically about developing prototype
solutions as a way not of resolving initial| uncertainty, but rather to understand the
impact of a given solution. This is a little bit like saying “Well, if we fire there,

170 Lowe

then it will have this impact, but if we fire there it will have that impact”. Possible
solutions are jointly investigated by the developer and client (typically, through a
design prototyping approach, but prior to committing to a specific solution) in
terms of their impact on the problem domain and hence the requirements, with the
ultimate result that a solution is identified that matches a problem that has been
changed by that solution.

In effect, conventional software engineering processes see requirements as
preceding and driving the design process. Even where an incremental approach
(such as XP) or an iterative approach (involving multiple feedback loops) is
adopted, the design is viewed as a way of assisting in the identification and
validation of requirements; yet rarely does it help the client to actually formulate
their needs. In Web development, the situation is fundamentally different. The
design process not only helps developers and clients articulate their needs, but also
helps clients understand the system domain and therefore their needs.

In effect, the design drives the requirements process. We begin with a client’s
poor understanding of their needs (as well as system capabilities), and during the
course of the project this understanding evolves and matures. This has several
consequences. First, it increases the importance of creating flexible solutions that
can be updated and migrated to new technologies with minimal effort. For
example, the need for reusable data formats (such as XML) increases
substantially. A second consequence is that developers’ understanding of these
technologies is often restricted, increasing project risks.

ru 4
r v Y y .
T e P R
--------------------------------- -> S N
N-0-N-0-N—0-D-0-N
Project Brief / ’ / - — L
Acceptance Developmant Partisl Designe
Criteria * Specication Analysie
: : jl @
——
O Evalustion Evakumtion
Evaluation
Specification Buiid
; l Contract
Contract

Fig. 8.1 Typical web development process

Figure 8.1 shows a depiction of a development process for Web systems that
incorporates this understanding. In this figure, the first cycle iterates around a
series of exploratory design prototypes, including elements such as white sites and

8 Emergent Knowledge in Web Development 171

story-boards. The aim is to move from an initial set of acceptance criteria to a
clear specification of the system — but to a specification that includes not only
requirements but also the broad architectural design elements of the site [16, 21].
The second cycle covers usually fine-grained, incremental design and build
process. In effect, the process (specifically the first of the two key cycles shown in
Fig. 8.1) is aimed at developing (or rather evolving) a joint understanding of the
combined probleny/solution domain.

Finally, it is worth noting that anecdotal evidence indicates that these issues are
well understood and accepted within industry. Research has been limited to
empirical work using scenario-based redesign of partially developed sites, though
this work has at least recognized the importance of designs in assisting
clarification of client needs [14].

We practice a revised method of scenario-based design inferred from a
theoretical perspective which treats design as inquiry, inquiry as dialogue and
dialogue as the source of all tools, including mental constructs. The result is a set of
techniques for using structured dialogue between users and designers to increase
designers’ understanding of specific domains of users’ work.

In commercial Web projects, these concepts, particularly the mutual
interdependence of requirements and design are typically reflected in the absence
of separate requirements and design documents. Rather, developers tend to create
a hybrid specification that blends design and requirements (something that is
usually viewed as anathema in conventional software engineering).

In other words, system design allows stakeholders to understand technical
possibilities and limitations, and hence improve their understanding of the
development context. The result is a vehicle for reducing the underlying
uncertainty. For this to be effective, however, we need to develop a suitable
model of the relationship between system design, client requirements, and
uncertainty within these requirements. This uncertainty model can then be used to
adapt the requirements engineering process, resulting in a design-driven
requirements process. This is the focus of our ongoing research.

8.4 Future Trends and Conclusions

So what conclusions can we draw from the above discussions regarding how
knowledge is managed in Web projects? The key insight is that the nature of Web
projects implies that since the solution changes the nature of the problem we
therefore need to acknowledge that a client will be inherently unable to define
their problem in the absence of a possible solution. Different solutions (i.e. the
Web systems to be developed) will fundamentally lead to differing impacts on the
stakeholder interactions and business processes and hence to different problem
domains. This in turn means that we need to recognize the importance of
exploringrasrangerof possiblessolutions;yand to do so not only to determine the
optimal design, but possibly to determine the optimal problem!

172 Lowe

Further, it also indicates that client involvement in the design process becomes
crucial (something that is often viewed as very dangerous). Without an
understanding of the possible system designs, the client is unlikely to develop a
clear understanding of the implications of a proposed solution. Thus design
knowledge becomes a crucial enabling tool within Web projects.

Ongoing work of the author and others has begun to explore exactly what level
and form of design knowledge will best assist clients in developing a clear
conceptualization of the impact of possible designs. This work is, however, still
too early to have provided concrete outcomes.

Another project that is only just commencing is looking at process modeling
and project management tools that track the evolving process that accompanies the
evolving product understanding. By monitoring the relationships between these
models (often expressed as project plans) and the initial templates from which
they were derived it is possible to identify the points at which the process
deviated. Once this is identified, the developer can be interrogated as to the cause
of the deviation, and this information can then be fed back into the underlying
project templates to support future project planning. This approach becomes much
more crucial in Web projects where the nature of the process is difficult to
determine a priori because of the evolving system.

Ultimately, the insights explored in this paper are not only about Web projects,
but rather about those systems where, as we mentioned, the solution and the
problem are mutually constituted. That is neither can exist without the other, and
they need to be jointly understood, developed, and evolved.

Acknowledgements

The author wishes to acknowledge the assistance and insights of numerous people
in developing the concepts described in this chapter. In particular the author is
grateful to John Eklund, Brian Henderson-Sellers, Ross Jeffery, Didar Zowghi,
Aybiike Aurum, Nick Carr, Marcus Carr, Vassiliki Elliott, Norazlin Yusop, Louise
Scott, Lucila Carvalho, and John D’ Ambra, for their contributions to this research.

The author also wishes to acknowledge the collaborative funding support from
the Australian Research Council, Access Online Pty Ltd., and Allette Systems Ltd.
under Grant No. C4991-7612.

References

1. Angelique E. (1999) A lightweight development process for implementing business
functions on the Web. In: WebNet'99. Honolulu, Hawaii, USA, pp. 262-269

2. Baresi L., Garzotto F., Paolini P. (2001) Extending UML for modeling Web
publications. In: Proceedings of 34th Hawaii international conference on system
sciences, Hawaii, USA, pp. 1285-1294

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

8 Emergent Knowledge in Web Development 173

Baumeister H., Koch N., Mandel L. (1999) Towards a UML extension for hypermedia
design. In: <<UML>> 1999: IEEE, the second international conference on the unified
modeling language, Fort Collins, Colorado, USA, pp. 614-629

Beck K. (1999) Extreme programming explained. Addison-Wesley, Reading, MA
Burdman J. (1999) Collaborative Web development. Addison-Wesley, Reading, MA
Ceri S., Fraternali P., Bongio A. (2000) Web modeling language (WebML): a
modeling language for designing Web sites. In: Proceedings of WWW9 conference.
Amsterdam, The Netherlands, pp. 137-157

Chisholm W., Vanderheiden G. Jacobs 1. (1999) Web content accessibility guidelines
1.0. World Wide Web Consortium, http://www.w3.0org. TRZ/WCAG10 (accessed 16th
April)

Conallen J. (1999) Building Web applications with UML. Addison Wesley Object
technology series: Addison-Wesley, Reading, MA

Constantine L.L., Lockwood L.A.D. (1999) Software for use: Addison-Wesley, MA

. Dart S. (2000) Configuration management: the missing link in Web engineering:

Artech House, Norwood, MA

De Troyer O., Leune C. (1997) WSDM: A user-centered design method for Web sites.
In: 7th International World Wide Web conference. Brisbane, Australia, pp. 85-94
Eklund J., Lowe D. (2000) A quality assurance methodology for technology-delivered
education and training. In: WebNet 2000: World Conference on the WWW and
Internet. San Antonio, Texas, USA, Association for advancement of computing in
education.

England E., Finney A. (1999) Managing multimedia: project management for
interactive media. Addison Wesley, Reading, MA

Erskine L., Carter-Tod D., J., Burton J. (1997) Dialogical techniques for the design of
web sites. International Journal of Human-computer studies, 47: 169-195

Fournier R. (1999) Methodology for client/server and Web application development.
Yourdon Press, Englewood Cliffs, NJ

Gates L. (2001) Analysis and design: critical yet complicated. In: Application
development trends, 101 Communications, Framingham, MA, pp. 40-42

German D.M., Cowan D.D. (1999) Formalizing the specification of Web applications.
Lecture Notes in computer science, Springer, Berlin Heidelberg London,
1727:281-292

Ginige A., Lowe D., Robertson J. (1995) Hypermedia authoring. IEEE Multimedia,
pp. 24-35

Gu A., Lowe D., Henderson-Sellers B. (2002) Linking modeling capabilities and
abstraction levels: the key to Web system architectural integrity. In Proceedings of the
eleventh international World Wide Web conference, Hawaii, USA: ACM Press,
published on CD ROM

Guell N., Schwabe D., Vilain P. (2000) Modeling interactions and navigation in Web
Applications. In: World Wild Web and conceptual modeling workshop - ER'00
conference. Salt Lake City, USA, pp. 115-127

Haggard M. (1998) Survival guide to Web site development: Microsoft press,
Redmond, OR, USA

Hennicker R., Koch N. (2001) Systematic design of Web applications with UML. In:
SiauyK<;-Halpin, T (Eds:)s,Unified modeling language: systems analysis, design and
development issues,. Idea group publishing, USA

174

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42,

43.

Lowe

Holtzman J.K. (1993) Ready, fire!! Aim?. In: Proceedings of the 11th annual
international conference on systems documentation. ACM press, Waterloo, Canada
Isakowitz T., Stohr E., Balasubramanian P. (1995) RMM: A methodology for
structured hypermedia design. Communications of the ACM, 38: 34-44

Koch N., Kraus A. (2002) The expressive power of UML-based Web engineering. In:
second international workshop on Web-oriented software technology, Malaga, Spain
Lange D. (1994) An object-oriented design method for hypermedia information
systems. In: Proceedings of the twenty seventh Hawaii international conference on
system sciences, Maui, Hawaii

Lee S.C. (1997) A structured navigation design method for intranets. In: Proceedings
of the third Americas conference on information systems, Association for information
systems, Indianapolis, USA

Lord J. (2000) Patterns for e-business: Lessons learned from building successful e-
business applications. IBM, pp. 4

Lowe D. (2000) A framework for defining acceptance criteria for Web development
projects. In: Proceedings of the Second ICSE Workshop on Web Engineering.
Limerick, Ireland, pp.126-131

Lowe D. (2000) Web engineering or Web gardening?. WebNet Journal, Internet
technologies, applications and issues, pp. 9-10

Lowe D., Henderson-Sellers B. (2001) Web development: addressing process
differences. Cutter IT Journal, pp. 11-17

Lowe D., Eklund J. (2002) Client needs and the design process in Web projects.
Journal of Web engineering, 1: 23-36

Martin R. (2000) A case study of XP practices at work. In: Proceedings of XP2000.
Cagliari, Italy, pp. 74-77 .

OMG (2000) OMG unified modeling language specification. Version 1.3 (released to
the general public as OMG document formal/00-03-01 in March 2000)
http://www.omg.org/cgi-bin/doc?formal/00-03-10 (accessed 16th April)

Overmyer S. (2000) What’s different about requirements engineering for Web sites?
Requirements engineering journal, 5: 62-65

Paulo F.B., Turine M.A.S., de Oliveira M.C.F., Masiero P.C. (1998) XHMBS: A
formal model to support hypermedia specification. In: Proceedings of the ninth ACM
conference on hypertext, pp. 161-170

Philips R. (1997) The developer’s handbook to interactive multimedia: Kogan Page,
London, UK

Pressman R. (2001) Software engineering: A practitioner’s approach. McGraw Hill,
New York, USA

Russell P. (2000) Infrastructure - make or break your e-business. In Proceedings of the
technology of object-oriented languages and systems, Sydney, Australia, (keynote)
Sawyer S., Rosenbaum, H. (2000) Social informatics in the information sciences:
current (2000). Informing science, 3: 89-96

Schwabe D. Rossi, G. (1995) The object-oriented hypermedia design model.
Communications of the ACM, 38: 45-46

Schwabe D. Rossi, G. (1998) Developing hypermedia applications using OOHDM. In:
Workshop on hypermedia development processes, methods and models. Pittsburgh,
USA, pp..207-225

Sinha G. (1999) Build a component architecture for e-commerce. E-Business Advisor,
http://advisor.com/doc/05328 (accessed on 16th April)

44.
45.

46.

47.

8 Emergent Knowledge in Web Development 175

Stein L.D. (2000) Profit, the prime directive. Web techniques, 5: 14-17

Takahashi K., Liang E. (1997) Analysis and design of Web-based information systems.
In: Proceedings of the 7th international World Wide Web conference, Brisbane,
Australia, pp. 367-375

Thomas D. (2000) Managing software development in Web time software. In:
Proceedings of XP2000. Cagliari, Italy

Vilain P., Schwabe D., Souza C.S. (2000) A diagrammatic tool for representing user
interaction in UML. In: Proceedings of the IEEE, third international conference on the
unified modeling language. York, UK, pp. 133-147

Author Biography

A/Prof. David Lowe is Associate Dean (Teaching and Learning) in the Faculty of
Engineering at the University of Technology, Sydney. His research focuses on
Web development processes and Web project specification, and information
contextualization. He has published widely, including several books focusing on
Web development. In the last 7 years, he has published over 50 refereed papers
and attracted over 1,300,000 AUD in funding. He is on numerous Web conference
committees, is the information management theme editor for the Journal of
Digital Information and is on the editorial board for the International Journal of
Web Engineering and Technologies. He has undertaken numerous consultancies
related to software evaluation, Web development (especially project planning and
evaluation), and Web technologies.

Part3
Application of Knowledge Management in
Software Engineering

Claes Wohlin

Knowledge is power.
— Francis Bacon

Software development is a human intensive activity. It is heavily dependent on the
creativity and ingenuity of talented people. This implies that the most important
assets in software organizations are the employees [3]. It is well known that
software is intangible and that the development of software is a design activity and
not a manufacturing activity. These characteristics make a learning organization
particularly important for software development. Some of the challenges
pinpointed in the knowledge management literature are highlighted below, where
it also is emphasized that they are highly relevant in the software engineering
field. A sofiware development organization is so heavily dependent on individual
software developers that the only way for an organization to avoid becoming too
dependent on its personnel is to adopt a learning organization approach. The need
for viewing software organizations as learning organizations has been proposed in
different forms in the software engineering literature [1, 8]. However, there is still
much to learn from knowledge management literature. The chapters in Part 3
illustrate how knowledge management approaches can be applied to software
engineering in different ways. Before going into the articles, it is important to
appreciate how the “traditional” knowledge management literature relates to the
needs in software engineering.

In [6], a selection of knowledge management papers is published by some of
the worlds’ leading experts on knowledge management. Drucker explains how
large organizations will increasingly resemble orchestras, hospitals and
universities rather than traditional manufacturing companies [5]. By this he means
that the organizations will be knowledge-based and composed mainly of
specialists. This is already the situation in software development, with most
employees being highly educated individuals. Thus, a challenge in software
organizations is to be able to capture the individual’s knowledge and turn the
organizations into learning organizations.

Nonaka stresses that it is not sufficient to be able to handle explicit or
quantifiable knowledge [9]. He emphasizes the need for organizations to learn
how to handle tacit knowledge. This is also very important in software
organizations, since the software is intangible and not all knowledge is
quantifiable. Thus, the challenge is to capture both explicit and tacit knowledge in
software development.

178 Wohlin

Garvin links the learning organization with the need for continuous
improvement [7]. He discusses the need for systematic problem solving,
experimentation, learning from past experiences and best practices, as well as the
need for knowledge transfer to the whole organization. These needs are based on
the basic improvement paradigms such as the Plan - Do - Check - Act cycle
introduced by Deming [4] and the Quality Improvement Paradigm {2] in software
engineering literature. Further, experimentation as a method for evaluation of
methods and techniques in software engineering is discussed in [11]. Given the
above, one challenge is to master the improvement cycles to become a true
learning organization.

Argyris discusses the challenges in getting smart people to learn [1]. He
stresses that people are often enthusiastic about improvement, but are often fairly
reluctant to change. Given the high educational level in most software
organizations, this challenge is highly relevant for most of them. Thus, a challenge
is to encourage and manage learning and improvement.

Quinn et al. points to the fact that a company’s success lies more in intellectual
capital than in other assets [10]. This raises questions with respect to different
types of knowledge. The authors divide the knowledge into four levels with an
increasing level of importance: cognitive knowledge (know-what), advanced skills
(know-how), system understanding (know-why) and self-motivated creativity
(care-why). Quinn et al. argue that organizations that manage to capitalize on the
fourth level will be the most successful companies. Thus, a challenge for the
software development organizations is to be able to reach and maintain the fourth
level of knowledge management.

In summary, knowledge has to be captured, managed and reused with the above
in mind. This includes being able to handle both explicit and tacit knowledge. In
particular, it is a challenge to manage the mixture of explicit and tacit knowledge.
Moreover, this involves being able to capitalize on the intellectual capital of the
individuals and turn this into a learning organization that excels in continuous
improvement. The ability to manage knowledge in software engineering is likely
to be a key success factor for software projects and organizations in the future.
Managing knowledge, however, is not an easy task in an environment where there
is constant pressure to develop new and better products faster, cheaper and with
higher quality than your competitors. Thus, it is clear that supporting methods and
ways to manage changing knowledge in software engineering are greatly needed.

The objective of this part is to provide a selection of articles presenting
methods and experiences of managing knowledge in software engineering. The
chapters provide illustrations of how the challenges depicted in the knowledge
management literature may be addressed in software engineering. The authors of
the articles share their experiences and insights with the readers. This includes the
application of different methods to managing knowledge as well as knowledge
management in different areas of software engineering. The chapters in this part
illustrate some possible methods to use when working with knowledge
management in software engineering.

There are five chapters in this part. In Chap. 9, “Case-based Reasoning and
Software Engineering”, Martin Shepperd provides an introduction and overview

Part 3 Application of Knowledge Management in Software 179

of case-based reasoning and reviews some of the software engineering
applications of case-based reasoning. The applications include project effort
prediction and reuse of software artifacts, processes and past experiences. The
chapter also points out some challenges in this area and some future areas for
research. In summary, the chapter illustrates how case-based reasoning can be
used as a method to manage knowledge in software engineering.

In Chap. 10, “A Process for Identifying Relevant Information for a Repository:
A Case Study for Testing Techniques”, Sira Vegas, Natalia Juristo and Victor
Basili propose a process to identify the information that a characterization schema
should include for the purpose of building an experience base. They provide a case
study from software testing of how such a schema may be used. In summary, the
chapter illustrates how schemas may be constructed to store experiences that may
be used in later projects.

In Chap. 11, “A Knowledge Management Framework to Support Software
Inspection Planning”, Stefan Biffl and Michael Halling introduce a framework for
decision support in software inspections. The framework consists of three levels:
inspector level, inspection level and quality management level. The authors
discuss how the framework can be used to manage knowledge for software
inspections. In summary, the chapter illustrates how a framework can help in
structuring questions and knowledge related to a specific development activity, in
this case software inspections.

In Chap. 12, “Lessons Learned in Software Quality Assurance”, Linda
Rosenberg discusses lessons learned during the implementation of software
quality assurance. The lessons are documented to support project managers, and
hence help the managers increasing the probability of a successful project. The
author shares experiences from one environment and hence illustrates the
necessity to articulate lessons learned. This is particularly important when lessons
learned often are based on tacit knowledge. In summary, the chapter illustrates
how tacit knowledge from one environment, although relevant for many other
environments, has been documented as lessons learned.

In Chap. 13, “Making Software Engineering Competence Development
Sustained through Systematic Experience Management”, Klaus-Dieter Althoff and
Dietmar Pfahl present how to extend the current state of the art in experience
management through integration with e-learning. They present their view on the
integration of e-learning and knowledge management and discuss a system that
supports this. They continue by presenting some recent advances in experience
management and finally discuss how to connect e-learning with experience
management.

The intention is that the articles Part 3 should form a source of information and
inspiration for those practitioners and researchers who would like to, more
effectively, use and manage knowledge in software engineering. This includes, for
example, managing knowledge to enable reuse of experiences between software
projects and within software organizations.

180 Wohlin

References

1. Argyris C. (1998) Teaching smart people how to learn. In: Harvard business review on
knowledge management, Harvard business school press, USA, pp. 81-108

2. Basili V.R,, Caldiera G., Rombach, H.D. (1994) Experience factory. In: Marciniak, J.J
(Ed.), Encyclopedia of sofiware engineering, John Wiley and Sons, Hoboken, NJ, USA

3. Boehm B. (1981) Sofiware engineering economics. Prentice-Hall, Englewood Cliffs,
NJ, USA

4. Deming E. (1986) Out of the crisis. MIT center for advanced engineering study, MIT
Press, Cambridge, MA

5. Drucker P.F. (1998) The coming of the new organization. In: Harvard business review
on knowledge management. Harvard business school press, USA, pp. 1-19

6. Drucker P.F., Leonard D., Brown J.S. (1998) Harvard business review on knowledge
management. Harvard business school press, USA

7. Garvin D.A. (1998) Building a learning organization. In; Harvard business review on
knowledge management, Harvard business school press, USA, pp. 47-80

8. Lennselius B., Wohlin C. (1987) Software metrics: motivation and fault content
estimation. Microprocessors and microsystems, 11: 365-375

9. Nonaka I. (1998) The knowledge-creating company. In: Harvard business review on
knowledge management, Harvard business school press, USA, pp. 21-45

10. Quinn J.B.P., Anderson P., Finkelstein S. (1998) Managing professional intellect:
making the most of the best. In: Harvard business review on knowledge management,
Harvard business school press, pp. 181-205

11. Wohlin C., Runeson P., Host M., Ohlsson M.C., Regnell B., Wesslén A. (1999)
Experimentation in software engineering: an introduction. Kluwer Academic, Boston,
MA, USA

Editor Biography

Dr. Claes Wohlin is professor of sofiware engineering at the Department of
Software Engineering and Computer Science at Blekinge Institute of Technology
in Sweden. Prior to this, he held professor chairs in software engineering at Lund
University and Linkoping University. He has a Ph.D. in communication systems
from Lund University. His research interests include empirical methods in
software engineering, software metrics, software quality and systematic
improvement in software engineering. Dr. Wohlin is the principal author of the
book Experimentation in Software Engineering — An Introduction, (Kluwer
1999). He is co-editor-in-chief of the Information and Sofiware Technology
journal (Elsevier). Dr. Wohlin is on the editorial boards of Empirical Sofiware
Engineering: An International Journal and Software Quality Journal.

9 Case-Based Reasoning and Software Engineering

Martin Shepperd

Abstract: Case-based reasoning (CBR) is a technology that is based on the idea of
analogy. Solutions from past problems (cases) can be retrieved and deployed, with
adaptation where necessary, to solve new problems. It is argued that CBR as a
technology has a number of strengths, since it deals well with poorly understood
problem domains, does not require explicit knowledge elicitation and supports
collaboration with users. This chapter provides some general background
information on CBR and then considers how CBR has been deployed to solve
problems in the domain of sofiware engineering. These problems fall into two
general categories, namely prediction and reuse. The main prediction problems are
related to project characteristics such as effort and duration, whilst the chief reuse
foci are related to learning from past experiences. The chapter concludes by
identifying three research challenges. These are to be able to better adapt retrieved
solutions to solve new problems, to explore richer forms of representation for
complex problems and, last, to encourage better collaboration between the user
and the CBR system.

Keywords: Case-based reasoning, Software engineering, Reuse, Project
management

9.1 Introduction

Case-based reasoning (CBR) was first formalized in the 1980s following from the
work of Schank and others on memory [41], and is based upon the fundamental
premise that similar problems are best solved with similar solutions [36]. The idea
is to learn from experience. However, a crucial aspect of CBR lies in the term
“similar”. The technique does not require an identical problem to have been
previously solved. Also CBR differs from many other artificial intelligence
techniques in that it is not model based. This means, unlike knowledge-based
approaches that use rules, the developer does not have to explicitly define
causalities and relationships within the domain of interest. For poorly understood
problem domains this is a major benefit.

CBR is a technique for managing and using knowledge that can be organized as
discrete abstractions of events or entities that are limited in time and space. Each
such abstraction is termed a case. Software engineering examples could be
projects, design patterns or software components. Cases are characterized by
vectors of features such as file size, number of interfaces or development method.
CBR. systems, typically function by solving the new problem, often termed the
target case, through retrieving and then adapting similar cases from a repository of
past (and therefore solved) cases. The repository is termed the case-base.

182 Shepperd

CBR is argued to offer a number of advantages over many other knowledge
management techniques, in that it:

e Avoids many of problems associated with knowledge elicitation and
codification

¢ Only needs to address those problems that actually occur, whilst generative (i.e.
algorithmic) systems must handle all possible problems

o Handles failed cases, which enable users to identify potentially high risk
situations

e Copes with poorly understood domains (for example, many aspects of software
engineering) since solutions are based upon what has actually happened as
opposed to hypothesized models

e Supports better collaboration with users who are often more willing to accept
solutions from analogy-based systems since these are derived from a form of
reasoning akin to human problem solving. This final advantage is particularly
important if systems are not only to be deployed, but also to have trust placed
in them

Since the 1980s CBR has generated significant research interest and has been
successfully applied to a wide range of problem domains. Typical applications are
diagnostic systems; for instance, CASCADE addressed solving problems with the
operating systern VMS. More recently, Alstom have deployed CBR technology in
conjunction with data mining of past fault data to support diagnosis of system
error messages from the on-board computers that control all the train electronics.
Another application area has been legal systems, unsurprisingly, since the concept
of precedent and case law lie at the heart of many judicial systems such as those of
the UK and USA. Design and planning are other problem domains that have also
been tackled. For instance, CADET was developed as an assistant for mechanical
designers, and ARCHIE provides support for architects. Decision support,
classification (e.g. PROTOS was developed to classify hearing disorders) and e-
commerce (e.g. a last-minute Web-based travel booking system that uses a CBR
engine in order to overcome the problem of not always being able to exactly
match client requirements) are other problem domains that have been successfully
tackled using CBR. Although a little dated, Watson and Marir [49] provide
detailed descriptions of a wide range of CBR applications. Lists of more recent
examples of applications may be found in [18, 46].

The remainder of this chapter provides more background on CBR technology
(principally from a machine learning viewpoint), reviews some specifically
software engineering applications of CBR, namely project effort prediction, defect
prediction, retrieval from component repositories and the reuse of successful past
experience. It then goes on to consider some of the outstanding challenges (e.g.
similarity measures, feature and case subset selection, dimension rescaling and
learning adaptation rules) and point to potentially fruitful areas of future work.

9 Case-Based Reasoning and Software Engineering 183

9.2 An Overview of Case-Based Reasoning Technology

As previously indicated, case-based reasoning has at its heart the notion of
utilizing the memory of past problems solved to tackle new problems.! Problems
are organized as cases where each case comprises two parts: the description part
and a solution part. The description part is normally a vector of features that
describe the case state at the point at which the problem is solved. The solution
part describes the solution for the specific problem and may vary in complexity
from a single value for a classification or prediction system to a set of rules or
procedures to derive a solution that might include a range of multimedia objects
such as video and sound files.

9.2.1 The Basic CBR Cycle

Aamodt and Plaza [1] helpfully identify four stages of CBR—sometimes referred
to as the R* model—that combine to make a cyclical process:

e Retrieve similar cases to the target problem

¢ Reuse past solutions

Revise or adapt the suggested solutions to better fit the target problem
¢ Retain the target and solution in the case-base

Figure 9.1 illustrates this cycle diagrammatically. Central is the case-base,
which is a repository of completed cases, or in other words the memory. When a
new problem arises it must be codified in terms of the feature vector (or problem
description) which is then the basis for retrieving similar cases from the case-base.
Clearly, the greater the degree of overlap of features, the more effective the
similarity measures and case retrieval. Ideally, the feature vectors should be
identical since CBR does not deal easily with missing values, although of course
there are many data imputation techniques that might be explored [38]. Measuring
similarity lies at the heart of CBR and many different measures have been
proposed.

Irrespective of the measure, the objective is to rank cases in decreasing order of
similarity to the target and utilize the known solutions of the nearest k cases.
Choosing a value for £ is a matter of some debate, but for a systematic exploration
see [30]. Solutions derived from the retrieved cases can then be adapted to better
fit the target case either by rules, by a human expert or by a simple statistical
procedure such as a weighted mean. In the latter case the system is often referred
to as the k-nearest neighbor (&-NN) technique. Once the target case has been
completed and the true solution known, it can be retained in the case-base. In this

! Strictly speaking, some authors such as [37] differentiate between interpretative and
problem solving CBR: Interpretative CBR focuses upon classification rather than direct
problem solving, although it could always be argued that classification can be viewed as a
subgoal to solving another problem. Howeyer, this distinction is not pursued in this chapter.

184 Shepperd

way the case-base grows over time and new knowledge is added. Of course, it is
important not to neglect the maintenance of the case-base over time so as to
prevent degradation in relevance and consistency.

CODIFY
Target Case - Target Case
Pmb:effln ffi?cﬁr:fhon - —— Pmtil?;j descr:fllon
RETRIEVE Similar Solved Case(s) .
P“’f‘;;’j "es‘:ﬁ']'f“"" Solution(s)
Case-base j

Problem description | oy,
Problem description | g,y 4i0n

| REUSE

Problem descrintion | AND
Problem description . i
s | REVISE

RETAIN

Target Case Completed Target Case

Problem description | goytion Problem description Pmpo_sed
<fl,..,Mn> <fl,..,In> solution

Fig. 9.1. The CBR process (adapted from Aamodt and Plaza [1])

This CBR process is best illustrated by an example. Consider the problem of a
project manager predicting how many resources to allocate for the development of
different software components. Knowledge or memory of the past is the basis for
predicting future effort. Here the case is a software component. Each case will
comprise a vector of features to describe each component. Examples of features
might include the programming language (categorical), the number of interfaces
(discrete) and the time available to develop, since severe schedule compression
may adversely affect the development effort (continuous). Notice how the vector
can comprise features of different types. This adds some complexity to the way in
which distance is measured. The choice of features is arbitrary and may be driven
by both pragmatic considerations—what is easily available—and domain
considerations—which features best characterize the problem. One constraint is

9 Case-Based Reasoning and Software Engineering 185

that the values for the features must be knowable at the time the prediction is
required, which will usually militate against the use of features such as code
length. For effort prediction the solution part of the case is trivial, merely a single
value denoting the actual effort consumed.

For our effort prediction problem, the case-base grows as components are
completed and the solution, i.e. the actual required amount of effort in person
hours or whatever, becomes known. When a new prediction problem arises, the
new component must be described in terms of the feature vector so that it can be
viewed as the target case. The problem then becomes one of retrieving similar
cases from the case base and using the known effort values as a basis of the
prediction for the target case. The prediction may be modified by the application
of rules, typically obtained from a domain expert such as an experienced project
manager, or by a simple procedure such as finding the mean. Once the component
has been completed and the true effort value is known, the case can be added to
the case-base. In this way the case-base is enlarged over time and can also follow
trends or changes in the underlying problem domain, such as the introduction of
new technologies and programming languages. For this reason some similarity
measures explicitly include a notion of recency so that newer cases are preferred.

9.2.2 Similarity Measures

As mentioned, measuring similarity has generated a range of different ideas.
These include

e Nearest neighbor algorithms are the most popular and are based upon
straightforward distance measures for each feature. Each feature must be first
standardized, so that the choice of unit has no influence. Some variants of this
algorithm enable the relative importance of features to be specified, although
for poorly understood problem domains this may be very problematic. A
common algorithm is given by Aha [2].

1
\/Z jeP Feature_di ssimilarit y(C, j? C, j)

SIM (C1,C2,P) =

where P is the set of » features, C; and C, are cases and

2
(C1;-Ca))
Feature _ dissimilar ity (C; j,C2 j) 0
1

186 Shepperd

where (i) the features are numeric, (ii) if the features are categorical and C1;=C2j
or (iii) where the features are categorical and C1;#C);j respectively.

o Manually guided induction: here an expert manually identifies key features,
although this reduces some of the advantages of using a CBR system in that an
expert is required

o Template retrieval: This is similar to query by example database retrieval in
that the user supplies values or ranges for a subset of the problem description
vector, and all the cases that match are retrieved.

o Specificity preference: Here cases are preferred that match features exactly over
those that match generally.

o Frequency preference: Here preference is given to those cases that have been
most frequently retrieved in the past.

® Recency preference: This type of algorithm favors more recently matched cases
over those that have not been matched for some period of time.

o Object-oriented similarity: For complex problem domains it may be necessary
to make similarity comparisons between differently structured cases. In the
object-oriented approach cases are represented as collections of objects (each
object has a set of feature-value pairs) organized in a hierarchy of part-of
relationships [14].

o Fuzzy similarity: This approach uses concepts such as at-least-as-similar and
just-noticeable-difference [42] as opposed to crisp values.

These similarity measures suffer from a number of disadvantages. First,
symbolic or categorical features are problematic. Although there are several
algorithms that have been proposed to accommodate categorical features, these
tend to be fairly crude in that they tend to adopt a Boolean approach: features
match or fail to match with no middle ground. Note though that the fuzzy
similarity can be an exception since the linguistic concepts of, say, “quite similar”
might be applied to some categorical features, for example, comparing a feature
programming language containing the values C and C++.

A second criticism of many of these similarity measures is that they fail to take
into account information that can be derived from the structure of the data; thus,
they are weak for higher-order feature relationships such as one might expect to
see exhibited in legal systems. By contrast, the object-oriented similarity measures
can still be applied to complex problem domains where it may be necessary to
assess similarity between differently structured cases. Here, in order to consider
similarity it is necessary to take into account both intra- and interobject similarity.
Intraobject similarity is based on common properties. However, the difference
between two cases may reside in their differing class structures rather than in their
shared features, hence the need for a measure to take into account interobject
similarity. An example might be comparing software projects that are differently
comprised of staff and staff roles. For instance, project (case) A may comprise
management, clerical and technical teams, each characterized by their own set of
features, whilst project (case) B might comprise technical and sales teams. A
traditional similarity metric can only compare features in common, but cannot

9 Case-Based Reasoning and Software Engineering 187

compare the differing structures of these two projects or cases. Bergmann and
Stahl [14] describe a sophisticated similarity metric based on the product intra-
and interobject similarity. The main difficulties for such metrics are validation and
encouraging collaboration between the human user and the CBR system since this
approach is somewhat less intuitive than a simple Euclidean distance measure.

9.2.3 Feature and Case Subset Selection

Another difficulty for CBR, which is common to all machine learning approaches,
is that the similarity measures retrieve more useful cases when extraneous and
misleading features are removed. Knowing which features are useful is not always
obvious for at least three reasons. First, the features contained in the feature vector
are often determined by no more a systematic reason than availability. Second, the
application domain may not be well understood: There is no deep theory to guide.
Third, the feature standardization used by some similarity measures can
substantially complicate any analysis. This is because some features may actually
be more important than others, however, the standardization will assign each
feature equal influence. In such circumstances colinearity can be usefully
exploited. In effect, by using several closely related features, one underlying
dimension can be made more important in the search for similar cases. Deciding
which features to remove is known as the feature subset selection problem. There
is an equivalent problem relating to case removal, known rather unsurprisingly as
the case subset selection problem. Here the situation is one of eliminating
unhelpful solutions from the case-base. Unfortunately, both are computationally
intractable since they are NP-hard search problems. It is interesting to note that in
general, the pattern is for smaller, more relevant case-bases to substantially
outperform larger, less focused ones.

Approaches to searching for subsets fall into two categories: filters and
wrappers [33]. Filters operate independently of the CBR algorithm, reducing the
number of features prior to training. By contrast, wrappers use the CBR algorithm
itself on some sample of the data set in order to determine the fitness of the subset.
This tends to be computationally far more intensive, but generally can find better
subsets than the filter methods. Various wrapper methods have been investigated
by a number of researchers. Early versions of ANGEL [43] addressed the problem
of searching for the optimal feature subset by an exhaustive search using a jack
knife? on the case base in order to determine fitness. However, as previously
stated, the search is NP-hard, so once the number of features exceeds 15 - 20 this
becomes computationally intractable. Other approaches have included different
variants of hill climbing algorithms [45], sequential feature selection algorithms,
both forward and backward [3] and genetic algorithms [S1]. These have generally

27A'jack knife is a validation strategy that works by successively holding out each case, one
at a time, and using the remainder of cases to generate the prediction for the hold-out case
[20]

188 Shepperd

been reported to lead to good improvements in solution quality without the
prohibitive computational cost of an exhaustive search.

Essentially all these methods have a search component to generate candidate
subsets from the space of all possible subsets and a fitness function that is a
measure of the error derived from the solution proposed by the CBR system using
the subset, trained on a sample from the data set and validated on a holdout
sample. Typical sampling techniques are the jack knife and n-fold® validation. The
fitness function is generally a measure of deviation between the proposed and
desired solution, and as such is a cost that should be minimized. The exact nature
of the measure depends upon the nature of what is being predicted, but is usually
either based on the cost of misclassifications or the sum of absolute residuals.

9.2.4 Adaptation

Another important aspect of CBR is adaptation of the solution, particularly when
even the most similar cases differ substantially from the target case. This might
occur if the case-base is small or heterogeneous. The simplest approach, that of k-
NN systems, is to use the solution of the nearest neighbor, or mean (possibly
distance weighted so that the nearest solutions are most influential) of several
neighbors. Hanney and Keane [24] describe an interesting alternative, which
learns how to adapt by comparing feature differences and solution differences.
Unfortunately, this structural approach is limited to linear, or near-linear
problems. Another widely used adaptation strategy is the use of rules to modify
proposed solutions. The difficulty here is that the motivation for using CBR in the
first place is often the challenge of performing knowledge elicitation, so where do
the rules come from [37]? Whilst Watson and Marir [49] identify a number of
additional adaptation strategies, &~-NN and rule-based approaches are the most
popular.

9.2.5 Unsuited Problem Domains

So far this section has focused on the successful application of CBR technology. It
is, however, also important to stress that there are problem domains that are not so
well suited to CBR. These can be characterized by one or more of the following:

o Lack of relevant cases, for example, when dealing with an entirely new domain.
In truth, such situations are extremely resistant to solution by any technique,
though one possibility is a divide-and-conquer strategy so whilst the problem

3 n-fold validation is another common validation procedure within the machine learning
community whereby the data set is divided into » approximately equal subsets. Each subset
is'successively held-out and then refurned tol the training set. This process is repeated »
times so that each case forms part of the hold-out set exactly once. This is a generalization
of the jack knife where » is the total number of cases in the case-base.

9 Case-Based Reasoning and Software Engineering 189

may be novel in its entirety, it may be that useful analogies may be sought for
some, or all, of its constituent parts.

¢ Few cases are available due to a lack of systematically organized data, typically
due to information not being recorded or being primarily in a natural language
format. CBR does not deal well with large quantities of unstructured text 4.

e The problem domain can be easily modeled and is well understood, for
example, when regression techniques can find simple structural equations that
have high explanatory power. In such circumstances it would seem wiser to use
the model-based technique.

This overview has been necessarily brief. For more detail, the reader is referred
to the classic book by Kolodner [34], more recent works such as Althoff (8],
Bergmann [13] and for a comparison of different approaches, to the paper by
Finnie and Sun [21].

9.3 Software Engineering Applications of CBR

Having considered case-based reasoning in general we now turn to its application
to problems drawn from the domain of software engineering. Broadly speaking,
this work falls into two categories: prediction and reuse type applications. We
discuss each in turn.

9.3.1 Prediction in Software Engineering

It has long been recognized that a major contribution to successful software
engineering is the ability to be able to make effective predictions particularly in
the realms of costs and quality. Consequently, there has been significant research
activity in this area, much of which has focused on effort and defect prediction.
Both these problems are characterized by an absence of theory, inconsistency and
uncertainty that make them well suited to CBR approaches.

It was suggested in the early 1980s that analogy might form a good basis for
software project effort prediction [16]. However, the earliest work to formalise
this process was by Vicinanza and coworkers [27]. They developed a CBR system
with rule-based adaptation named Estor. This involved knowledge elicitation from

4 This not to say there has been no research into textual CBR. Much work has focused on
the extraction of predetermined features. Where the set of features required for describing
each case varies greatly, then an interactive CBR method (see for example, Aha et al., [4,
5]) may be useful for guiding the author through the elicitation process (i.e. through a series
of prompted questions whose answers assign values to relevant attributes). One advantage
of this method is that it can help avoid some standard problems with information retrieval
systems'(e'g. how to interpret text expressions that have multiple potential meanings) by
clarifying the lesson writer’s inputs during elicitation. However, in general, natural
language processing (NLP) remains an extremely intractable problem.

190 Shepperd

a domain expert—an experienced software project manager—to derive adaptation
rules. They reported encouraging results based upon a small industrial dataset of
15 projects [31]. Estor was comparable to the expert and significantly more
accurate than COCOMO model [16] or function points [7]. However, their
approach requires access to an expert in order to derive estimation rules and create
a case-base. Also the rules are couched in terms of the particular set of features in
Kemerer's data set, which severely limits their applicability as there are wide
discrepancies in the range and types of features collected by different software
organizations.

Another early project [15] Finding Analogies for Cost Estimation (FACE) also
used CBR technology and reported results based upon another publicly available
data set, COCOMO [16]. The authors reported accuracy levels of MMRE’ = 40 -
50%; however, the system was only able to make predictions for 46 out of a total
of 63 projects. By contrast, Finnie et al. [22] reported good results using CBR with
adaptation rules for a large industrial data set of 299 projects, split into a training
set of 249 projects and a validation set of 50 projects. Their CBR approach proved
to be significantly more accurate than a regression-based approach and
comparable with an artificial neural net (ANN), with the added advantage of better
explanatory value than the ANN. As with the Vicinanza [27], the disadvantage of
this approach is that new adaptation rules must be derived for new data sets.

At the same time, a simpler approach was being pursued by Shepperd and
others [43, 44] based on the idea of a &~-NN system named ANGEL. The work was
guided by the twin aims of expediency and simplicity so as to make the approach
as widely applicable as possible whilst at the same time providing transparency in
order to increase trust by project managers. Similarity was defined in terms of
Euclidean distance between arbitrary sets of project features, such as number of
interfaces, development method, application domain and so forth. The number and
type of features chosen could depend upon what data is available to characterize
projects. The authors reported having analyzed datasets with as few as 1 feature
and as many as 29 features. Features could be either categorical or continuous and
are standardized so that each feature has equal influence. The other distinctive
characteristic of the ANGEL approach is the implementation of an automated
feature subset selection search.

As per Finnie et al., Shepperd and co-workers used stepwise regression analysis
as a benchmark for evaluating the predictive performance of ANGEL. Table 9.1
summarizes the results from an empirical evaluation of ANGEL-based upon nine
different data sets. It can be seen that for these data sets the k-NN approach
consistently outperformed regression-based models. Subsequent studies have
reported more mixed experiences. A study of software maintenance effort [29]
found similar results. However, other researchers, most notably [17, 28] obtained
conflicting results where the regression model generated significantly better

5 MMRE or mean magnitude of relative error is a widely used accuracy indicator by
software project cost researchers. It is defined as 1/n Y, abs((act;-pred,)/act;)) where i is the
ith prediction and there are a total of n cases. One disadvantage of MMRE is that it is
asymmetric, nevertheless it is widely quoted.

9 Case-Based Reasoning and Software Engineering 191

results than the ANGEL based approach. While there are some differences in
implementation, in particular [17] used a different procedure to select the best
feature subset based on a filter, this does not fully explain differences in the
results. Doubtless, the underlying characteristics of the problem data set are likely
to exert a strong influence upon the relative effectiveness of different prediction
systems. For example, the two datasets [17] used, both appear to contain well-
defined hyperplanes such that the regression procedures are able to generate
models with good explanatory power as evidenced by the high R-squared
values. One would not expect case-based reasoning to perform well since instead
of interpolating or extrapolating it endeavors to draw data points to the nearest
cluster. Clearly, this is not an effective strategy if the data falls upon, or close to, a
hyperplane. In other words, a linear function exists that “explains™ the relationship
between the dependent variable and the independent variables.

Recent work has shown that the difficulties with feature and case subset
selection for large data sets can be overcome using search metaheuristics, for
example random mutation hill climbing and forward and backward selection
search, drawn from the artificial intelligence community [32]. These techniques
resulted in substantial improvements in the performance of ANGEL, typically
from an MMRE of in excess of 50% down to 15%.

Table 9.1. Comparison of CBR and regression effort prediction accuracy (adapted from
Shepperd and Schofield [44])

Data set Source No.of No.of ANGEL Stepwise
cases features (MMRE) regression
(MMRE)

Albrecht 7 24 5 62% 90%
Atkinson [10] 21 12 39% 45%
Desharnais [19] 77 9 64% 66%
Finnish Finnish dataset: dataset 38 29 41% 101%

made available to the

ESPRIT Mermaid project

by the TIEKE

organization
Kemerer [31] 15 2 62% 107%
Mermaid MM2 Dataset: Dataset 28 17 78% 252%

made available to the

ESPRIT Mermaid project

anonymously
Real-time 1 Not in the public domain 21 3 74% N/A
Telecom 1 [44] 18 1 39% 86%
Telecom 2 Not in the public domain 33 13 37% 142%

Despite these advances, CBR prediction of effort is still an uncertain process
with quite variable levels of accuracy. This should not be too surprising as the
pursuit of @ “best” or universal prediction technique is unlikely to be a fruitful
quest. Probably what is most encouraging is the results of an experiment on

192 Shepperd

professional project managers that found that ~-NN (ANGEL) augmented by
expert judgment led to the most accurate effort prediction [28].

Another prediction problem that has been tackled with CBR technology is
classifying software components into low and high levels of defects [42]. The
authors report a success rate in excess of 85% when studying a military command,
control, and communications system. One interesting aspect of this work is their
use of fuzzy rather than crisp values to describe case features coupled with fuzzy
logic to assess similarity. Fuzzy logic is a form of logic used in some systems in
which feature set membership can be described in terms of degrees of truthfulness
or falsehood represented by a range of values between 1 (true) and 0 (false). For
example, a software component might be described as belonging to the set of large
components to a degree 0.8, in other words it is believed to be quite large. Note
this is quite different from making a probabilistic statement where p=0.8 that the
component is large. Set membership may also overlap so we might also have the
same component with a membership of the set of medium components to the
degree 0.3. Since we are not dealing with probabilities, there is no requirement for
the degrees of set membership to sum to unity.

9.3.2 Reuse in Software Engineering

The concept of reuse within software engineering has long been acknowledged as
an important potential source of productivity gain. Moreover, reuse has been seen
in a much broader sense than just software or code artifacts to include designs,
patterns, specifications, processes and software project experience in general.
Reuse is perceived as a natural application for CBR since exact matching is
generally very difficult to achieve because it is precisely the difference between
software projects that makes software engineering a challenging discipline.
Instead, the problem is to retrieve similar components.

An early contribution was by Maiden and Sutcliffe [25, 26], who suggested that
analogical reasoning techniques might be employed to support the reuse of
software specifications. This was achieved by mapping both the target and source
(case-base) requirements specification descriptions into more abstract
representations to facilitate the measurement of similarity. In this system a domain
model of requirements is based on object structural knowledge, actions, object
types, pre- and postcondition constraints on state transitions, transformations that
lead to state transitions and events that trigger transformations. To determine if
two requirements are similar, Maiden and Sutcliffe compare the domains using
four different dimensions (semantic, structural, pragmatic and abstract) utilizing a
structural coherence algorithm. The target requirement is compared to the
requirements in the abstract domain hierarchy to form a set of possible matches.
Next a heuristic-based abstraction selector is used to select the best abstract
domain from the candidate set. Two domains are considered similar only if they
share the same abstract domain class.

Another early application of CBR technology was to support the reuse of
software packages within Ada and C program libraries [39]. Ostertag et al. used a

9 Case-Based Reasoning and Software Engineering 193

distance measure based on a combination of semantic networks (providing
conceptual connectivity) and the faceted index approach (which allows the user a
view from different perspectives) [40] and demonstrated their ideas with a
prototype system and some examples. Interestingly, the authors also noted another
potential application in the form of Basili’s Goal Question Metric framework [12]
together with process reuse.

The most ambitious form of CBR-supported reuse is that of experience reuse,
in other words to explicitly learn from past software projects and to make the
lessons widely available through sophisticated retrieval mechanisms using
similarity metrics. Such metrics are important due to the difficulty of finding exact
project matches within the domain of software engineering. Of course the idea of
experience reuse, or what is often termed a “lessons learned” (LL) system is not
unique to software engineering. For an interesting review of LL systems in
commercial, government and military applications see Weber et al. [50].

Much of the motivation for experience reuse within the domain of software
engineering stems from Basili’s ideas of an Experience Factory [11] although
other researchers have reached similar conclusions, for example Grupe et al. [23].
An Experience Factory (EF) is based upon a number of premises:

o A feedback process is required to best support learning and improvement.

o Experience must be viewed as a resource for an organization and therefore
stored appropriately in an experience base.

o Experience must be appropriately packaged in order to support appropriate
reuse, for example, it might be unwise to reuse the successful experiences of
writing game software when developing a protection system for a nuclear
reactor.

e Mechanisms must be provided to support the retrieval of experience packages.

These ideas are closely aligned with CBR technology so that it is no surprise
that many researchers have seen organizational learning as a natural application,
see for example, Tautz and Althoff [47] and von Wangheim et al. [48]. The
quality improvement paradigm (QIP)/EF provides a framework for continuous
learning about software engineering practices and techniques. In other words it
provides “an organizational infrastructure necessary for operationalizing CBR
systems in industrial environments” [9].

In order to make a reuse decision it is necessary to characterize the technology,
the goal and the context or domain in which the technology will be applied, e.g.
developer experience. The context is particularly emphasized because the diversity
of software engineering activities and problem domains might otherwise result in
appropriate reuse. The context often is assessed subjectively, e.g. on a five-point
scale. Typically a project is viewed as a case. This implies the following process:

1. Decide upon the task and goal. This will determine the relevant context
features.
2. Characterize the new project (case) in terms of relevant features.

194 Shepperd

3. Perform a similarity-based retrieval of other projects. The retrieval may be in
two stages first, use a clustering or filter approach to find broadly similar
projects, and second, use a distance metric.

4. Adaptation of the most relevant retrieved case(s) since it may not be possible to
use the retrieved experience directly.

5. Perform the project.

6. Evaluate the project based on empirical evidence collected during the running
of the project. Empirical evidence is encouraged in order to promote
objectivity.

7. Identify lessons learned that can be added to the experience or case-base.

Two features distinguish the EF from many more general LL systems. First,
there is the explicit notion of context. Second, there is the use of empirical
evidence in order to evaluate potential new cases. These address some of the
reported problems of poor usage rates for deployed LL systems by Weber et al.
[50], such as difficulties in retrieving relevant cases and validation of experience
prior to storing within the LL system.

Maintenance of the EF is another challenge in order to avoid obsolete,
inconsistent, invalidated or subjective, irrelevant and redundant cases. Weber et al.
report on a number of LL systems that contain in excess of 30,000 cases or
lessons. Interestingly, in an example of case-base maintenance they describe how
it was possible to reduce from 13,000 cases to 2,000 cases. For further information
on the topic of EFs, see Chap. 13 of this book (“Making Software Engineering
Competence Development Sustained through Systematic Experience
Management”).

9.4 Summary and Future Work

In this chapter we have seen how case-based reasoning is a relatively recent
technology that has emerged from the artificial intelligence and cognitive science
communities. It is based on the idea of memory rather than explicit models. It
would also seem to fit closely with how humans often solve problems, that is, by
means of analogy [35]. This is important as it can help users to trust CBR systems
and, potentially, to better interact with them. We have also seen that CBR
approaches do not require a deep understanding of the problem domain, which
suggests they are well suited to many software engineering problems. This is
because we are dealing with creative processes, complexity, change and
uncertainty. There is also a strong sense within software engineering circles that
reuse is important. Again CBR is appropriate since it provides a mechanism of
organizing, storing and reusing an organization’s memory or experiences. Thus it
is unsurprising that a major application area is that of implementing experience
bases. The other principal area is that of prediction. Here CBR is more seen as
anothermachine learning, orinductive technique, but one that has good
explanatory value and with which the user can interact.

9 Case-Based Reasoning and Software Engineering 195

Whilst there are undoubtedly exciting opportunities for the deployment of CBR
methods there remain many challenges. First is the challenge of adaptation. As
seen from the examples discussed in this chapter, there are two main approaches
for adaptation. One is rule based, which can embody substantial domain
knowledge, but suffers from specificity to a particular case-base, plus there are the
difficulties of elicitation. Rule induction techniques may help overcome the latter
problem. The other approach is to use simple arithmetic techniques and rely more
on feature and case subset selection. This approach can be particularly vulnerable
to novel problems.

Second is the challenge of constructing cases from richer sources of data. Many
of the software engineering applications described above are restricted to simple
numeric information. Even categorical features can be troublesome. There has
been a range of work looking at textural CBR. Some researchers, for example
Grupe et al. [23] looked at using textural information by means of trigrams. Others
deployed a range of other information retrieval techniques. Nevertheless in a
recent survey, Weber et al. [S0] comment that

Our survey reinforced that the two most evident problems contributing to the
ineffectiveness of LL systems concern text representations for lessons and their
standalone design. Text formats are troublesome for computational treatment, and
attempts to create structure in records have rarely addressed core issues, such as
highlighting the reuse component of a [case].

Perhaps markup languages such as XML may also be a means of dealing with
semistructured data. Aha and Wettscherek [6] argue that CBR should move
beyond simple vector-based approaches and consider a range of richer forms of
case representation, such as directed graphs, preference pairs and Horn clauses.
Whatever approach making use of richer sources of information is likely to be
extremely fruitful when considering the range of data that is typically available in
software engineering projects and is a growing research topic.

The third challenge is that of finding better ways to support collaboration
between the human expert and the CBR system. In the past, in some quarters,
there has been a tendency to view many of these systems as replacements for the
human. For many applications, particularly when dealing with infrequent but high-
value problems, such as experience factory-supported decision-making and project
prediction, this view may be inappropriate. Therefore we should explicitly address
the problem of how to bring about the most effective forms of interaction between
the human and the CBR system. Given the findings of Weber et al. [50] of the
limited impact of deployed lessons learned systems this final challenge is of great
significance to the practical benefits of CBR systems.

References

1. Aamodt, A. Plaza E. (1994) Case-based reasoning: foundational issues, methodical
variationsrand systemrapproachessAl:Communications, 7: 39-59

2. Aha D.W. (1991) Case-based learning algorithms. In: 1991 DARPA Case-based
reasoning workshop: Morgan Kaufmann, Washington, DC, USA

196 Shepperd

10.

11.

12.

13.

14,

15.

16.

17.

18.

Aha D.W., Bankert R.L. (1995) A comparative evaluation of sequential feature
selection algorithms. In: Proceedings of the Fifth international workshop on artificial
intelligence and statistics, Ft. Lauderdale, FL, USA, pp. 1-7

Aha D.W., Breslow L.A. (1997) Refining conversational case libraries. In: Leake D.,
Plaza, E. (Eds.), Case-based reasoning research and development, Springer, Berlin
Heidelberg New York, pp. 267-278

Aha D.W., Maney T., Breslow L.A. (1998) Supporting dialogue inferencing in
conversational case-based reasoning. In: Smyth B., Cunningham P., (Eds.), Advances
in case-based reasoning, Springer, Berlin Heidelberg New York, pp. 262-273

Aha D.W., Wettscherek D. (1997) Case-based learning: beyond classification of
feature vectors. In: Proceedings of 9th European conference on machine learning,
Prague, Czech Republic, pp. 329-336

Albrecht A.J., Gaffney JR. (1983) Software function, source lines of code, and
development effort prediction: a software science validation. IEEE transactions on
software engineering, 9: 639-648

Althoff K.-D. (2001) Case-based reasoning. In: Chang S.K. (Ed.) Handbook on
software engineering and knowledge engineering. Vol. 1, World Scientific, Singapore,
pp- 549-588

Althoff K.-D., Birk A., Wangenheim C.G., von Tautz C. (1998) Case-based reasoning
for experimental software engineering. In: Lenz M., Bartsch-Spérl B., Burkhard H.-D.,
Wess S. (Eds.) Case-based reasoning technology—from foundations to applications,
Springer, Berlin Heidelberg New York, pp. 235-254

Atkinson K., Shepperd M.J. (1994) The use of function points to find cost analogies.
In: Proceedings of 5th European software cost modeling meeting, Ivrea, Italy,
pp. 170-178

Basili V.R., Caldiera G., Rombach H.D. (1994) Experience factory. In: Encyclopedia
of software engineering, Marciniak J.J. (Ed.), John Wiley and Sons, New York, USA
pp. 469-476

Basili V.R., Rombach H.D. (1988) The TAME project: towards improvement-oriented
software environments. IEEE transactions on software engineering, 14: pp. 758-771
Bergmann R. (2002) Experience management — Foundations, development
methodology, and Internet-based applications. Lecture notes in artificial intelligence,
Springer, Berlin Heidelberg New York, Vol. 2432

Bergmann R., Stahl S. (1998) Similarity measures for object-oriented case
representations. In: Lecture notes in computer science, Springer, Berlin Heidelberg
London, 1488: 25-36,

Bisio R., Malabocchia F. (1995) Cost estimation of software projects through case
base reasoning. In: Proceedings 1st International conference on case-based reasoning
research and development. Springer, Heidelberg New York, pp. 11-22

Boehm B.W. (1981) Software engineering economics. Prentice-Hall, Englewood
Cliffs, NJ

Briand L., Langley T., Wieczorek I. (2000) Using the European space agency data set:
a replicated assessment and comparison of common sofiware cost modeling
techniques. In: Proceedings of 22nd IEEE international conference on software
engineering, Limerick, Ireland, pp. 337-386

Case-Based Reasoning_Homepage, University of Kaiserslautern. Available from:
www.cbr-web.org (Accessed 4th December, 2002)

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.
35.

36.

37.

38.

9 Case-Based Reasoning and Software Engineering 197

Desharnais J.M. (1989) Analyse statistique de la productivitie des projets informatique
a partie de la technique des point des fonction, Master thesis, University of Montreal,
Canada

Efron B., Gong G. (1983) A leisurely look at the bootstrap, the jackknife and cross-
validation. The American statistician 37: 36-48

Finnie G.R., Sun Z. (2002) R’ model for case-based reasoning. Knowledge-based
systems 16: pp. 59-65

Finnie G.R., Wittig G.E., Desharnais J.-M. (1997) Estimating sofiware development
effort with case-based reasoning. In: Proceedings of 2nd international conference on
case-based reasoning, Providence, Rhode Island, pp. 13-22

Grupe F.H., Urweiler R., Ramarapu N.K., Owrang M. (1998) The application of case-
based reasoning to the sofiware development process. Information and software
technology, 40: 493-500

Hanney K., Keane M.T. (1997) The adaptation knowledge bottleneck: how to ease it
by learning from cases. In: Proceedings of the 2nd international CBR conference,
Amsterdam, The Netherlands, pp. 359-370

Maiden N.A. (1991) Analogy as a paradigm for specification reuse. Software
engineering journal, 6: 3-15

Maiden N.A., Sutcliffe A.G. (1992) Exploiting reusable specifications through
analogy. Communications of the ACM, 35: 55-64

Mukhopadhyay T., Vicinanza S.S., Prietula M.J. (1992) Examining the feasibility of a
case-based reasoning model for software effort estimation. MIS quarterly, 16: 155-171
Myrtveit 1., Stensrud E. (1999) A controlled experiment to assess the benefits of
estimating with analogy and regression models. IEEE transactions on software
engineering, 25: 510-525

Niessink F., van Vliet H. (1997) Predicting maintenance effort with function points. In:
Proceedings of international conference on sofiware maintenance, Bari, Italy,
pp- 32-39

Kadoda G., Cartwright M., Shepperd M.J. (2001) Issues on the effective use of CBR
technology for software project prediction. In: Proceedings of the 4th international
conference on case based reasoning, Vancouver, Canada, pp. 276-290

Kemerer C.F. (1987) An empirical validation of software cost estimation models.
Communications of the ACM, 30: 416-429

Kirsopp C., Shepperd M.J., Hart J. (2002) Search heuristics, case-based reasoning and
software project effort prediction. In: Proceedings of the genetic and evolutionary
computation conf., New York, USA, pp. 1367-1374

Kohavi R., John G.H. (1997) Wrappers for feature selection for machine learning.
Artificial intelligence, 97: 273-324

Kolodner J.L. (1993) Case-based reasoning. Morgan-Kaufmann, San Mateo, CA, USA
Klein G. (1998) Sources of power: how people make decisions. MIT press,
Cambridge, MA, USA

Leake D. (1996) Case-based reasoning: experiences, lessons, and future directions.
AAAI press, Menlo Park, CA, USA

Leake D. (1996) CBR in context: the present and the future. In: Leake D. (Ed.), Case
based reasoning: experiences, lessons and future directions, AAAI press, Menlo Park,
pp--1-35

Little R.J.A., Rubin D.B. (2002) Statistical analysis with missing data. John Wiley and
Sons, New York, USA

198 Shepperd

39. Ostertag E., Hendler J., Prieto-Diaz R., Braun C. (1992) Computing similarity in a
reuse library system: an Al-based approach. ACM transactions on software
engineering methodology, 1: 205-228

40. Priéto-Diaz R., Freeman P. (1987) Classifying software for reusability. IEEE Software,
4:6-16

41. Schank R. (1982) Dynamic memory: A theory of reminding and learning in computers
and people. Cambridge university press, Cambridge, UK

42. Schenker D.F., Khoshgoftaar T.M. (1998) The application of fuzzy enhanced case-
based reasoning for identifying fault-prone modules. In: Proceedings of the 3rd IEEE
international high-assurance systems engineering symposium, Washington, D.C.,
USA, pp 90-97

43, Shepperd M.J., Schofield C., Kitchenham B.A. (1996) Effort estimation using analogy.
In: Proceedings of 18th international conference on software engineering, Berlin,
Germany, pp. 170-179

44. Shepperd M.J., Schofield C. (1997) Estimating software project effort using analogies.
IEEE transactions on software engineering, 23: 736-743

45. Skalak D.B. (1994) Prototype and feature selection by sampling and random mutation
hill climbing algorithms. In: Proceedings of the 11th international machine learning
conference, New Brunswick, NJ, USA, pp. 293-301

46. Success stories, INRECA Center, University of Kaiserslautern. Available from:
www.inreca.org/data/cbr/success.htm! (Accessed 4th December, 2002)

47. Tautz C., Althoff K.-D. (1997) Using case-based reasoning for reusing software
knowledge. In: Proceedings of the 2nd international conference on case-based
reasoning, Springer, Berlin Heidelberg New York, pp. 156-165

48. von Wangenheim C.G., Althoff K.-D., Barcia R.M. (2000) Goal-oriented and
similarity-based retrieval of software engineering experienceware. In: Ruhe G.,
Bomarius, F. (Ed.). Learning software organizations: methodology and applications,
Springer, Berlin Heidelberg New York, pp. 118-141

49. Watson I, Marir F. (1994) Case-based reasoning: a review. The knowledge
engineering review, 9: 327-354

50. Weber R., Aha D.W., Becerra-Fernandez 1. (2001) Intelligent lessons learned systems.
Expert systems with applications, 20: 17-34

51. Whitley D., Beveridge J.R., Guerra-Salcedo C., Graves C. (1997) Messy genetic
algorithms for subset feature selection. In: Proceedings of the international conference
on genetic algorithms, East Lansing, Michigan, USA, pp. 568-575

Author Biography

Martin Shepperd has a chair of software engineering at Bournemouth University,
UK. He received his Ph.D. in computer science in 1991 from the Open University,
UK. His main research interests are empirical aspects of software engineering and
machine learning. He has published more than 75 papers and 3 books. Presently
he is co-editor of the journal Information & Sofiware Technology and associate
editor of IEEE Transactions on Software Engineering.

10 A Process for Identifying Relevant Information for
a Repository: A Case Study for Testing Techniques

Sira Vegas, Natalie Juristo and Victor R. Basili

Abstract: One major issue in managing software engineering knowledge is the
construction of information repositories for software development artifacts
(techniques, products, processes, tools, and so on). But how does one package
each artifact so that the package contains the appropriate information to
understand and use the artifact? What is the appropriate characterization schema?
This chapter proposes an empirical and iterative process to identify the
information that should be used to characterize a software engineering artifact,
using theoretical knowledge, practical experience, and expert opinion to generate a
schema. The ultimate goal is to improve the schema and the package contents
based upon it experience in their application. The proposed process has been
applied to define a characterization schema for testing techniques. Nowadays,
there are numerous testing techniques available for generating test cases.
However, many of them are never used, while a few are used over and over again.
Testers have little (if any) information about the available techniques, their
usefulness and, generally, how suited they are to the project at hand. This lack of
information means less appropriate decisions on which testing techniques to use.
This chapter also shows this characterization schema and discusses the
information it contains and why it is included in the schema.

Keywords: Knowledge management, Experience packaging, Software testing,
Testing techniques.

10.1 Introduction

The goal of knowledge management (KM) is to take advantage of an
organization’s intellectual capital [15]. When applied to software development,
this discipline deals with knowledge related to the whole range of sofiware
engineering artifacts (techniques, products, processes, methods, and so on).

To make the best possible use of organizational knowledge, this knowledge
must be created, captured, distributed and applied [15]. Information organization,
also known as packaging, is a key activity within this process. It is so critical that
a poor information structure has led to the failure of many KM initiatives [11]. If
the available information is well structured, knowledge will be more widely and
better disseminated and applied, as people will be interested in and tend to consult
well structured information and will be clearer about when to use it. The
knowledge generation and capturing activities will also be more effective, as the

200 Vegas, Juristo and Basili

format of this knowledge is defined beforehand, specifying which items of
knowledge need to be gathered.

One possible means of recording and giving access to the knowledge of an
organization is experience bases [4]. Experience bases are composed of
experience packages. SE experience packages usually contain knowledge on how
to use given artifacts. This knowledge must be associated with information for
deciding when and where a given artifact will be useful. Experience packages are
described by instantiating characterization schemas. The information reflected by
the characterization schema is vital for effectively identifying which artifacts are
useful in a given situation. But experience packages should be as compact as
possible, meaning that characterization schemas should contain the least possible
information; that is, they should include the minimum set of relevant information.
Nevertheless, it is not easy to find out which information these characterization
schemas should include. On the one hand, the information reflected by a
characterization schema is totally dependent on the artifact it characterizes, which
means that when characterizing a new artifact, we cannot benefit from the fact that
other artifacts have already been characterized. On the other hand, the theoretical
foundation of the artifact in question may not be mature enough to be of assistance
in deciding which information the characterization schema should include. If we
do not know the parameters that may influence the behavior of an artifact, it will
be more difficult to develop a characterization schema for it than if these
parameters were known.

Here, we propose a process for identifying what information a characterization
schema should include for the purpose of building an experience base. The
proposed process is empirical and iterative. It is empirical because it is not based
purely on how the person who is designing the schema sees the artifact to be
characterized, but also takes into account the view of potential experience base
users and artifact builders. It is iterative because it begins with a preliminary
schema that is refined as different views are incorporated.

The proposed process has been applied to define a characterization schema for
testing techniques. Besides the generation process, we also show the resulting
characterization schema for testing techniques and discuss the information it
contains and why it has been included in the schema.

The chapter has been organized as follows. Sect. 10.2 presents a series of
approaches described in the literature for developing characterization schemas for
a range of software artifacts. Sect. 10.3 discusses the proposed process for
developing characterization schemas. Section 10.4 is an application of the process
presented in Sect. 10.3 for a particular artifact: software testing techniques.
Section 10.5 presents the evaluation of the proposed process, and finally, Sect.
10.6 provides some conclusions.

10 A Process for Identifying Relevant Information for a Repository 201

10.2 Related Work

Although the activities of which KM is composed are clear, it is not so clear which
methods should be applied within each of these activities. Indeed, while it is
generally accepted that the acquired knowledge needs to be packaged [2, 15], and
several proposals have been made [1, 18, 19], no one has formalized or
standardized what these knowledge packages should be like, not to mention how
they should be built.

Nonetheless, the use of characterization schemas in SE as an aid for selecting
different artifacts is not new. In the field of software reuse, where there is a
repository of coded software modules ready for use, there is already an emerging
need for characterization schemas. In the case of reuse, characterization schemas
summarizes the characteristics of the module and then, by inspecting these
characteristics, a decision can be made on which module or modules are best
suited. The characteristics encompass the module attributes, its application
conditions and the characteristics of the operating environment. Apart from the
reuse field, other areas of SE, like software architectures or software technology
selection, also use characterization schemas.

Below, we examine a series of characterization schema proposals described in
the literature, as we have not found any formalized proposal of how to develop
such a schema within KM. For each proposal, we discuss the artifact it aims to
characterize, the characterization proposal, the process followed for
characterization and the information proposed for inclusion.

Prieto-Diaz [14] was the first researcher to realize the benefits of using
characterization schemas for classifying reusable artifacts. In [14], he presents a
characterization schema for reusable software modules to aid the identification
and later retrieval of such modules (stored in a repository) and find the
components that are less costly, in effort terms, to adapt to the current project. The
schema was constructed by means of discrimination or examination and later
classification of existing reusable modules (what is called literary warrant),
analyzing the similarities and differences between these modules. This schema
contemplates two aspects of the modules: the functionality of the object (which
represents what), and the environment (which represents where).

Based on the idea that anything related to development, and not just software
products, is reusable, Basili and Rombach [3] present a characterization
metaschema for any software development element: products, processes,
techniques, and so on. Owing to the generality of this metaschema, it needs to be
adapted to the type of artifact to be characterized before it is used. The process
they have followed to design the metaschema, reflection by the schema designers,
is based on a reuse model, which is gradually refined through reasoning. Each step
of the refinement captures the logic of the resulting schema. The schema
contemplates three aspects: it should contain characteristics proper to the artifact
(the object), characteristics of the relationships between the artifact and other
artifacts/(interface)vorrenvironment;’and characteristics of the environment in
which the artifact can be used (the context or problem).

202 Vegas, Juristo and Basili

In [10], Henninger proposes a characterization schema together with a support
tool to capture and, thus, enable later dissemination of different problems related
to software development, alongside their solution. The process followed for
creating the schema is not fully explained, from which we infer that it is
developed from the reflections of the schema designer. The aspects included in the
schema are descriptions of problems, which are associated with resources (or
solutions to the problem, possibly tools, development methods, people, process
models, technology, etc.), and which constitute the object, and projects or the
environment associated with the object. Accordingly, one can start from any of the
three aspects to arrive at any of the other two.

Bass et al. [5] provide a catalogue of architectural design styles, which means
that the schema is already completely instantiated. The catalogue was designed
following a process of discrimination by studying and classifying numerous
designs. This means that the different designs were observed, and on this basis, the
authors deduced which characteristics differentiate one style from another. The
catalogue contemplates not only the characteristics proper to the styles (the
object), but also characteristics of the application requirements (the problem) and
characteristics of the environment in which the design is to be implemented (the
context), which can place restrictions on the developer when using the style.

In [7], Birk proposes a characterization metaschema for characterizing software
technologies. This work is based on the fact that methods, techniques and tools are
not universally applicable, and the goal is to improve the selection of technologies
for use in a software project. The process followed to design the schema is not
made explicit, and it is, therefore, assumed to be the result of the reflection of the
schema designer. This metaschema focuses primarily on reflecting the application
domain (the context) and the problem for which the technology is suited.

Similarly, von Wangenheim proposes a metaschema for characterizing software
engineering experiences in [19]. The author recommends asking experts on the
artifact to design the schema. Therefore, the author does not discuss the
information that the metaschema should contain.

Maiden and Rugg [12] present a schema for characterizing requirements
acquisition methods to improve method selection and help developers to prepare
an acquisition programme. Apart from the schema, they propose a series of tables,
which are actually the instantiation of the schema as a catalogue. With regard to
the process followed to produce the schema, the authors speak of research and
their own experiences. As the developers of the schema are experts in the area,
one can infer that the process was based on observation and discrimination of the
existing methods. However, the authors have added a stage where a series of
experts validate the work they have done. The aspects reflected in the schema are
the object and the problem.

After studying the characterization area, the findings are as follows:

e There is no proposal that sufficiently formalizes the process to be followed for
defining or building experience packages for a knowledge base. This process
must be defined so that other people attempting to build a knowledge base can
follow it.

10 A Process for Identifying Relevant Information for a Repository 203

o The schemas are usually designed either by discriminating existing elements,
asking experts (which is at least justified) or, at worst, on the basis of the
personal opinions of the schema designers and are not checked against reality.
The opinions of other groups, like software developers or other researchers, are
never taken into account.

e Only a few proposals take into account the three desirable aspects: object,
environment and problem. However, although they propose storing information
based on developers’ experiences in using the elements, they do not have an
aspect that asks developers for their personal (subjective) opinions about the
elements.

The process proposed here intends to overcome these problems.

10.3 Proposed Process for Discovering Relevant Information

Having detected the pitfalls of current characterization schema construction

processes, we propose a means of determining relevant information about any

particular artifact type for inclusion in an experience repository. Sects. 10.3.1 to

10.3.5 justify each stage of the proposed characterization schema construction

process. This process can be divided into two parts: schema generation and

schema testing.

o Schema generation. Schema generation has been divided into four different
stages. They explicitly state each source of information used to formulate the
schema, and each stage aims to gather different information types. The
generation stages are: development of a theoretical schema, development of an
empirical schema, synthesis of perspectives and expert peer review.

e Schema testing. Schema testing or start up involves having two different
population groups examine the schema and assess two different facets:
population and use.

Figure 10.1 shows the resulting process for developing the characterization
schema.

10.3.1 Know the Artifact: Development of a Theoretical Schema

As discussed in Sect. 10.2, there are two usual ways of developing
characterization schemas:

o Starting from the set of artifacts for characterization (or as complete as possible
a subset of these artifacts, if this is not feasible), analyze the similarities and
differences between the different artifacts to build a schema that contains the
parameters that reflect the differences.

204 Vegas, Juristo and Basili

e On the basis of the knowledge that the people who are building the
characterization schema have of the artifact type, reflect the most prominent
features of this artifact type that are likely to vary from one artifact to another.

Development Development
of a theoretical of an empirical
schema schema
Theoretical Empirical
schema schema

Synthesis

Preliminary
schema

Improved
schema _ schema

SCHEMA
TESTING

SCHEMA
GENERATION

Fig. 10.1. Proposed characterization schema development process

Therefore, the construction of a schema is guided by deductive reasoning
concerning available artifacts and what relevant characteristics they all have in
common. Here, we propose to use a combination of the two strategies, aiming
primarily to develop a first draft of the characterization schema to serve as a
starting point that will be added to and improved in later iterations. A secondary
goal of this stage is to familiarize the people developing the schema as much as
possible with the artifacts they are trying to characterize. This is why this step is
done first. This stage is, therefore, a sort of introduction to the development of
what will be the final characterization schema.

A strategy of decomposition is followed to build this theoretical schema. First,
the high-level information the schema should contain is identified. Then, this
information is refined until an adequate level of granularity is reached.

10.3.2 Incorporation of Diverse Viewpoints: Development of an
Empirical Schema

Ourraimyisito facilitate oriimprove the process of artifact selection in experience
bases and thus contribute to the construction of higher-quality software systems.
The proposed process can be considered successful if the resulting

10 A Process for Identifying Relevant Information for a Repository 205

characterization schema is used; that is, the schema should be workable, which
means that the process must be aimed at promoting (and even guaranteeing) its
use. This focus on schema use is what made us decide to get people related to the
artifact area involved.

During characterization schema design, the main decision relates to what
information it should contain. This is not an easy task, however, as the schema has
to meet the information needs of a variety of people with different goals. More
precisely, it must be

¢ Useful for consumers when selecting the artifacts for their project situation
¢ Possible for producers to fill in the information asked for in the schema

The schema obtained in the first iteration reflects the opinion of the schema
designer on the information that can influence decision-making on which artifacts
should be used in a given project. However, this schema does not necessarily
respond, at least completely, to the consumers’ opinion of selection.

Therefore, the question is what information does the consumer need to select an
artifact from the experience base. One possibility is to think about what one
believes consumers would like to know when deciding on which artifact or
artifacts to use and even gather a collection of information that appears to be more
or less coherent. But, would this collection of information be the real solution to
the selection problem? This problem is far from trivial. If the inclusion of the
information that appears in the schema is not justified by a theory (and no such
theory exists today for most SE artifacts) or is incomplete with respect to the items
required to make the selection, the fitness of the resulting characterization schema,
or even its validity, could be questioned. By this reasoning, the schema generated
would possibly be of little use, and it would take longer to reach a satisfactory
solution.

We need to be pragmatic and have the resulting schema used (in fact, this is the
only way of improving artifact selection). So, in the absence of a theory that
confirms why some information facilitates or is necessary for selection and other
information is not, the schema should reflect the opinion of consumers and
producers (future schema users). But, being a matter of opinion, there is a risk of
the schema being a mere collection of nonconvergent information. The process is,
therefore, subject to two restrictions:

1. The thoughts of the schema designer are used as a basis upon which the
opinions of the participants take shape

2. A study is carried out to see if the theoretical and empirical opinions converge,
i.e. if there is sufficient common ground between the theoretical and empirical
knowledge about the subject to generate an experience base for the artifact
type. If this study were to find that the opinions did not converge, it would
mean that there is not enough common ground between opinions; that is, there
is neither a theory nor empirical knowledge enough about the subject to
generate an experience base for this kind of artifacts.

The empirical schema is developed incrementally. A set of opinions (questions
or information) about the information required to completely select/define an

206 Vegas, Juristo and Basili

artifact is gathered for each consumer/producer surveyed. The sets of
questions/information obtained are analyzed incrementally. This means that the
producers/consumers are gradually incorporated, making it possible to cover the
total set of possible producers/consumers according to their characteristics.
Therefore, the process is inductive, producing a schema containing the
characteristics desired by producers and consumers.

To be more precise, the iteration for running the analysis is as follows. Taking a
reference set (originally empty) and the opinions of the producer/consumer, the
reference set is updated to include any opinions not included before, and the
respective empirical schema is obtained. The reference set can be updated in
several ways: either by adding new opinions or reformulating others to make them
more generic or more specific (never by deletion). Fig. 10.2 shows the activities to
be performed to get “the ith” empirical schema.

Reference Producer/Consume
set i-1 opinions i

Update reference
set i-1

Reference
set i

¥

Analysis of
reference
set i

Empirical
schema i

Fig. 10.2. Activities to get the “ith” empirical schema

One interesting point is that the characteristics of the participants should be
known, as it is important to be acquainted with what type of producers/consumers
are represented in the schema. Another point (not as important as accounting for
all producer/consumer types) is the number of people that have to participate in
this stage. The number is not essential, as Glaser and Strauss [9] state that the
number of data collected during research is relevant for testing and not for
generating the hypothesis. So, the number of individuals involved will be
important at that point and, as such, will be taken into account later on.

The stopping criterion for this activity is the stability of the characterization
schema. It is not possible to stop gathering information from different people until
the rate of change of the schemayis,zero for at least the last 25% of subjects.
Therefore, what we are examining at this stage is the evolution and change of the
characterization schema as new producers/consumers are incorporated.

10 A Process for Identifying Relevant Information for a Repository 207

10.3.3 Synthesis of Perspectives: Theory and Practice

As we now have two independent sets of information about the object to be
characterized, they have to be merged. Accordingly, a synthesis stage is required
in which the theoretical and empirical schemas are united to produce a schema
that contains the information from both.

In this stage, the two characterization schemas created earlier (the theoretical
and the empirical schemas) are taken and synthesized into a single
characterization schema to provide a single view of the information that is relevant
for selection. Rules should be defined to guide this process and ensure that the
schemas are synthesized in an orderly manner and no information is lost.
Depending on the environment in which the schema is to operate, the synthesis
rules could vary from the collection of all the information that appears in the two
schemas to the selection of given types of information if performance or the
amount of information handled for selection are critical factors. However, if there
is no restriction on the amount of information the preliminary schema should
contain, the recommended heuristic is that all information appearing in either the
empirical or theoretical schema should appear in the preliminary schema. This can
be translated into

¢ Any information that appears in at least one schema will be directly entered in
the preliminary schema.

o If there is similar information or some information is more generic or more
specific than others, study the best way of adding it to the schema to assure that
no information is lost during synthesis and there is no redundancy.

Once the preliminary schema has been built, it might be of interest to examine the
source of the information of which it is composed so as to analyze the different
viewpoints of the subject types that have contributed to creating this preliminary
schema.

10.3.4 Expert Peer Review

The schema obtained after the synthesis of the theoretical and empirical schemas
reflects the viewpoint of the schema designer, consumers and producers
concerning the selection problem. However, neither the consumers nor the
producers have so far seen the schema (they were asked for their opinion on
selection, but they were never shown what information had been input). It would,
therefore, appear to be a good idea to get someone else to inspect and give an
opinion on the schema. Also, according to the principles of some sciences, for
example, medicine, it is advisable to get a second opinion about a complex
problem. Therefore, a series of experts in the area to which the artifact belongs to,
should be asked to give their verdict on the preliminary schema prior to start up.
The,goal;of this,expert;peer,reviewsis;to,correct possible schema defects caused by
the way in which it was derived. The typical defects of the schema obtained prior
to the review by experts are as follows:

208 Vegas, Juristo and Basili

o Defects of form: Both producers and consumers have given their particular view
of the information they believe to be relevant for selecting that particular
artifact. However, the schema designer alone created the structure that reflects
this information. It would not be amiss to get a second opinion on this structure.

e Defects of substance: The information for the preliminary schema is gathered
indiscriminately. It may contain errors involuntarily introduced by the schema
designer or by the people participating in the research. For example, there may
be redundant information (dependencies between information contained in the
schema), or missing or unworkable information not detected by the designer.

The preliminary schema will be modified on the basis of the analysis of the
opinions of the experts to incorporate their suggestions, giving rise to a new,
improved and almost final schema. The ideal number of experts for an expert peer
review is as many as possible, and no less than three, so that discrepancies among
experts can be handled. However, it is not easy to find experts, and therefore any
number would be acceptable.

10.3.5 Start Up

Owing to the risk involved in deploying the characterization schema, a
preliminary evaluation must be run in order to detect possible improvements. The
best way of examining product validity is to put it into operation and observe how
well it fits in with development to determine what problems users come up against
and how the product could be improved to make it useful for developers. For this
purpose, once the preliminary schema has been built, it will be first instantiated
for a range of artifacts, and then potential users of the repository (producers,
consumers and librarians) will be asked to use it under several circumstances. The
use of the schema will provide feedback to the schema designer, which can be
used to improve it.

As mentioned before, the start-up stage consists of two parts: first, a mini-
repository is populated with representative artifacts from the whole population;
later, this repository is used by people under different circumstances. A refined
version of the schema is created on the basis of the results of the data analysis.

1. Repository Population: The aim of this part of the start-up stage is to examine
basic schema characteristics, namely, its feasibility and flexibility from the
producer viewpoint. For this purpose, the characterization schema will be
instantiated over again to study these aspects. The ideal situation is to have the
future producers, consumers and librarians instantiate the characterization
schema for the different artifacts. However, if this is not possible, the people
who created the schema are perfectly qualified to do this job. They can act as
librarians, getting the necessary information from books, papers and past
projects.

2..Repository Use: This part of the start up involves running the repository
populated during repository population. The primary aim of this part of the

10 A Process for Identifying Relevant Information for a Repository 209

start-up stage is to observe the feasibility and completeness of and user
satisfaction with the schema from the consumer viewpoint.

This second part of the start-up stage is again carried out on the preliminary
schema. Here, a number of subjects will act as consumers and use the schema to
select artifacts. Both quantitative and qualitative data is collected during this stage,
which, after analysis, will be used to again modify and improve the schema.
Again, it would be desirable to have real consumers perform a pretest of the
schema. If no real consumers are available, however, other types of developers
could be used (students, for example).

10.4 Case Study: Developing a Characterization Schema for
Software Testing Techniques

The process described in Sect. 10.3 has been applied to build a characterization
schema for testing techniques. The construction of this schema is described step
by step throughout this section as an example for readers who are interested in
applying the process for characterizing any SE artifact in order to build an
experience base.

10.4.1 Development of a Theoretical Schema

As discussed in Sect. 10.3.1, the schema was developed by gradually refining the
information that it is to contain. In this case, the relevant information for selecting
testing techniques (schema attributes) is grouped around the elements that are
involved in software testing, which are then organized around the levels of which
the testing process is composed.

10.4.1.1 Schema Levels
The software system testing process can be divided into the following stages:

1. Selection of the quality attributes that are to be tested, as well as the expected
values for each attribute, when they are to be tested, the metrics to be used for
the evaluation, and the parts of the system that will be affected by each test.

2. For each of the attributes identified in the previous stage, the tests identified
above should be performed, which means: generate and execute the test cases
and evaluate the results obtained, always considering the environment where
the test took place.

The main difference between points 1 and 2 lies in the fact that the purpose of
point 1 is to establish a generic framework within which the testing of the software
il question will take placer Thisrstage’ is necessary because not all software
systems are the same, and a decision must therefore be made on which is the best
way to evaluate each system. Stage 2 is necessary because not all projects are the

210 Vegas, Juristo and Basili

same, even if they are building the same software. This means that neither the
characteristics of the developer organization nor the team members nor the
technologies will be the same, and the tests to be run must therefore be carried out
differently.

The characterization schema must capture all this to assure selection of the
optimum testing techniques. More formally, we have named these types of
information as tactical and operational information, and they correspond to two
different levels. The information contained in the tactical level is related to the
initial or tactical planning that will be followed to run the tests, and reflects
information related to the use to which the generated test cases will be put.

As is the case with the industrial manufacturing of some materials, where the
characteristics that the material should have are established by analyzing the uses
to which the material is to be put, the use to which the generated test cases will be
put determines the characteristics they should have for testing purposes. For
example, whether a plastic is to be used either to manufacture the inside of a car,
to make plastic bags, to fabricate bottles, etc., will determine how flexible, how
resistant and how malleable it has to be. Likewise, the fact that a set of test cases
is to be used to test the security of a software system or the correctness of an
algorithm implementation determines whether the cases should be exhaustively
test all sorts of inputs, only the most common inputs or perhaps the inputs that
entail anomalous behavior on the part of the user. Finally, we should explain that
just as a given material cannot be used on all occasions and some of its properties
have to vary depending on its use (leading to variations or versions of the
material), when a set of test cases is generated for a given purpose it is very likely
that it will not be useful in other circumstances.

The information contained in the operational level is related to the optimal
conditions of testing techniques suitability, once given characteristics of the
environment in which the technique is to be applied have been determined. Just as
certain pressure and temperature conditions are required for a chemical reaction to
take place, the technique application conditions have to be as conducive for the
expected test cases to be generated effectively (in terms of time and resources) and
efficiently during software testing. This means that it may or may not be
appropriate to apply a given technique depending on the knowledge and
experience of the personnel and whether or not the available tools are suitable.
This is equivalent to the reaction not taking place or to the products obtained being
of poor quality.

In other words, the operational level reflects the characteristics of both the
technique and the project environment. These include tools, knowledge of the
personnel, characteristics of technique applicability and so on from which it is
possible to deduce whether or not the technique in question is the best suited for
the project situation in question.

10 A Process for Identifying Relevant Information for a Repository 211

10.4.1.2 Tactical Level

As mentioned above, the aim of this level is to identify the test to which the code
will be subjected or to choose the tactic to be followed to test the code. There are
two parameters:

1. The purpose or objective of the test, which defines the software attribute that is
to be evaluated and how rigorously this is to be done. The set of cases
generated when applying a testing technique cannot be used to test any
software quality attribute or to test the same attribute in the same way. For
example, a set of test cases generated to test whether an algorithm is correctly
implemented is not generally useful for checking whether the implementation
of this algorithm is efficient or whether the system is acceptable. Suppose that
one wants to check, on the one hand, system security and, on the other, system
usability. The best way to test security is to use test cases that represent attacks
or unlikely situations rather than the routine use of the system. To test usability,
on the other hand, one looks for test cases that represent the usual or common
uses of the system. And, again, if one wants to test the correctness of an
algorithm, one must use test cases that test both the normal actions of the
algorithm and the exceptional cases (whether or not they are erroneous).

Furthermore, a technique that generates cases to test security in a safety-
critical system is of no use for generating cases in a non-safety-critical system.
And this is precisely what the purpose of the test reflects the software attribute
that is to be evaluated using the test and how rigorously or with what degree of
confidence this is to be done.

2. The scope of the test, which can be defined by saying what part of the software
system is to be tested, when the test is to be run and the components of the
software system that are affected by the test.

Depending on which test is run, are affected different parts of the software,
ranging from an algorithm, through an entire module, a group of modules that
perform a system function, to a subsystem and even the entire system. Also,
depending on how system development has been organized, the test takes
place at one time or another within the process. We should also specify the part
of the functionality offered by the system that needs to be tested. The scope,
then, refers to the part of the system involved in the test.

10.4.1.3 Operational Level

As mentioned earlier, the aim at this level is for the application (or use) of the
technique to be as effective as possible, as well as efficient. This involves a series
of factors, which are discussed below.

Being a software process, the generation of test cases can be represented
generically as shown in Fig. 10.3a. As shown in Fig. 10.3a, a software process
generates a software product, where the techniques used, on the one hand, and the
resources used; on the other; are the'controllers of the process. If this generic view
is specified for the case at hand, the process is then the generation of test cases, the

212 Vegas, Juristo and Basili

input is the software (generally, as each testing technique calls for specific inputs
that vary from one technique to another). The output is the generated test cases
and the controllers are, on the one hand, the technique or techniques used and, on
the other, the tools and personnel, as shown in Fig. 10.3b. In other words, the test
case generation technique that is applied to the software outputs a series of test
cases within an environment that is determined by the tools available for
performing the task and the personnel who carry out the task.

Methods (guidelines Techniques
& techniques)
Inputs PROCESS Product Software TEST CASE Test cases
(:"gs‘i‘ss m—- GENERATION
1Resources Tools f ﬁ’ersonnel
@ ®

Fig. 10.3. Representation of the software process: (a) Generic process, (b) Specific case,
generation of test cases

Therefore, according to Fig. 10.3b, it can be said that the information that the
operational level of the characterization schema should contain has to refer to:

o The people who are to use the technique or agents. The characteristics of these
people can lead to one or another technique being chosen. If the testing
personnel are not very experienced in one technique and there is no time for
training, another is likely to be selected.

e The tools that should or could be used. The fact that a company does or does
not own a given tool that supports the use of a given technique can lead to the
selection of one technique over another.

e The software (code) to be tested or the object. The code has certain
characteristics that can determine the use or rejection of a technique, for
example, the type of programming language used, the code size and so on.

o The technique. Depending on the characteristics of the technique, a decision
can be made on whether or not to use it at a given time. Characteristics like
complexity, effectiveness, maturity, usability, and so forth will be the key for
deciding on its use.

e The generated test cases; that is, the results (and/or consequences) of using the
technique. Some characteristics of the technique are environment dependent,
and these are precisely the ones that reflect its behavior. How good a technique
is when applied can be ascertained from the generated test cases and not from
the technique. Thus, some characteristics of these test cases will be of interest
for selection purposes.

10 A Process for Identifying Relevant Information for a Repository 213

10.4.1.4 Attributes of the Theoretical Schema

Table 10.1 shows the composition of the theoretical schema.

Table 10.1. Theoretical schema

LEVEL ELEMENT | ATTRIBUTE
Quality attribute
Rigor
Tactical Phase
Scope Element
Aspect
Experience
Knowledge
Tools
Comprehensibility
Cost of application
Technique | Sources of information
Dependencies
Repeatability
Adequacy criterion
Operational Completeness

Cost of execution
Type of defects
Effectiveness
Correctness
Adequacy degree
Software architecture
Software type
Programming language

Development method

Objective

Agents

Results

Object

10.4.2 Development of an Empirical Schema

The tasks to be carried out to get the empirical schema include sending out two
different questionnaires to respondents: a questionnaire that asks the consumers
what information they believe to be relevant for selection purposes, and another
that asks the producer what information they believe to be necessary to define a
testing technique. The responses are then analyzed to produce a characterization
schema that reflects the opinions of both consumers and producers about the
selection problem. The empirical schema is built incrementally, as described in
Sect. 10.3.5. That is, the first version of the empirical schema is generated with the
information received from the first respondent and the schema version was
updated as the information from successive respondents, is analyzed. When
working with the empirical schemas, we tried to use the levels and elements of the
theoretical schema as far as possible, because the respondents only supplied
attributes.

214 Vegas, Juristo and Basili

An important issue we had to deal with during this stage was the stability
analysis of the empirical schema. This analysis was performed in order to find out
when to stop gathering information. Fig. 10.4 shows the accumulated growth
speed of the empirical schema. The x-axis shows the different people surveyed
ordered according to time (C stands for consumer and P stands for producer), and
the y-axis shows the size of the empirical schema as a percentage of its final size.
It can be seen that the empirical schema reaches 50% of its final size with the first
respondent. This figure increases to 80% with the second respondent, and the
schema reaches its final size with the tenth respondent. This means that the last six
respondents did not add any new information to the empirical schema, and
therefore the empirical schema can be considered as stable at this point.

—

100.00% -
90.00% -
80.00%
70.00% -
60.00% -
50.00% -

40.00% +————— T
Cl1 C2 P1 C3 C4 P2 C5 C6 C7T C8 P3 C9 C10C11C12C13

RESPONDENTS

ACCUM. GROWTH SPEED

Fig. 10.4. Schema accumulated growth speed

Another of the key tasks for designing the empirical schema was the selection
of the respondents. The characteristics of the people involved in the construction
of the empirical schema a significant influence on the resulting schema. The
people involved should be as heterogeneous as possible to assure that the schema
does not reflect a unilateral viewpoint. For this purpose, an attempt was made to
include respondents with a wide variety of characteristics: from a range of fields,
with varying experience and of different nationalities. As the set of participant
subjects had to be as heterogeneous as possible, we looked for people who played
different roles in the testing area. Also, when asking for information we started
with those respondents who were most likely to give us more useful information.

Table 10.2 shows the contents of the empirical schema. Note that the empirical
schema provides us with some information that did not appear in the theoretical
schema, since practitioners care about practical issues that are very often
overlooked by theoreticians. The main differences of the empirical schema from
the theoretical schema are

o Use level: It was not possible to associate the information contained in this
level with any of the two levels in the theoretical schema. Therefore, a new
level was created: the use level. The questions of which this new level is

10 A Process for Identifying Relevant Information for a Repository 215

composed refer to the personal experiences of people who have used the
technique. This level contains two elements:

Table 10.2. Empirical schema

LEVEL ELEMENT | ATTRIBUTE

Quality attribute

Rigor

Tactical Phase

Scope Element

Aspect

Experience
Knowledge

Identifier

Automation

Tools Cost

Environment

Support
Comprehensibility
Maturity level

Cost of application
Inputs

Technique | Adequacy criterion
Operational Test data cost
Dependencies
Repeatability

Sources of information
Coverage
Effectiveness

Type of defects
Number of generated cases
Software type
Software architecture
Object Programming language
Development method
Size

Reference projects
Project Tools used
Personnel
Opinion
Satisfaction | Benefits
Problems

Objective

Agents

Results

Use

- Project: The information covered in this element refers to the respondents’
interest in learning about and characterizing software projects in which the
technique has been applied in order to compare these earlier projects with the
current situation.

- Satisfaction: The information covered in this element complements the above
information on earlier projects. The respondents are also interested in

216 Vegas, Juristo and Basili

knowing the results of using the technique in the project from the viewpoint
of what impression it caused on the person who used the technique.
e Tools element: The information covered in the tools element refers to the
characteristics of the tools that can be used when applying the technique.

However, the inclusion of too much information can also lead to difficulties.
Experts play an essential role during peer réview in dealing with this matter.

10.4.3 Synthesis

At this point, we have two characterization schemas, a theoretical and an empirical
schema, that reflect different viewpoints or perspectives of the problem of
selecting testing techniques in software projects. These are theory, represented by
the schema designer, and practice, represented by testing technique producers and
consumers. The next step is to synthesize these two perspectives into one.

The heuristic to be followed for the synthesis is based on the preservation of
information: all information appearing in either the theoretical or empirical
schema will appear in the synthesized schema. In no case has the possibility of
removing information from the characterization schema been considered at this
stage. The fact that the schema designer has not been able to deduce any attribute
mentioned by any respondent from the theory (or vice versa) does not necessarily
mean that this attribute is not important or necessary. The omission may be due to
a mistake or oversight. Likewise, as there is no way of knowing which attributes
are not necessary for selection (this information was never solicited), it is better to
play it safe and include all information.

Before defining the rules of synthesis, two fundamental concepts related to
these rules must be defined:

o Equality: Two attributes are considered equal if they bear the same name and
belong to the same element and level.

o Similarity: Two attributes are considered similar if they do not bear the same
name or do not belong to the same element or same level, although they
represent the same or similar concepts.

Accordingly, the following rules are defined for synthesis:

1. The levels and elements of the synthesized schema are the union of the levels
and elements of the original two schemas.

2. Any attributes that appear in just one of the characterization schemas appears
unchanged in the synthesized schema.

3. Any attributes that appear in both schemas and are equal appear unchanged in
the synthesized schema.

4. Any attributes that appear in the two schemas and are similar are studied to
decide whether they are used to generate one or several attributes.

5wInmnoscasesis-information.deleted.froms:the characterization schema.

10 A Process for Identifying Relevant Information for a Repository

Table 10.3. Preliminary schema

217

LEVEL

ELEMENT

ATTRIBUTE

Tactical

Objective

Quality attribute

Rigor

Scope

Phase

Element

Aspect

Operational

Agents

Experience

Knowledge

Tools

Identifier

Automation

Cost

Environment

Support

Technique

Comprehensibility

Maturity level

Cost of application

Inputs

Adequacy criterion

Test data cost

Dependencies

Repeatability

Sources of information

Results

Completeness

Correctness

Effectiveness

Type of defects

Number of generated cases

Adequacy degree

Object

Software type

Software architecture

| Programming language

Development method

Size

Use

Project

Reference projects

Tools used

Personnel

Satisfaction

Opinion

Benefits

Problems

On the basis of the above rules, the two original characterization schemas are
synthesized into what termed hereinafter the preliminary schema which is shown
in Table 10.3. Table 10.3 also shows the source of the attributes of the preliminary
characterization schema. Columns 1 to 3 show the schema itself (levels, elements
and attributes). The next two columns indicate whether the information
represented by an attribute is present in either of the two schemas: theoretical and

218 Vegas, Juristo and Basili

empirical. Accordingly, the original composition of the two schemas can be traced
back from Table 10.3.

It is interesting to note that 14 of the attributes present in the preliminary
schema do not appear in the theoretical schema. On the other hand, there are only
two attributes that are present in the preliminary schema and not in the empirical
schema. This means that, except for two attributes, the empirical and the
preliminary schema are practically identical. In other words, 58% of the attributes
of the preliminary schema are common to the two original schemas, 5% are
supplied by the theoretical schema, and 37% by the empirical schema. This is an
interesting point that is worth analyzing in more detail. The major omissions of the
theoretical schema are the use level and the fools element. As regards the use
level, one reason why it is not present is possibly that it was assumed during the
investigation that the information provided by the producers with respect to a
testing technique is complete enough for consumers not to have to look for other
sources of information. As regards the tools element, they were considered
important, but details like their automation (part of the technique automated by the
tool), their cost, the support provided by the tool vendor, or the platform
(hardware and software) and programming language (environment) that support
the tools were not taken into account. This could be due to the fact that pragmatic
aspects of the techniques were overlooked. The minor omissions of the theoretical
schema are some attributes of the technique element (maturity level, inputs and
test data cost) and the object attribute (size), which corroborate the above
supposition that pragmatic aspects of the testing techniques were overlooked when
building the theoretical schema.

The empirical schema, on the other hand, has only minor omissions, as the
respondents failed to detect only two attributes of the final schema: adequacy
degree and correctness, both belonging to the results element. The absence of
these concepts in the empirical schema is likely due to the fact that not enough
people were interviewed or that the set of possible respondents was not
satisfactorily covered.

10.4.4 Expert Peer Review

Taking into account that the experts use open-ended questionnaires, in which their
response is a description rather than a quantification, the opinions are analyzed
critically. This means that the opinions of all the experts on a particular subject are
read and understood. Then, the schema designer checks whether the opinions are
contradictory or coincident and, finally, makes a decision on whether or not to
accept the suggestion and, when accepted, how it can be included. The decision on
whether or not to accept the experts’ suggestions is made according to a series of
rules, which are now presented. Table 10.4 shows the results of this stage.

1. If the experts disagree, the majority view is respected.
20 If more thanoneexpert'tfecommendsia given change, the recommendation is
taken into account.

10 A Process for Identifying Relevant Information for a Repository 219

3. If only one expert recommends a change, this change is accepted, provided the
proposed change is not due to a misinterpretation of the schema, its logic or its
contents. When only one expert recommends a given change, this change is not
always as evident as when it is recommended by several experts. In this case, it
is the expert’s versus the schema designer’s opinion. It is sometimes impossible
to reconcile the two viewpoints, and it was decided that the opinion of the
schema designer should take precedence. One such case is the suggestion to
replace the attribute cost of application (technique) by complexity, as the
schema designer is of the opinion that a technique can be easy and still take a
long time to use. It is contradictory to make modifications in which the schema
designers do not believe or about which they are not sure.

4. If the solution of the problem stated by the expert goes beyond structural
changes to the schema (for example, build a tool to improve schema use), the
suggestion is accepted, but the solution will be left for future research.

The changes the four experts involved in the expert peer review made to the
preliminary schema can be briefly summarized as follows:

e Five attributes have been deleted: three from the tactical level (quality
attribute, rigor and phase) and two from the operational level (maturity level
and adequacy degree). This was done because the experts pointed out
dependencies or redundancies with respect to other attributes.

o The correctness attribute of the operational level was replaced by another
named precision.

o Two attributes were moved from the operational level to the tactical level
(effectiveness and defect type).

e A new attribute, termed purpose, was created and placed in the objective
element, as the experts noted that it was missing and justified its need.

o The results element was renamed as fest cases.

o The use level was renamed as historical level.

10.4.5 Start Up

The reviewed characterization schema has been put into practice according to the
process described in Sect. 10.3, for a university environment, using final-year
(sixth grade) students as consumers. The results are presented below.

10.4.5.1 Repository Population

The first thing to do before starting to populate the repository is to decide which
techniques will be used to check both schema feasibility from the producer
viewpoint and schema flexibility. For this purpose, it was decided to select a
number of technique families, which cover the variation between techniques of
different familiesyand-anumberof techniques within each family, which cover the
variation between techniques of the same family. Additionally, we resolved to

220 Vegas, Juristo and Basili

choose well-known techniques, as this gives a better understanding of how the

schema is instantiated.

Table 10.4. Final schema (1 of 2)

LEVEL ELEMENT | ATTRIBUTE DESCRIPTION
Type of evaluation and quality
Purpose attribute to be tested in the system
Objective Defect type Defect types detected in the system
Percentage of defects detected by
Tactical Effectiveness the technique out of the total
number of defects detected
Elements of the system on which
Element
the test acts
Scope PURT
A Functionality of the system to be
spect
tested
Knowledge Knowledge req}nred to be able to
Acents apply the technique
€ Experience Experience required to be able to
P apply the technique
. Name of the tool and the
Identifier
manufacturer
Automation Part of the technique automated by
the tool
C Cost of tool purchase and
ost .
Tools maintenance
Platform (SW and HW) and
Environment programming language with which
the tool operates
Support provided by the tool
o ionzl Support manufacturer
peration Comprehensibility Whether or not the technique is
P easy to understand
__ How much effort it takes to apply
Cost of application the technique
Inputs required to apply the
Inputs technique
Adequacy criterion Test case generation and stopping
Technique 4 rule
Test data cost Cost of identifying the test data
Dependencies Rt.:latlonshlps of one technique
with another
Repeatability Whether two people generate the
same test cases
Sources of Where to find information about
information the technique

10 A Process for Identifying Relevant Information for a Repository 221

Table 10.4 (cont). Final schema (2 of 2).

LEVEL ELEMENT | ATTRIBUTE DESCRIPTION
Completeness Coverage provided by the set of
cases
Test cases | Precision How many repeated test cases the
technique generates
Number of generated | Number of cases generated per
cases software size unit
Software type T){pe of soﬁwal.'e that can be tested
. using the technique
Operational Devel rodi ich
Software architecture | . cr o oP ment paradigm to which it
is linked
Obsi Programming Programming language with which
ject .
language it can be used
Development method or life cycle
Development method | "y b it is finked
Size Size that the software should have

to be able to use the technique

Earlier projects in which the
technique has been used

Project Tools used Tools used in earlier projects

Personnel who worked on earlier
L. Personnel .
Historical projects
General opinion about the

Reference projects

Satisfacti Opinion technique after having used it
atistaction Benefits Benefits of using the technique
Problems Problems with using the technique

Accordingly, the chosen techniques were:

o Functional testing techniques: Boundary value analysis and random testing

o Control flow testing techniques: Sentence coverage, decision coverage, path
coverage and thread coverage

o Data flow testing techniques: All-c-uses, all-p-uses, all-uses, all-du-paths, and
all-possible-rendezvous

o Mutation testing techniques: Mutation and selective mutation

The authors of this chapter were responsible for instantiating the above-
mentioned techniques. Table 10.5 shows the results of instantiating the chosen
technique for feasibility purposes: decision coverage. The findings of the schema
feasibility check were:

e There is information that is difficult to find, especially information related to
reference projects. This is due to the fact that companies do not like to see

222 Vegas, Juristo and Basili

their confidential data published. A cultural change has to take place at
companies for it to be possible to get reliable information about the past uses
of a testing technique. Also, companies have to get used to doing postmortem

analyses of projects to weigh up the results of using the techniques.

Table 10.5. Decision coverage technique

LEVEL ELEMENT | ATTRIBUTE VALUE
Purpose Find defects
Objective | Defect type Control
Tactical Effectiveness 48%
Scope Element Units
Aspect Any
Agents Know'ledgg Flow graphs
Experience None
Identifier LOGISCOPE
Automation Obtain paths
Tools Cost €3,000 - 6,000
Environment Windows; C/C++
Support 24-hour hotline
Comprehensibility High
Cost of application Low
Inputs Source code
Adequacy criterion Control flow
Technique Test data cost Medium :
Operational _ Suppl.emented with
Dependencies techniques that find
processing errors
Repeatability No
Sources of information Sommerville
Completeness —
Test cases Precision -
Number of generated
cases Exponential # decisions
Software type Any
Software architecture Any
Object | Programming language | Any
Development method Any
Size Medium
Reference projects -
Project Tools used -
Personnel —
Opinion OK, but should bc
Historical complemented with others
Benefits It is easy to apply
Satisfaction Dynamic analyzer should be
Problems a.voidcd when used with real
time and concurrent systems
due to code instrumentation

10 A Process for Identifying Relevant Information for a Repository 223

e There were also two schema attributes (precision and completeness) whose
value was not found anywhere. This casts doubts upon the advisability of
these two attributes appearing in the schema. However, they are found in both
the theoretical and empirical schemas and the experts did not consider them
unsuitable. This appears to be relevant information that is not available in the
literature on testing techniques. So, it is an omission of the testing literature,
not of the schema, as this information is considered relevant from all
viewpoints (note that there are not many attributes in the schema of which this
can be said), but is, however, not easy to locate.

¢ Contradictory information is often found about the testing techniques. This is
inevitable, because as long as the parameters that affect the use of a testing
technique are not perfectly defined, some may not be studied. The studies
carried out on testing techniques should be as rigorous as possible and, thus,
reflect the information more correctly in order to output noncontradictory
information.

o The metrics used to fill in some attributes are not easy to interpret. For
example, for technique effectiveness, one often finds probability of finding a
given fault as the associated metric. However, this attribute should really
reflect the percentage of faults that the technique can detect. Can both metrics
really be considered to reflect the same information? Or, contrariwise, do they
reflect different things? This problem has to do with what developers would
like to know and what can be easily collected [8]. This problem could be
solved if the metrics expressly asked for by the schema were used every time
studies were carried out on testing techniques.

However, it is important to stress that the potential of the schema, which is now
limited by the existing theory on testing techniques, is much greater. The schema
can be very useful as an aid for looking for information on testing techniques. This
includes information that is at present very dispersed and information that is not
now disseminated, like the opinions of other people who have used the technique.

As regards schema flexibility, it was possible to satisfactorily instantiate all the
testing techniques that were originally selected. This means that we were able to
instantiate the schema for thirteen testing techniques from four different families.
Of course, this does not mean that the schema is totally flexible. It would be
necessary to instantiate the schema for all existing testing techniques to make such
a claim. However, the fact that a series of techniques that are representative of
existing techniques have been able to be instantiated without any problem
indicates that the schema is flexible enough to be able to instantiate the huge
majority of, if not all, testing techniques.

10.4.5.2 Repository Use

Repository use aims to assess schema feasibility, completeness and user
satisfaction from the consumer viewpoint. The following project was used to
check schema feasibility.

224 Vegas, Juristo and Basili

A system is to be built to manage a car park (concurrent system). At this
stage of the project, the quality assurance team has identified the key quality
attributes of this software system. These were deduced by examining the
characteristics of the software to be developed, as well as its application domain.
In this particular case, the essential attributes are correctness, security and
timing.

Having examined the quality attributes of interest, the question is to decide
which techniques would be best suited to evaluate the correctness of the above-
mentioned software system, bearing in mind the following project situation. The
system is to be coded in ADA, the development team is quite experienced in
developing similar systems and it has also been found that almost all the errors
that the developers make are proper to concurrent programs. The testing team is
also experienced in testing this type of systems.

When illustrating how the problem is solved, the process defined is also shown:

Determine bounded variables (attributes of the schema whose value is
determined by the software project and cannot be changed): According to the
problem statement, correctness is to be evaluated, which means that the
purpose would be to detect faults in any type of element. The system is to be
developed in Ada, which is a language for real-time systems. The development
team is experienced in developing this type of systems, which means that they
are unlikely to make many errors. Table 10.6 shows the associated variables for
the example.

Preselect an initial set of techniques: Given the associated variables in
Table 10.6, their value was compared with those of the technique contained in
the repository. The techniques selected are: boundary value analysis, random,
path coverage, all-possible-rendezvous, all-c-uses, all-p-uses, all-uses, all-du-
paths, standard mutation and selective mutation. The techniques sentence
coverage and decision coverage are rejected because their effectiveness is low,
and the technique threads coverage is discarded because it is for object-
oriented software.

Table 10.6. Bounded variables

LEVEL ELEMENT | ATTRIBUTE VALUE
Purpose Find faults
Objective | Defect type ANY
Tactical Effectiveness >50%
Element ANY
Scope
Aspect ANY
Software type Real time
Software architecture Concurrent
Operational | Object Programming language | Ada
Development method ANY
Size Medium

10 A Process for Identifying Relevant Information for a Repository 225

o Identify the best-suited techniques for selection: Of the preselected techniques,
there is one that is specific for Ada-style programming languages (concurrency
implementation using rendezvous). Although there are general-purpose
techniques (for all software types) that are more effective, it appears that the
technique that is specific for concurrent software detects the faults proper to
concurrency better than the other techniques. Furthermore, the technique path
coverage states that when used with concurrent and real-time systems, a
dynamic analyzer cannot be used as a tool. Additionally, the techniques all-c-
uses, all-p-uses, all-uses, all-du-paths, standard mutation and selective
mutation cannot be used without a tool (which is not available). Therefore, the
all-possible-rendezvous techniques will be selected. However, the dependency
attribute states that the technique should be supplemented with a black-box
technique. Observing the black-box techniques in the preselected set (boundary
value analysis and random), it is found that the random testing technique is
useful for people with experience in the type of tests to be run and is therefore,
also selected.

The finding for schema feasibility is, therefore, that it is possible to make at least
one selection using the characterization schema.

The study of schema completeness addressed both the information the subjects
used during selection and the missing information. The main finding of this study
is that it is important for the characterization schema to be completely instantiated
for users to be able to take full advantage of the schema and for them to consider it
useful (this can pose a threat to its utility). Another interesting point observed is
that subjects are not always able to ascertain the value of variables that do not
appear in the schema, but whose values can be easily deduced from the schema.
This is the case of the time it will take to apply the technique. If the cost of
application of the technique, the knowledge of the people who are to use the
technique, whether or not tools are to going to be used and the size of the software
are known, it is easy to find out how long it takes to apply the technique.

To assess satisfaction with the schema, the subjects are asked by means of open
questions to subjectively summarize their perceptions of the selection process.
These questions are related to the advantages and disadvantages the subjects have
seen with the schema, whether they would use it in their work if available, the
improvements they would make to the schema, what they liked and did not like
about the schema, whether their view of the selection problem has changed after
using the schema, what have they learned and the suitability of the names in the
schema. Generally, the subjects like the schema. However, they do stress the fact
that there are uninstantiated attributes. They also think that the schema contains
too much information. This again suggests the need to build a tool to make the
information the schema contains easier to handle. All the subjects would be
prepared to use the schema, provided they do not have to instantiate it. They miss
some information, although, interestingly, the information they do not find either
refers to things that they can deduce from the schema (like the time it will take to
apply a technique, for example) or information that they should extract from their
project context for comparison with a schema attribute (as is the case of the

226 Vegas, Juristo and Basili

experience of the development team, where what they are really looking for are
the defect types to be detected). As regards the suitability of the names, the names
that they allege not to be very intuitive are precisely the ones that refer to non-
intuitive concepts about the techniques (adequacy criterion, precision, etc.), which
suggests that the schema names are suitable.

10.5 Process Evaluation

Additionally, we wanted to check whether the process followed output a suitable
schema and whether repository use really improves selection. For this purpose, we
ran an experiment with the repository built with 87 students. For details about the
experiment, see [17]. The experiment compared characterization schema use with
books used for selecting testing techniques [6, 13, 16]. The findings are reported
below.

As regards schema efficiency, the total time required to solve the selection
problem is the sum of the study time plus the selection time and consultation time
(which is zero if books were used for selection). This experiment found that the
schema helps to reduce both the study and the selection time as compared with
books, and that the time spent consulting the schema can be considered negligible
with respect to the other two. Accordingly, it can be concluded that one of the
objectives of this research has been achieved, which is the construction of a
characterization schema that makes selection more efficient. However, the results
are subject to the following conditions: non-English-speaking and inexperienced
subjects.

After studying schema effectiveness, it was found that the number of original
techniques is lower for books than with the schema and varies from subject to
subject. It was also found that the number of selected techniques is lower for the
schema than for books, and the subjects select either families of techniques, things
that are not techniques or techniques with which they are very familiar.

Combining these results, the conclusion is that the subjects using books are
unable to distinguish between a technique and a family or something that is not a
technique even though they were given an explanation as to what a technique is.
This is indicated by the fact that the set of original techniques is different for the
subjects who made the selection using books and who select things that are not
techniques. As none of the subjects is incompetent for performing the task (they
would also have failed in the selection using the schema), this could be explained
by saying that books are confusing as regards the information they provide. This
could also be the reason why the subjects tend to select more techniques, gaining
more assurance that the tests will turn out right, and why they choose techniques
with which they are very familiar. Finally, it should be stressed that the schema
leads to more precise selections.

With respect to schema completeness, it was observed that the schema contains
more useful information for selection purposes than books. Books focus on
explaining how a technique works rather than when to use it.

10 A Process for Identifying Relevant Information for a Repository 227

As regards schema usability, the number of problems found during selection,
the sort of problems, the number of schema attributes that are problematic for
selection purposes and the sort of attributes were taken into account to evaluate
schema usability. The first two variables provide relative results on schema
behavior as compared with books, whereas the latter two provide absolute results,
irrespective of books.

From the relative comparison of the schema against books, it was found that the
subjects have fewer problems using the schema than books. It was also discovered
that the frequency of appearance of each problem lower. In addition the main
problems encountered by the subjects using the schema are the result of there
being attributes that are not instantiated in the schema, as well as there being too
much information (a problem that was predicted by an expert and which could be
solved by building a tool). On the other hand, the problems concerning the
selection with books are well known: poor organization of the available
information, as well as missing information of interest and the existence of
information that is unnecessary for selection purposes.

From the absolute comparison, it was found that the frequency with which the
meaning of attributes is consulted is low. It was also found that the most often
consulted attributes appear to be the attributes that represent concepts that are not
intuitive or are difficult for the subjects to interpret. Finally, it can be said that
characterization schema usability is acceptable, although there is room for
improvement. It is acceptable insofar as the frequencies of appearance of problems
are lower than for books, and the frequency with which the meaning of the
attributes is consulted is also low. However, schema usability could be improved,
for example, by building a tool to make the information easier to handle. It could
also be improved by assuring that, every time a technique is added, the entry
contains as much information as possible.

From all this, it can be concluded that the use of characterization schemas
improves selection and also that the proposed process helps in the construction of
characterization schemas, since it defines a systematic way of identifying relevant
information.

10.6 Conclusions

Throughout this chapter, we presented a process for developing characterization
schemas. As discussed in Sect. 10.2, the generation of characterization schemas is
one of the most important activities for creating an experience base. We also
found that no process has yet been defined for their development.

The proposed process was applied to a particular artifact type: software testing
techniques. The existence of a large group of testing techniques, the lack of
pragmatic information about these techniques and the lack of a theoretical
foundation makes them a paradigmatic example of the difficulties involved in
building experience bases. Thanks to the practical application of the proposed
process, we demonstrate first, the adequacy of the characterization schema output

228 Vegas, Juristo and Basili

by following the process and, second, the soundness of the process. We operated a
mini-repository containing thirteen testing techniques to test the adequacy of the
resulting schema. By setting up and using the repository, we were able to detect
some of the possible schema defects (in this case, none).

Additionally, we ran an experiment to check the soundness of the proposed
process, which compared the use of the mini repository developed from the
schema with the use of testing books. From this experiment, we were able to find
that the schema generated with the process proposed here contains more complete
information than testing books, is easier to use, is more efficient and leads to
better selections than books. Thanks to this experiment, we were also able to
confirm the generic hypothesis that artifact selection improves with the use of
characterization schemas.

Going back to the more generic problem of using characterization schemas in
software engineering, it is important to note that the areas that can benefit most
from these conceptual tools are the ones that have a wide variety of elements to be
characterized and knowledge to be stored.

While the first point represents an essential issue, the second one represents an
issue that can be somehow overcome by having researchers perform more
research into the issues that are relevant for the characterization schema (for
example, inspections where there is not much knowledge). At the moment there
would be no point in developing a characterization schema for selecting
development paradigms, since there are only two paradigms i.e. structured and
00. However, some knowledge must always be available about the element that is
to be characterized.

References

1. Althoff K.D., Birk A., Hartkopf S., Miiller W., Nick M., Surmann D., Tautz C. (1999)
Systematic population, utilization and maintenance of a repository for comprehensive
reuse. In: Proceedings of the 11th international conference on software engineering
and knowledge engineering, Springer, Berlin Heidelberg New York, pp. 25-50

2. Basili V.R, Lindvall M. Costa P. (2001) Implementing the experience factory
concepts as a set of experience bases. In: Proceedings of the 13th international
conference on software engineering and knowledge engineering. Buenos Aires,
Argentina, pp. 13-15

3. Basili V.R., Rombach H.D. (1991) Support for comprehensive reuse. IEEE software
engineering journal, 6: 303-316

4. Basili V.R., Rombach H.D., Caldiera G. (1994) The experience factory. Encyclopedia
of Software Engineering, John Wiley and Sons, UK, pp. 469-476

5. Bass L., Clements P., Kazman R. Bass K. (1998) Software architecture in practice. SEI
series in software engineering. Addison-Wesley, Readings, MA, USA

6. Beizer B.. (1990) Software testing techniques. International Thomson computer press,
London, UK

T Birkoo Aa (1997) - Meodeling . the mapplication domains of software engineering
technologies. In: Proceedings of the 12th international conference on automated
software engineering, Lake Tahoe, California, 291-292

10 A Process for Identifying Relevant Information for a Repository 229

8. Fenton N, Krause P. Neil M. (2002) Software measurement: uncertainty and causal
modeling. IEEE Software, 19: 116-122

9. Glaser B., Strauss A. (1967) The discovery of grounded theory: strategies for
qualitative research. Aldine publishing, Chicago, USA

10. Henninger S. (1996) Accelerating the successful reuse of problem solving knowledge
through the domain lifecycle. In: Proceedings of the 4th international conference on
software reuse, Orlando, Florida, USA, pp. 124-133

11. Komi-Sirvio S., Méntyniemi A., Seppénen V. (2002) Toward a practical solution for
capturing knowledge for software projects. IEEE Software, 19: 60-62

12. Maiden N., Rugg G. (1996) ACRE: Selecting methods for requirements acquisition.
Software engineering journal, 11: 183-192

13. Pfleeger S. L. (1999) Software engineering: theory and practice. Mc-Graw Hill, New
Jersey, NY, USA

14. Prieto-Diaz R. (1989) Classification of reusable modules. In: Biggerstaff T., Perlis A.
(Eds.), Software reusability, ACM Press, New York, NY, USA, pp. 99-124

15. Rus I., Lindvall M. (2002) Knowledge management in sofiware engineering. IEEE
Software, 19: 26-38

16. Sommerville I. (1998) Software engineering. Pearson Education, Harlow, UK

17. Vegas S. (2002) A Characterization schema for selecting software testing techniques.
PhD thesis, Facultad de Informética, Universidad Politécnica de Madrid, Spain

18. von Wangenheim C.G. (1999) REMEX- A case-based approach for reusing software
measurement experienceware. In: Althoff, K.-D., Bergmann R., Branting L.K. (Eds.),
Case-based reasoning research and development, Springer, Berlin Heidelberg London,
pp. 173-187

19. von Wangenheim C.G., Althoff K.-D., Barcia R.M. (2000): Goal-oriented and
similarity-based retrieval of software engineering experienceware. In Ruhe, G.,
Bomarius, F., (Eds.), Learning software organizations: methodology and applications,
Springer, Berlin Heidelberg New York, pp. 118-141

Author Biography

Dr. Sira Vegas is assistant professor of computer science at the Universidad
Politécnica de Madrid in Spain. She had a summer student grant at the European
Center for Nuclear Research (Geneva) in 1995. In 1997, she worked at GMV
(Madrid) in the ENVISAT project for the European Space Agency. She has been a
regular visiting scholar at the University of Maryland from 1998 to 2000. Dr.
Vegas has a Ph.D. in computer science from the Universidad Politécnica de
Madrid. She is a member of the IEEE Computer Society and ACM.

Dr. Natalia Juristo is professor in computer science at the Universidad Politécnica
de Madrid in Spain. She is the Head of the Politecnica Master of Software
Engineering degree program. Dr. Juristo has worked at the European Center for
Nuclear Research (Geneva), and at the European Space Agency (Rome). In 1992
she was Resident Affiliate at the Software Engineering Institute (Pittsburgh) on a
NATO Fellowship:»DrovJuristorhasvay Ph.D. in computer science from the
Universidad Politécnica de Madrid. She has served as Member of the editorial

230 Vegas, Juristo and Basili

board of the IEEE Sofiware Magazine from 1997 to 2001. She is a senior member
of IEEE Computer Society and member of ACM, AAAS and NYAS.

Dr. Victor Basili is professor of computer science at the University of Maryland,
College Park, the executive director of the Fraunhofer Center Maryland and one of
the founders and principals in the Software Engineering Laboratory (SEL) at
NASA/GSFC. He works on measuring, evaluating and improving the software
development process and product. Dr. Basili is the recipient of the 2000
Outstanding Research Award from ACM SIGSOFT, has authored over 160
journal and refereed conference papers, and has served as editor-in-chief of the
IEEE Transactions of Software Engineering. He is co-editor-in-chief of the
International Journal of Empirical Software Engineering, and is an IEEE and
ACM Fellow.

11 A Knowledge Management Framework to Support
Software Inspection Planning

Stefan Biffl and Michael Halling

Abstract: Software inspection requires customization to each development
context and guidelines for planning for optimal results. In this work we present a
role-oriented knowledge management framework for key decisions in software
inspection planning and focus on how to use available knowledge from literature,
which may vary considerably in different contexts, with local empirical data. We
identify three decision levels, which differ by knowledge requirements and the
level of uncertainty for decision inputs: the quality management level, the project
planning level, and the inspection level. On each inspection planning level we
provide scenarios with key decisions that outline the decision-making process and
show how available inspection knowledge based on measurement in a particular
context can be used for decision support. The conceptual framework is a first step
to make inspection planning more explicit and procedural in order to be able to
further improve this process.

Keywords: Quality management, Project management, Software inspection,
Decision support, Knowledge management framework, Empirical software
engineering.

11.1 Introduction

Software inspection is a full-life-cycle and economic quality assurance (QA)
approach to detect defects [1]. For best results inspection requires customization to
each development context, because for each development context there is a large
variety of goals, process variants, and context factors to consider [14]. Inspection
in general is cost intensive and often shows big performance variations in different
contexts [43]. In the past 25 years a considerable amount of inspection data has
been collected in many contexts, but little universally applicable inspection
knowledge was created. Especially regarding knowledge in support of inspection
planning, very little progress has been documented so far. However, appropriate
knowledge management (KM) that generates inspection knowledge promises to
further enhance software inspection performance in many contexts.

Knowledge management is the systematic sharing of documented knowledge
[33]. This knowledge can consist of quite heterogeneous items, for example,
simple performance measures collected in the past; process models with varying
levels of detail and complexity, or unstructured experience from past applications
of a technology [12]. Key components of knowledge are data and information [33]

232 Biffl and Halling

available to organizations data includes measures collected during events, and
information represents data organized to make it useful for end users.

The term knowledge has multiple definitions (see Kakabadse et al. [22] for a
summary of the most popular ones). We refer to knowledge as information that
has been organized and analyzed to make it understandable and applicable to
problem solving or decision making. A further distinction of knowledge includes
factual and procedural knowledge. According to Kahneman et al. [23], factual
knowledge implies having long-term memory and an extensive database, while
procedural knowledge is represented as a repertoire of mental procedures or
heuristics used to select, order, and manipulate information in the database and is
used for purposes of decision making and action planning,.

In Sect. 11.2 we provide a brief overview of existing factual knowledge in
software inspection. We refer to software inspection knowledge as, for example,
knowledge [33] in the following areas: software inspection process variants,
defect detection techniques, and role definitions (e.g., expertise and training as
inspector, moderator, or inspection manager). The most important and challenging
aspect of inspection KM is to link context parameters like characteristics of the
inspection object, expected or targeted classes of defects, available inspectors, and
time budget available to inspection process design parameters.

In Sect. 11.3 we outline an inspection framework to help move factual
knowledge to create procedural knowledge. This framework incorporates
traditional inspection activities, but also provides an insight into managerial and
knowledge-oriented dimensions of the inspection process as a first step to applied
knowledge management in software inspection. We identify decisions on three
levels according to the different users/customers of the inspection process and
present examples for key decisions on these levels:

1. The quality management level concerns the selection of the set of quality
assurance techniques applied during software development, which may include
some form of review or inspection.

2. On the inspection level, the detailed inspection planning, conduct, and analysis
influences the determination of the team composition, i.e., team size and defect
detection techniques, for the execution of specific inspections.

3. On the inspector level, the inspector follows the inspection process description
and has to decide for when to stop and whether an issue is really a defect.

Furthermore, these levels of inspection planning differ by decision-making role
(quality manager, inspection manager, and inspector), context (environment
factors influencing the decisions), uncertainty, and knowledge requirements for
these decisions. Thus they need separate treatments in a KM framework/system.

In Sect. 11.4 we summarize important decisions and knowledge items in the
inspection process, discuss the knowledge generation potential of inspection, and
derive requirements for a knowledge management system. Sect. 11.5 summarizes
and concludes the chapter.

11 A Knowledge Management Framework to Support Software 233

11.2 Knowledge in Software Inspection

In the past 25 years a considerable number of empirical studies have been
published (for surveys refer to [8, 19, 24, 31]). Overall, inspection research shows
potential for improvement regarding general validity, as available studies usually
focus on individual problems. In this section we provide a brief review of the
existing inspection information and discuss the current level of knowledge in key
inspection areas.

11.2.1 The Software Inspection Process

The core inspection process was developed by Fagan [16] nearly 30 years ago and
consists of defect detection defect collection and defect correction. However, we
focus particularly on defect detection in the remainder of this paper, as it is the
most important and challenging inspection activity. Gilb and Graham [17] offer a
practical introduction into the software inspection field while Laitenberger and
DeBaud [24] provide a detailed overview of inspection-related research over the
past decade. Different alternative inspection process designs have been proposed,
like N-fold inspection, active design reviews, and phased inspection (for more
details refer to [24]). However, very little empirical evidence is available on the
performance of these inspection techniques in comparison to the traditional
inspection approach.

As far as the traditional inspection process is concerned, empirical studies
clearly document that defects are detected on average with satisfying effectiveness
and efficiency [24]. However, inspection performance shows large variations in
individual defect detection effectiveness [4, 18, 25, 30]. The origin of this
variation is not fully understood so far the possible explanations include
inspection process parameters, the inspection environment, or the inspectors
involved. In our opinion a major potential for improving software inspection lies
in reducing performance variability and making the process more predictable.

Therefore, inspection planning is a particularly important preliminary step of
inspection as it customizes the inspection process to the development context. In
Sect. 11.3 we mainly focus on inspection planning. A structured approach towards
inspection planning is important as it lowers the risk to select incompatible
inspection ingredients, such as products incompatible with the chosen inspection
technique or defect detection techniques with inspectors who lack the expertise for
these techniques. An experience factory [33] can support the analysis, packaging,
and communication of inspection knowledge on several levels: use of inspection
as a black-box quality assurance process, tailoring of inspection process steps and
roles, and detailed techniques for inspection conduct.

234 Biffl and Halling

11.2.2 Team Defect Detection

A very fundamental general question is whether defect detection is a group
activity (i.e., defect detection during a meeting) or an individual activity. While
early inspection designs emphasized the importance of inspection meetings [16],
later research encouraged individual defect detection and instead used meetings
for defect collection [3, 21]. Consequently, different empirical results exist which
in some case emphasize the benefits and in other cases the costs of inspection
meetings.

For a detailed overview of the information on the difference between individual
and group defect detection, see [3, 21]. Related behavioral studies have found no
evidence of synergy as a source of group advantage [45]. In general, a widely
accepted opinion proposes that synergy only justifies meeting costs in few,
specific situations and that other aspects like, for example, the removal of false
positives encourages group activity. However, no consolidated inspection
knowledge on group defect detection is available so far.

11.2.3 Individual Defect Detection

As far as individual defect detection is concerned, reading is the key activity in
individual defect detection to understand a given software artifact and to compare
it to a set of expectations regarding structure, content, and desired qualities. The
recognition of differences between expectations and the artifact helps readers to
spot defects. Reading of software artifacts has been identified as a process for
scientific study lately, resulting in quite a comprehensive set of related theories
[2, 35].

Inspectors often have to learn how to read and analyze documents for particular
purposes. Most inspection related research in the past has focused on the
development of reading techniques (RTs), which assist the reader in extracting,
gathering, and understanding the information necessary to assess certain quality
requirements [2]. In an ad hoc inspection no RT is applied, and therefore
inspection performance depends completely on the capability of the inspector and
not on a repeatable process. Examples of more systematic reading techniques
include checklist-based reading [13, 17], scenario-based reading [2, 15, 31, 35,
36], usage-based reading [37, 38], and traceability-based reading [39].

There are many studies that provide empirical data on individual defect
detection: A very good survey on the available data is presented in [31]. They
come to the conclusion that it is not clear whether more sophisticated reading
techniques like scenario-based reading really outperform the simpler defect
detection approaches.

11 A Knowledge Management Framework to Support Software 235

11.2.4 Inspection Team Size and Inspector Characteristics

Other important inspection process parameters related to defect detection are team
size and inspector expertise. However, these areas are even less evaluated and
documented than the area of reading techniques. Sauer et al. [34] propose that the
effectiveness of both individual preparation and the team meeting depend on the
level of inspector task expertise for defect detection and defect discrimination, i.e.,
the ability of an inspector to discern a defect, to distinguish among defect types,
and to detect certain defect types. Inspector task expertise may vary with several
parameters of the inspection object (e.g., type and notation) and detection aids
used (none, checklist, or specific procedures). A recent study on inspector
selection shows little influence of inspector experience and software development
skills on inspection performance [10].

As far as the influence of team size on defect detection performance is
concerned, some preliminary inspection data indicate that increasing team size has
decreasing marginal benefits, and that comparatively large team sizes up to ten
inspectors may make sense in some situations [5, 11]. Petersson [27] determines
the contribution of individual inspectors to the performance of teams with
different sizes and finds that, on average, the individual reviewer contribution to
the inspection team effectiveness is limited and decreases with team size. In
general, the limited number of studies and inspection environments considerably
limits the general applicability of available inspection knowledge in this area.

11.3 A Conceptual Knowledge Management Framework for
Software Inspection Planning

This section introduces a decision- and knowledge-oriented framework of the
inspection process. In the previous section we saw that some inspection
knowledge is clear but some is very ambiguous. Therefore it is important to
emphasize research in the area of procedural knowledge to support planning and
decision-making. The presented framework (see Fig. 11.1) is a first step in this
direction and extends existing inspection research by adding two managerial levels
to the traditional technical inspection process. The framework is hierarchical to
distinguish different types of knowledge and levels of uncertainty. It is also role-
oriented to support a clear definition of responsibilities and competencies and is
decision-oriented to help take the most important decisions in the process.

Figure 11.1 consists of three levels (large surrounding boxes): quality
management in a software development project as context for a possible
inspection; inspection management, if an inspection is actually conducted; and the
technical inspection process. The small boxes represent activities on the different
levels. Arrows between the boxes indicate a flow of information. The left column
of process boxes (especially on the top two levels) deals with KM for inspection
planning, while the right column describes processes, which extract information
out of past inspections and therefore generate knowledge from inspection analysis.

236 Biffl and Halling

» PanQa |« Update guidelines Re-plan further| N
- < 0 . ege 7
Context for QA plannmg QA aCt,V ItIeS Updated
project A QA plan
Goals for Inspection result
TASpECHon for QA
Analyze
Plan Update guidelines Inspec}:;on o
> . < T i H La
Context Inspection for inspection planning Result Qestimate
inspection A for product
Inspection Inspection
Ny pan data
Correct
Detect Defects > Collect Defects—» Defect >
Defs Defs S Improved
— . . - product
Level 3: Decisions on inspection process execution)
Level 2: Decisions on inspection process - white box view
Level 1: Decisions on QA in the project/organization

Fig. 11.1. Process steps and associated decisions

In the following subsections we focus on the inspection planning side and
provide a detailed level-oriented description of the framework, including a
selection of key planning decisions (see Table 11.1 for an overview). For each
decision we discuss the level of knowledge, both theoretical and empirical,
available. However, we do not provide general strategies for decision making. We
view this work as a first step towards gathering procedural knowledge for
inspection planning. A further step in the future is to extend the existing level with
explicit decision support techniques, like economic valuation approaches [40] and
multi-criteria decision aid [41].

11.3.1 Level 1: Quality Manager

At the quality manager level, inspection is one of several approaches to defect
reduction. The challenge for quality managers is to appropriately determine the
mix and timing of different QA techniques while facing a high degree of
uncertainty combined with limited data. Usually decisions on this level require a
less detailed but more extensive set of knowledge (e.g., a quality manager needs to
have some but not detailed knowledge on a large variety of QA techniques)
compared to lower levels in the framework. The combination of these
characteristics makes decisions on this level especially difficult: Little knowledge
is available on the interpretation of data items, and little theoretical support exists.
Therefore an organization could, in our opinion, profit most from a comprehensive
KM system on this level.

11 A Knowledge Management Framework to Support Software 237

Table 11.1. Overview on roles, decisions, and decision input information

Scope Decision Decision input information
Quality 1.1 To what extent and at what time Project context
manager should inspections be used for defect density and defect impact
defect reduction? [9, 29] defect reduction potential
1.2 Is it worthwhile to conduct a Same knowledge items as before
reinspection? [4, 6] plus inspection performance data

from first inspection, product
quality estimates after first

inspection.
Inspection 2.1 Which defect detection Inspection context
manager techniques are to be applied? Effectiveness of different
[21(15] individual reading techniques;
effectiveness of individual and
group defect detection
2.2 What is the optimal team Detailed inspection context
structure, i.e., team size and Defect detection redundancy
assignment of defect detection defect overlap.
techniques? [5]
2.3 Who are the most suitable Detailed inspection context
inspectors to perform this type of Inspector qualification, theory on
inspection? [10]{34] important inspector characteristics
for selection.
Inspector 3.1 Is a defect a true defect? [2] Inspection material.
3.2 When to stop inspection? Inspection material, opportunity
costs

Decision 1.1: To what extent and at what point should inspections be used for
defect reduction in a certain project (in competition to development and other QA
approaches)? Inspections should be used in a project whenever it is likely to be the
most effective or efficient way to find important defect classes. We map this
decision to an allocation problem of limited resources (staff hours) to QA
activities rather than on a selection problem of exclusive QA activities. With
regard to the defect reduction, there are several alternatives to inspection that
should be assessed and compared to each other, for example:

e Rework defects later can be reasonable if the impact on development effort,
duration, and product quality is bearable in the context, e.g., in a prototyping
activity or the extreme programming process [26].

¢ Rigid/uniform development processes in organization; defect-focused
development process, e.g., pair programming or iterative development, which
result in products of sufficient quality [26].

o Testing on several levels of intensity.

One specific technique to take this decision whether to use inspection as defect

reduction-approeach.or.not.is.to.apply.an economic model considering both the

costs and benefits of inspection. Detailed information on inspection benefits and
costs can be found in [9]. The main advantage of an economic model is that it

238 Biffl and Halling

allows estimation of a functional relationship between all decision variables.
Using appropriate information on the benefits and costs of other quality assurance
techniques, an economic model can be used to determine a close-to-optimal mix
and timing of activities. Important knowledge items for this decision are (a) the
likely impact of defects in the project context, (b) an estimate of the likely defect
density and severity in key products, and (c) the likely effectiveness and cost of
defect reduction candidates.

Project context: Usually the quality manager knows the project context, e.g., time
and cost schedule, and quality requirements. However, only little public
knowledge is available on the influence of project context parameters on software
inspection (see [14] for an analysis of a limited variety of scenarios) or on optimal
QA planning in order to satisfy project guidelines. This requires historic company
data to create a company-specific database and a KM framework to support the
quality manager in using these data items.

Defect density and defect impact: These items are very dependent on the project
context, e.g., time pressure and staff quality. Some theories exist on defect
introduction and defect spreading. Combining these theories with historic
company data can provide reasonable estimates.

Defect reduction potential: The only public empirical information available at this
level deals with the defect reduction potential and associated costs of quality
assurance approaches. Detailed overviews of inspection are presented in [3, 4, 24].
Although this information has, of course, some uncertainty, it enables quality
managers to roughly assess the defect reduction potential to be expected. As far as
comparing effort of inspection and other defect reduction techniques is concerned,
Laitenberger and DeBaud [24] summarize that most of the available literature
presents solid data supporting the claim that the costs for detecting and removing
defects during inspections is much lower than detecting and removing the same
defects in later phases.

Decision 1.2: Is it worthwhile to conduct a reinspection (several inspection
cycles)? If an inspected product is suspected to still contain a substantial number
of defects, a second inspection cycle, called reinspection, can be conducted to find
more defects [6]. The decision whether or not to conduct such a reinspection is
similar to the decision whether to conduct an inspection, with the valuable
additional information on the product and defects from the recent inspection.
Benefits of a reinspection are fewer defects in the product and improved accuracy
of measuring the number of defects remaining in the product [4, 6, 7]. Note that
data from the first inspection cycle resolves a considerable amount of uncertainty,
e.g., better estimates for the remaining defect density and the defect reduction
potential of inspection given the specific context. So far, there are very few reports
on empirical data on reinspections [4, 6, 8]. These reports, however, document
that a reinspection can be a reasonable option after an inspection.

11 A Knowledge Management Framework to Support Software 239

11.3.2 Level 2: Inspection Manager

Under the assumption that the quality manager decides to use inspection at some
point in the project, the inspection manager is responsible for planning and
conducting an inspection for a given context in order to reach the quality goals.
Therefore inspection managers operate in a less uncertain world as they receive
certain guidelines from quality managers as inputs to the planning process. While
the quality manager only requires aggregated knowledge of the inspection process,
the inspection manager has to determine the specific inspection design to be
executed within a given inspection context.

This planning involves a sequence of decisions regarding different inspection
process parameters, like the individual defect detection techniques or the
inspection team. In practice, the sequence of steps may vary and follow several
iterations until a stable concept has been found. Before we discuss a selection of
the most important decisions on this level (for a detailed survey see [19]), we want
to emphasize that our analysis is based on the traditional inspection process
defined by [16] and that we do not deal with different inspection process designs
and their implications on the following decisions. For an overview on inspection
process variants see [24].

Inspection context: While a key knowledge item on the quality management level
has been project context, we identify the inspection context partly given by the
quality manager, partly determined by the project context as an important
knowledge item on this level. Basically, the inspection context including
inspection goals, schedules, and resources is given. However, the interrelationship
between inspection context and inspection design is uncertain.

Decision 2.1: Which defect detection techniques are to be applied? The most
important inspection goal is usually to detect defects in the inspection object.
Therefore, a main inspection planning decision is to determine the defect detection
techniques optimally used during inspection.

Individual versus team defect detection effectiveness: As far as defect detection in
inspection meetings is concerned, so far no systematic or theoretically motivated
support exists. Existing knowledge on group defect detection is very
heterogeneous and therefore provides little support. However, recent work [3, 21]
concludes that synergy effects hardly take place. However, meetings can still be
useful to remove false positives, provide training for novice team members, and to
discuss unclear issues on the work product or the inspection process. Votta [42]
presents different types of meetings for these purposes.

Because of the lack of explicit group defect detection theories, group defect
detection performance depends to a large degree on inspector ability and tacit
knowledge, i.e., on group interaction knowledge, which is personal to inspectors,
not easily visible or easy to formulate [28]. If the project and inspection contexts
justify inspection meetings, a KM framework should focus on collecting data from
the meeting process and on making this tacit knowledge more explicit.

Reading Techniques Effectiveness: A large variety of inspection data exists on
individual defect detection (Sect. 11.2). However little generally applicable

240 Biffl and Halling

knowledge has been created from this data. Therefore the selection of defect
detection techniques is a difficult and uncertain activity. From a theoretical point
of view, a set of concepts exists that are potentially helpful for this decision. For
example, reading techniques can be classified according to the following
characteristics [24]: the wusability regarding the guidance of the reader, the
adaptability to a range of different document notations and typical sets of defects,
the person-independent repeatability of results, the coverage of important quality
aspects, and the focus it assigns to the inspectors in a team on different aspects of
the document and target defects. These characteristics strongly influence the
feasibility of reading techniques in different project situations and enable the
inspection manager to better identify the best set of reading techniques for a given
inspection context. Unfortunately, ambiguous empirical evidence with little
general applicability exists on the performance of different reading techniques.
Nevertheless, structured reading techniques like scenario-based reading reduce the
amount of tacit inspector knowledge required for inspection. If ad hoc and
checklist-based reading are applied, little information is gained on how inspectors
identify defects. Structured reading techniques combined with knowledge
generation techniques like feedback questionnaires and interviews enable
organizations to transform tacit defect detection knowledge into explicit defect
detection techniques.

Decision 2.2: What is the optimal team structure, i.e., team size and assignment
of defect detection techniques? The team structure describes the combination of
defect detection techniques and the number of inspectors applying a specific
defect detection technique. An important aspect of this planning step is to estimate
the trade-off between defect detection:redundancy and defect overlap.

Defect detection redundancy: The term defect detection redundancy is used to
indicate that several inspectors apply the same defect detection technique, which
usually increases the defect overlap. Defect detection redundancy increases costs
because inspectors are added but decreases the risk of undetected defects.
Therefore some redundancy might be reasonable and advantageous.

Defect overlap: The term defect overlap denotes the number of defects that are
detected by more than one inspector. Usually the inspection manager aims at
reducing both defect detection redundancy and defect overlap.

Most empirical reports contain data on inspections with team sizes of two to
six [24] and yield contradicting results concerning the influence of team structure
on their results. See [5] and [11] for a first step to a more systematic analysis of
team structure based on synthetic nominal teams, where we confirm the theoretical
expectations that defect overlap increases and the marginal number of newly
detected defects decreases with an increase in team size. However, in some
situations detecting another individual but important defect might justify the
increased effort. Therefore the inspection manager’s target is to determine the
optimal team size to increase the variety of expertise available while avoiding
process loss from too large groups [34].

Decision 2:3:" Which inspectors are 'most suitable to perform this type of
inspection? As reported in Sect. 11.2, empirically documented inspection

11 A Knowledge Management Framework to Support Software 241

performance shows large variation, which can only partly be explained through
process variation: the remaining part seems to stem from individual inspector
variation [34]. In general, Sauer et al. [34] report that the implications of
behavioral theory for software inspection are that interventions, which
significantly increase the available defect detection expertise, should have the
largest impact on performance. If processes are poor, expertise may be lost. But,
when expertise is poor, an excellent process does not increase the available
expertise and, hence, does not improve performance. Therefore selecting the right
inspector for a particular inspection job is very important.

Inspector qualification: Key criteria for inspector selection are certainly the
knowledge of the inspectors with respect to the inspected artifact and with respect
to the inspection process and defect detection techniques used. However, these
knowledge items are often only implicitly given since it is difficult to objectively
measure qualification. A KM system should provide a variety of inspector-related
information, including performance measures on past inspections, in order to
enable inspection managers to select those inspectors who fit the selected
inspection design best.

In general, the issue of identifying a good inspector is a topic of current
research. Although different papers argue that inspector qualification is an
important aspect, only little systematic empirical evidence on this issue is
available [10]. In practice, the best approach seems to use data from past
inspections in the target context to evaluate the qualification of potential
inspectors, as the general influence of development skills and experience on
inspection performance is unclear.

11.3.3 Level 3: Inspector

While the previous two levels describe real management activities, the third level
is an executing level, where the inspection is, in fact, conducted. Inspectors’
decisions neither face a large amount of uncertainty (dependent on the inspection
design) nor require detailed expert knowledge of the inspection process.
Furthermore, inspectors receive detailed information compared to quality and
inspection managers in the form of inspection material from inspection managers.

Nevertheless, inspectors’ decisions are of crucial importance for software
inspection performance and have so far received very little attention. Most of the
knowledge required to make the decisions on the inspector level is tacit
knowledge, i.e., remains to the inspector’s judgment. However, using a KM
framework and appropriate inspection designs can make parts of this tacit
knowledge explicit by collecting inspection measures and providing explicit
guidelines to inspectors.

Decision 3.1. Is an issue really a defect? The inspectors follow the procedures
to detect and collect defects and have to decide quickly for each issue that they
observeswhethersthississuesissamnoteworthy defect. This is actually the most
frequent key decision in the process, as lost defects lower the effectiveness of the
process, while many false positives create nonproductive extra work. Although

242 Biffl and Halling

detailed inspection material should usually be available, including a defect
classification and characterization, this decision is not trivial and still involves
uncertainty.

Structured defect detection techniques aim at providing explicit decision
support to inspectors. Empirical studies show some success using aggregated
measures concerning inspection performance. However, so far, research has
devoted little effort to explicitly model and document the decision processes of
inspectors. Especially in this context, knowledge provided usually through
inspection material but potentially also through a KM framework is of key
interest.

Decision 3.2. When to stop the inspection step? A decision of the inspection
manager, which has not been discussed in detail in the preceding section, is to
determine and plan inspection duration by setting a deadline. However, in the end
it is the inspectors who decide upon their real inspection effort. From an objective
point of view, when to stop depends on the coverage of the document, the
duration/number of sessions, and process conformance for specific RTs. From a
subjective point of view, it depends on the inspector’s personal opportunity costs.

Opportunity costs: these costs measure the inspectors’ benefits if they invests their
time into inspection compared to the benefits they can create if not inspecting. If
opportunity costs of inspection are high, inspectors may try to finish inspection as
fast as possible, jeopardizing the success of the inspection. However, these
opportunity costs are to a large extent implicit. Therefore a comprehensive KM
system should try to make these opportunity costs explicit as a key knowledge
item for inspection planning.

Similar to the first inspector decision there is very little information on the time
issue of inspections, as most inspection experiments make sure that all inspectors
can and do finish their tasks in the allotted time frame. Furthermore, experiments
are unable to capture the influence of personal opportunity costs. For this purpose,
real-life company data is needed.

11.4 Discussion

KM supports software development and inspection by helping the people involved
— quality managers, inspection managers, and inspectors — to learn effectively
and efficiently from the existing knowledge in the community and their
organization. The scope and usefulness of the KM approach with software
inspection depends on the possibility to make the existing published knowledge
available to prospective users and to help in eliciting further knowledge, which in
turn depends on a functioning measurement program and the ability to create
context descriptions to structure the available knowledge. In this section we
summarize important decisions and knowledge items in the inspection process,
discuss the knowledge generation potential of inspection, and derive requirements
for a KM system.

11 A Knowledge Management Framework to Support Software 243

11.4.1 Inspection Knowledge in Theory and Practice

Decisions on each level require very different types of knowledge. Quality
managers face a strategic decision problem with a large amount of uncertainty in
planning general QA activities. Therefore they need broad overview knowledge
but only little understanding of details. Furthermore, they require decision models,
which allow for comparison of different quality assurance techniques and are
capable of dealing with uncertainty. So far, very little theoretical and empirical
knowledge is available on this topic. An initial step is described in [29].

In contrast to this decision, the reinspection decision is a tactical decision, as it
responds to detailed feedback on the first inspection cycle and the resulting
product quality, which must be provided by the inspection manager. However, as
a reinspection represents an alternative to passing the document on or redoing the
document, there is also a large strategic part in this decision.

As far as inspection manager decisions are concerned, they require a very
detailed understanding of the inspection process and the impact of context
variables and design parameters on the likely performance. As pointed out in
Sect. 11.3 there is a large amount of both theoretical and empirical knowledge
available for the selection of defect detection techniques and comparatively little
on the determination of team structure and inspector selection. In general, the
main challenge associated with available empirical data is to transfer it to specific
project situations, which might differ considerably from the context of the
empirical study. Therefore current research activities like CeBase
(www.cebase.org) and Visek (www.visek.de) aim at characterizing the usefulness
of defect reduction approaches in different project contexts based on empirical
data. Their goal is to combine results from individual empirical studies and to
derive generally applicable knowledge. Wohlin et al. in [44] present a benchmark-
oriented approach that combines various empirical data sources in order to derive
comparatively general results on inspection effectiveness for different inspection
objects and group sizes.

However, even these approaches cannot fully substitute for a data collection
framework within an organization. Data collection is a necessary requirement for a
KM system. Some tool support is currently discussed in order to support the
inspection process and the data gathering [18, 20]. Finally, inspectors have to
make decisions on a very frequent basis, whenever they identify potential issues
and have to decide whether to report them or not. However, appropriate inspection
material should support inspectors in making these decisions. So far, little
theoretical and empirical material is available on the behavior of inspectors.

1142 Knowledge Generation from Inspection

For knowledge generation from inspection data, there are three main additional
activities: process_elicitation_and_improvement, defect content estimation, and
defect matching. Note that data from a good inspection can be very useful, while a
sloppy inspection yields very often unreliable data, which should be viewed with

244 Biffl and Halling

proper caution. As pointed out in Sect. 11.3, appropriate inspection analysis not
only creates new knowledge, but it also enables corporations to make implicit
knowledge explicit (e.g., by improving reading techniques to inspector
characteristics).

Process elicitation and improvement gathers data on the actually conducted
inspection process and on suggestions to increase inspection performance. The
development team and quality engineers can apply “defect cause analysis™ to find
out which development activity introduced defects to the product. Consequently,
weak development processes can be improved, and project management can adjust
their assumptions on likely results of these development processes for project
planning. If feedback suggests faulty development or inspection processes, then
they can report to QM for further monitoring and possibly improving these
processes. Long-term benefits can be improved development and QA processes
based on information on weak points.

Defect content estimation determines the likely number of defects in the
inspected product after inspection to help evaluate the quality of the product and
the inspection process. There are objective defect content estimation techniques,
such as capture - recapture and the detection profile method [7, 8]. Another defect
content estimation technique is based upon interviewing the inspectors and
collecting subjective estimates for the defect content of the inspected document
[8]. Reports on these measures show that they perform comparably to objective
methods [8] in experimental environments. The main argument for subjective
estimates is that inspectors have achieved expert knowledge on the quality of the
document during inspection and therefore they qualify for subjective estimation.

Matching reported defects to true defects to eliminate false positives is either
performed by the author individually or in a team meeting. Further, it can be
useful to match the defects from several inspectors to find out how often a certain
defect was found, which enables the analyzer to calculate defect overlap in a team
and prepares the defect data for use with objective defect content estimation
models. Matching the defects in a long list from several inspectors can be a major
effort. Tool support can considerably accelerate the collation of defects, e.g., by
sorting defects according to location or keywords in the description. In addition,
voting on the severity of each defect can help to uncover differences in the
opinions of team members on the severity rating, which can be valuable input to a
discussion on the views of defect importance in the project context.

11.4.3 Requirements for a Knowledge Management System

A KM system should support the following main functions: knowledge
generation, capture, transfer, and sharing. While this sounds straightforward, the
implementation of a useful system needs to fit the process domain, in our case
software inspection. The framework presented in Sect. 11.3 supports feedback and
learning as a part of software inspection on several levels according to the views
of the main roles involved. The use of the framework encourages context-specific

11 A Knowledge Management Framework to Support Software 245

measurement and analysis on the levels of a single inspection, along a project, and
on company level.

A KM system building on the framework and supporting the most important
decisions should have the following functions:

o Systematic context description.

o Store, evaluate, and retrieve reports from theory and practice: e.g., guidelines
and data.

o Help to establish relationships between reported data and local data from
ongoing inspections within the organization.

e Provide feedback to quality manager, inspection manager and inspectors. An
important aspect of a KM system is to document the impact of decisions on
different levels on inspection and project success. This feedback enables
participating roles to adjust their behavior and optimize the decision-making
process.

In addition to these functional requirements for a knowledge management
system, we identify the following quality requirements: the knowledge must be
provided in time (e.g., especially the feedback cycle must be quick enough to
allow for correcting actions during inspection); the collected data must be accurate
because wrong knowledge is potentially more dangerous than no knowledge; data
must be sufficiently complete enough in order to support the decisions [32].

There are two key components for the successful usage of a KM system in
practice: for a practitioner to find out whether a KM system is worth the extra
effort to improve the current process; and whether it is possible to lower the
threshold of effort for using such a KM system to make it easy to share and use
the available knowledge.

Current research activities in the academic inspection community focus on the
following areas which are important from a knowledge-oriented perspective:

e Databases for available empirical and theoretical data e.g., from CeBase
(www.cebase.org), Visek (www.visek.de), ISERN (www.iese.fhg.de/ISERN).

¢ Tool support for inspection management and data collection, which must be
further integrated with a more general knowledge management system.

o Simulation and decision-making model to provide techniques to quality
managers, inspection managers and inspector to make their decisions.

11.5 Conclusion

In this chapter we present a framework that adds two managerial levels to the
technical inspection process and represents a first step to make inspection
planning more explicit and procedural in order to be able to further improve the
inspection process. The framework adds important insight since it is role oriented
to support a clear definition of responsibilities and competencies, and decision
oriented to help take the most important decisions in the process. Decisions on the

246 Biffl and Halling

various levels differ by knowledge requirements and the level of uncertainty. This
systematic approach helps to identify data for taking planning decisions, enables
process- and role-oriented reasoning, and proposes KM requirements to turn
public and company-specific information into procedural knowledge.

Using our KM framework for software inspection we identify the following

implications for KM in the inspection context:

Inspection planning needs a variety of different know how for different roles,
which should be systematically managed.

Available academic inspection knowledge can yield some important input to
inspection planning in practice, as it outlines a variety of alternatives and offers
empirical data in several application domains.

Inspection analysis, i.e., the systematic collection and evaluation of measures
during software inspection; is a central component of knowledge management
in inspection.

Combined with a process improvement approach, such as an experience
factory, the framework can integrate knowledge aspects of all roles involved,
which helps to transfer proven inspection know-how.

To conclude this work, we would like to emphasize that significant progress has
been made in the area of software inspection in the past years, but that existing
inspection knowledge is often ambiguous and merits further research.

References

1.

2.

Aurum A, Petersson H. Wohlin C. (2002) State-of-the-art: software inspections after
25 years. Software testing, verification and reliability, 12: 133-154

Basili V.R., Green S., Laitenberger O., Lanubile F., Shull F., Soerumgaard S.,
Zelkowitz M. (1996) The empirical investigation of perspective-based reading.
Empirical software engineering: an international journal, 1: 133-164

Bianchi A. Lanubile F., Visaggio, G. (2001) A controlled experiment to assess the
effectiveness of inspection meetings. In: Proceedings of IEEE Metrics’01, London,
UK, pp. 42-50

Biffl St., Halling M., Kdhle, M. (2000) Investigating the effect of a second software
inspection cycle. In: Proceedings of the IEEE Asia-Pacific conference on quality
software, Hong Kong, pp. 155-164

Biffl S., Gutjahr W. (2001) Influence of team size and defect detection methods on
inspection effectiveness. In: Proceedings of IEEE Metrics’01, London, UK, pp. 63-75
Biffi S., Freimut B., Laitenberger O. (2001) Investigating the cost-effectiveness of
reinspections in software development. In: Proceeding of ACM/IEEE international
conference on Software Engineering, Toronto, Canada, pp. 155-164

Biffl St., Grossmann W. (2001) Evaluating the accuracy of objective estimation
models based on inspection data from multiple inspection cycles. In: Proceedings of
ACM/IEEE international conference on software engineering, Toronto, Canada,
pp. 145-154

Biffl S. (2001) Software inspection techniques to support project and quality
management. Habilitation thesis, Shaker Verlag, Aachen, Germany

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

11 A Knowledge Management Framework to Support Software 247

Biffl S., Halling M. (2001) A value-based framework for the cost-benefit evaluation of
software inspection processes. In: Proceedings of the workshop on inspection in
software engineering, Paris, France http://www.cas.mcmaster.ca/wise/ (date accessed
22nd April, 2003)

Biffl S., Halling M. (2002) Investigating the influence of inspector capability factors
with four inspection techniques on inspection performance. In: Proceedings of 8th
IEEE Metrics’02, Toronto, Canada, pp. 115-121

Biffl S., Halling M. (2003) Investigating the defect detection effectiveness and cost-
benefit of nominal inspection teams. To appear in the IEEE transactions on software
engineering

Birk A., Dingsoyr T., Stalhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19: 43-45

Chernak Y. (1996) A statistical approach to the inspection checklist formal synthesis
and improvement. IEEE transactions on software engineering, 22: 866-874

Ciolkowski M., Shull F., Biffl S. (2002) A concerted family of experiments to
investigate the influence of context on the effect of inspection techniques. In: IEE
Proceedings of the EASE conference, Keele University, UK

Dunsmore A., Roper M., Wood M. (2002) Further investigations into the development
and evaluation of reading techniques for object-oriented code inspection. In:
Proceedings of the 24th international conference on software engineering, Orlando,
Florida, pp. 47-57

Fagan M.E. (1976) Design and code inspections to reduce errors in program
development. IBM systems journal, 15: 182-211

Gilb T., Graham D. (1993) Software inspection. Addison-Wesley, Reading, MA, USA
Halling M., Griinbacher P., Biffl S. (2001) Tailoring a COTS group support system for
software requirements inspection. In: Proceedings of 16th IEEE international
conference on automated software engineering, San Diego, California, pp. 201-208
Halling M. (2002) Supporting management decisions in software inspection process.
PhD thesis, Vienna University of Technology, Austria

Halling M., Biffl S., Griinbacher P. (2002) A groupware-supported inspection process
for active inspection management. In: IEEE Proceedings of 28" Euromicro conference,
track on software product and process improvement, Dortmund, Germany, pp. 251-258
Halling M., Biffl S. (2002) Investigating the influence of software inspection process
parameters on inspection meeting the performance. In: IEE Proceedings - Software
engineering, 149: 115-122

Kakabadse N.K., Kouzmin A., Kakabadse A. (2001) From tacit knowledge to
knowledge management: Leveraging invisible assets. Knowledge and process
management, 8: 137-154

Kahneman D., Slovic P., Tversky A. (1984) Judgment under uncertainty: heuristics
and biases. Cambridge university press, Cambridge, UK

Laitenberger O., DeBaud J.M. (2000) An encompassing life-cycle centric survey of
software inspection. Journal of systems and sofiware 50: 5-31

Laitenberger O., El-Emam K; Harbich T.G. (2001) An internally replicated quasi-
experimental comparison of checklist and perspective-based reading of code
documents. IEEE transactions on software engineering, 27: 387-421
Marchesi=Mz-SuccinGa Wells: Do Williams L. (eds.) (2002) Extreme programming
perspectives. Addison-Wesley professional series, Boston, MA, USA

248 Biffl and Halling

27.

28.
29.

30.

3L

32.

33.

34

35.

36.

37.

38.

39.

40.
41.
42.
43.

44,

45.

Petersson H. (2001) Individual reviewer contribution to the effectiveness of software
inspection teams. In: Proceeding of IEEE Australian software engineering conference,
Canberra, Australia, pp. 160-168

Polanyi M. (1966) The tacit dimension. Routledge and Kegan Paul, London, UK

Port D., Halling M., Kazman R., Biffl S. (2002) Strategic quality assurance planning.
In: Proceedings of the 4th international workshop on economics driven software
engineering research (EDSER-4) at the international conference on software
engineering, Orlando, Florida, USA

Porter, A.A., Johnson P.M. (1997) Assessing software review meetings: results of a
comparative analysis of two experimental studies. IEEE transactions on software
engineering, 23: 129-145

Regnell B., Runeson P., Thelin T. (2000) Are the perspectives really different? Further
experimentation on scenario-based reading of requirements. Empirical software
engineering, 5: 331-356

Reifer D.A. (2002) A little bit of knowledge is a dangerous thing. [EEE Software,
19: 14-15

Rus I, Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

Sauer C., Jeffery R., Land L., Yetton P. (2000) The effectiveness of software
development technical reviews: A behaviorally motivated program of research. IEEE
transactions on software engineering, 26: 11-14

Shull F.J. (1998) Developing techniques for using software documents: A series of
empirical studies. PhD thesis, University of Maryland, College Park, USA

Shull F., Ioana R. Basili V.R. (2000) How perspective-based reading can improve
requirements inspections. IEEE Computer, 33:73-79

Thelin T., Runeson P. Regnell B. (2001) Usage-based reading - An experiment to
guide reviewers with use cases. Information and sofiware technology, 43: 925-938.
Thelin T., Runeson P. Wohlin C. (2002) An experimental comparison of usage-based
and checklist-based reading. Submitted to IEEE transactions on software engineering
Travassos G., Shull F., Fredericks M. Basili V. (1999) Detecting defects in object-
oriented designs: using reading techniques to increase software quality. In:
Proceedings conference on object-oriented programming systems, languages and
applications, Denver, Colarado, USA, ACM Sigplan notices, 34: 47-56

Trigeorgis L. (1996) Real options. MIT Press, Boston, MA, USA

Vincke P. (1992) Multicriteria decision-aid. John Wiley and Sons, New York, NY
Votta L. (1993) Does every Inspection need a meeting? ACM software engineering
notes, 18: 107-114

Weller E.F. (1993) Lessons from three years of inspection data. IEEE Software
10: 38-45

Wohlin C., Aurum A., Petersson H., Shull F., Ciolkowski M. (2002): Sofiware
inspection benchmarking - a qualitative and quantitative comparative opportunity. In:
Proceedings of 8th [EEE Metrics’02, Toronto, Canada, pp. 118-127

Yetton P.W., Bottger P.C. (1982) Individual versus group problem solving: an
empirical test of a best-member strategy. Organizational behavior and human
performance, 29: 307-321

11 A Knowledge Management Framework to Support Software 249

Author Biography

Prof. Stefan Biffl is professor of software engineering at the Vienna University of
Technology. His main research interests include project and quality management
in software engineering: software quality, economic software engineering models,
software inspections, risk management, and know-how transfer between research
and engineering practice.

Dr. Michael Halling is a researcher at the Johannes Kepler University Linz and the
University of Vienna. His main research interests include the empirical evaluation
of software quality techniques and software engineering processes, the integration
of economic concepts in the software engineering field, and the development of
simulation models for decision-making support.

12 Lessons Learned in Software Quality Assurance

Linda H. Rosenberg

Abstract: Software quality assurance (SQA) is a vital aspect of sofiware
engineering — one that is honed by experience rather than coming straight from a
book. SQA is comprised of many areas of software engineering, e.g., life-cycle
development, metrics, safety, and reliability. Extensive research has been
conducted in each of these areas resulting in several theories, yet the actual
practice of SQA and its supporting activities must be grounded in practical
experience. This chapter discusses lessons learned by the NASA community as it
dealt with day-to-day issues of software quality, reliability and safety. Lessons are
written broadly so as to be applicable to almost any software assurance activity;
these should then be tailored to an organization’s needs.

Key words: Software quality assurance, Process assurance, Product assurance,
Safety, Reliability, IV&V, Metrics

12.1 Introduction

Over the years, National Aeronautics and Space Administration (NASA), along
with all large enterprises, has become increasingly reliant on software to provide
the complex functionality of its systems. The effectiveness of software directly
impacts projects’ success. NASA long ago recognized the importance of
improving development processes. Thus, the activities of software quality
assurance (SQA) are critical to the success of every project, and yet the roles and
responsibilities are often misunderstood. SQA plays a vital role in all phases of the
software development process including safety, reliability, independent
verification and validation (IV&V), and metrics. However, it is often difficult for
those involved in projects to understand either the interrelationships or how to
apply appropriate quality assurance practices at a cost that is also affordable.

All federal agencies are under pressure to downsize, while, at the same time,
the workforce within NASA is aging. As the most experienced people retire, the
valuable lessons learned about the implementation and practice of software quality
assurance are being lost. Each of NASA’s ten space flight centers is making an
effort to capture this knowledge so that it can continue to be utilized and applied
into the future. The purpose of this chapter is to identify some of the knowledge
nuggets gleaned about software quality assurance so that we can continue to
improve NASA’s missions without having to rediscover what we already know.

This chapter discusses lessons learned during the implementation of an SAQ
program;on-projects-at-NASA-in-the-hope that project managers will be able to
increase the probability of a successful mission. These lessons were distilled
primarily during thel author’s ten years of working in the quality assurance

252 Rosenberg

directorate at NASA’s Goddard Space Flight Center (GSFC), in Greenbelt, MD.
This is a relatively small office, and the lessons are a compilation of the author’s
experience and those of the approximately 50 SAQ engineers who have worked at
GSFC over the past decade.

The chapter starts with a general discussion on the meaning of SAQ, those
tasks that comprise quality, and their interdependencies. The discussion also
covers the processes and products of SQA as well as the activities called for by
quality assurance (QA) planning documentation as systems progress through the
software development life cycle. There is also an exploration of issues relating to
the requirements phase, testing activities, and the importance of metrics. Lessons
learned when implementing three specific areas, safety, reliability and IV&YV, are
then discussed since these areas are critical for NASA’s approach to software
assurance. The chapter concludes by exploring the importance of risk management
to SQA.

12.2 Lessons Learned

The concepts of knowledge management (KM) are neither generally nor
consistently applied; thus, the lessons that are captured become even more
valuable. The lessons presented here were chosen because they are generally
applicable for most software development projects. Quality assurance tends not to
be a major topic of sofiware engineering courses, and although it is not a new
activity, it is generally not very visible to the end user. If, however, quality
assurance is not made an integral part of the project development life cycle, the
end result, in extreme cases, can be the loss of a mission — the ultimate
catastrophic failure. It is, therefore, of vital importance that NASA captures this
knowledge accurately and ensures this information is passed on to future
practitioners.

12.2.1 Lesson 1: Project Managers and Software Developers Need To
Understand What “Software Quality Assurance” is, and How Their
Project Can Benefit by Its Application

Shortly after a project is conceived, a budget is developed. At this point in time,
funds should be earmarked for QA activities, and, of course, this includes
software. Yet, history shows that funds are generally not carefully designated for
software quality assurance. Rather, they are later squeezed from some other part of
a strained budget. The result is a minimization of quality assurance. Why this
happens time and time again is ascribable to an incomplete understanding what
SQA entails as well as the real benefits to be gained. Hence, the first lesson is a
statement of the need for increasing the awareness and general understanding of
the value that software quality assurance truly adds to a project’s success.
Software quality assurance is actually a combination of three concepts: quality,

12 Lessons Learned in Software Quality Assurance 253

QA, and SQA. While these terms are often used interchangeably, we need to
understand the basics of quality before we can understand the components and
problems of software quality assurance.

Before defining the term “software quality,” it is important to understand the
broader concept of “quality.” NASA, as well as many other federal agencies, has
adopted standards from externally recognized sources; thus, the agency has chosen
to use the IEEE Standard Glossary of Software Engineering Terminology to
define this term. Quality is “the degree to which a system, component, or process
meets (1) specified requirements, and (2) customer or user needs or expectations”
[5]. The International Standards Organization (ISO) defines quality as the totality
of features and characteristics of a product or service that bear on its ability to
satisfy specified or implied needs [8]. IEEE and ISO definitions associate quality
with the ability of the product or service to fulfill its function. Thus, quality is the
net result of a product’s features and characteristics.

While this definition would seem to be clear and unambiguous, the concept of
quality really is not. Kitchenham states that quality is “hard to define, impossible
to measure, easy to recognize” [9]. Gilles states, “Quality is generally transparent
when present, but easily recognized in its absence” [2]. Therefore, while we can
define quality in theory, in practice, and in use, an absolute definition is elusive.
Although fundamental, this is the kind of abstract knowledge that NASA strives to
capture, preserve, and most important, apply to real systems. Software quality is
defined in the Handbook of Software Quality Assurance in multiple ways but
concludes with the definition: “Software quality is the fitness for use of the
software product” [16). This definition implies the evaluation of sofiware quality
related to the specification and application of software quality. There are,
however, criteria that help in the evaluation of software quality. For each NASA
project, the appropriate criteria need to be identified within the context of both the
application and the intended operating environment, which frequently means the
harsh conditions of space.

McCall and Boehm recognized that in order to develop models of quality,
criteria are needed [2]. As a starting point, GSFC developed the following list of
quality criteria for software:

o Correctness: Extent to which a program fulfills its specifications

¢ Efficiency: Use of resources execution and storage

o Flexibility: Ease of making changes required by changes in the operating
environment

¢ Integrity: Protection of the program from unauthorized access

¢ Interoperability: Effort required to couple the system to another system

¢ Maintainability: Effort required to locate and fix a fault in the program within
its operating environment

e Portability: Effort required to transfer a program from one environment to
another :

¢ Reliability: Ability not to fail

o Reusability: Ease of re-using software in a different context

254 Rosenberg

o Testability: Ease of testing the program to ensure that it is error-free and meets
its specification
e Usability: Ease of use of the software

In a perfect world, all criteria would be met, but software is not developed or
run in such a world, and trade-offs are a part of all development projects. This
may be a software developer’s first real-world lesson learned, and the companion
lesson is learning how to choose the appropriate evaluation criteria. Often the
most efficient software is not portable, as portability would require either general
or additional code, which would decrease the level of efficiency. Another
difficulty is the subjective nature of several attributes. For example, degrees of
usability vary not only from developer to developer but also among the end users
of a system.

When using any of the above criteria to define assurance objectives for a
software system, the ultimate purpose and use of the system must be taken into
account. In the real world of software development, criteria for quality are
identified and applied to differing extents as a result of trade-off decisions, which
often have little to do with technological considerations and more to do with
programmatic and management motivations.

IEEE defines the QA as “a planned and systematic pattern of all actions
necessary to provide adequate confidence that an item or product conforms to
established technical requirements” [5]. This definition needs to be adapted to
software since, unlike hardware systems software is not subject to the physical
laws of nature and does not wear out or break in the traditional sense.
Consequently, its usefulness over time remains unchanged from its original state
at the time of delivery. Thus, the goal of software quality assurance is to establish
a systematic effort to improve the delivery condition.

In the SQA Handbook, the following definition is given: “Software quality
assurance is the set of systematic activities providing evidence of the ability of the
software process to produce a software product that is fit to use” [16]. Within
NASA, we strive to achieve a systematic approach to SQA, and we rely heavily on
the knowledge from previous successes and failures. The criteria chosen are
evaluated in part against the above criteria and measured as described in a later
section of this chapter.

12.2.2 Lesson 2: Software Quality Assurance Implementation is a Balancing
Activity That Must Be Tailored as Project Appropriate

No project in the history of software development at NASA has ever had
“enough” money, especially when it comes to implementing SQA programs. In
the quality attributes listed above, it is not possible to achieve all aspects of quality
because of the interrelationships. SQA engineers must determine which trades are
to be made based on accumulated experience as well as on specific knowledge of
the current project. Some of the interrelationships between the QA criteria were

12 Lessons Learned in Software Quality Assurance 255

stated by Gilles [2]. In order to make the most reasonable trade-off decisions, we
need to understand these relationships and use experience to anticipate the impact.

In reading the remainder of this chapter, keep in mind that the lessons presented
are shared not to produce a one-size-fits-all QA program, but rather to impart
knowledge compiled from multiple development projects. SQA should always be
tailored to meet each project’s specific needs — good tailoring is essential to the
success of SQA.

While SQA must be embedded into and merged with the project’s other
business practices, it must also fit seamlessly and appropriately with the level and
criticality of the development project. Not all aspects presented here are
appropriate for every project; not all projects have safety as an aspect, for
example. To achieve all criteria to the level of 100% would be an “ideal” set of
SQA activities on a project, but perfect projects do not happen in the real world.
Furthermore, no project has sufficient time or resources even to attempt such a
feat. Most projects, therefore, define the amount of SQA activity based on mission
objectives, degree of overall risk, and available funding. Finding just the right
balance between attributes and tradeoffs is critical to the ultimate success of all
SQA programs. The obvious lesson in this case is to tailor with care. Good
managers know how to factor into these decisions the relevant experiences from
previous projects and missions, and to ensure that the degree of SQA to be applied
is appropriate to achieve characteristics of quality, while not negatively impacting
others to an unacceptable level.

12.2.3 Lesson 3: Software Quality Assurance Must Evaluate the Process as
well as the Products

Historically, software quality assurance at NASA tended to focus on the final
products, i.e., deliverables, such as the requirements documents, designs, code
listings and test plans. A more effective approach to SQA, however, is to monitor
activities continuously throughout the software development life cycle to ensure
the quality of the delivered product and to avoid any “surprises” later in the
schedule. This requires monitoring both the processes and the products. In process
assurance, SQA provides management with objective feedback regarding
compliance to approved plans, procedures, standards, and analyses. Product
assurance activities focus on the changing — and, it is to be hoped increasing —
level of product quality within each phase of the life cycle. The objective is to
identify and eliminate defects as early as possible throughout the course of the life
cycle, thereby reducing test and maintenance costs.

12.2.3.1 Process Assurance
It has been proven that the use of standards and process models has a positive

impact on the quality of delivered software. Standardization of SAQ activities
ensures that there is discipline and control in the software development process via

256 Rosenberg

independent evaluation [16]. ISO 9001 and subsequent versions provide a way to
gain external accreditation for a quality management system. The application of
ISO for developing software has been used by many organizations, but the
complaint is that rigid adherence tends to fossilize procedures rather than
encourage process improvement [8]. A range of standards and models has been
developed that seek to realize the intended benefits of quality standards while
recognizing the different stages of development. All NASA Centers are ISO
certified including quality assurance.

The Software Engineering Institute (SEI) at Carnegie Mellon University
developed one of the most common software development models. The original
Capability Maturity Model (CMM) has recently evolved into Capability Maturity
Model Integrated (CMMI). The fundamental premise of both the CMM and
CMMI is that the quality of the sofiware product is largely determined by the
quality of the software development and maintenance processes used to build it.
The CMM/CMMI is defined as a five-level framework assessing the maturity of
an organization’s software processes, based on specific key process areas [17].

In addition to ISO, NASA centers have adopted either the CMM or CMMI as
the baseline for their software development activities. The implementation of a
development model is the responsibility of the quality assurance area at the NASA
Centers, including GSFC [15].

Software process improvement and capability determination (SPICE) is a major
international initiative focused in Europe and Australia to develop a Standard for
Software Process Assessment. This project is carried out under the auspices of the
International Committee on Software Engineering Standards, ISO JTCI. The
SPICE standards cover software process assessment, improvement, and
capabilities [4]. Many of NASA’s international partners utilize SPICE instead of
CMM/CMMI, thus, the quality assurance engineers must be familiar with multiple
models.

Many commercial standards are also followed in the development of software.
Some of the more common ones are the US Department of Defense (DOD) issued
MIL-STD-498, Software Development and Documentation; IEEE-STD1074,
IEEE Standard for Developing Software Life Cycle processes; and EIA/IEEE
12207, Information Technology — Software Life Cycle Processes [16]. Many
organizations, including NASA, have in the past developed their own standards
for software development. Current thinking recognizes both the value and
efficiency gained by adopting commercial standards rather than creating them. It
is now NASA’s policy to use commercial standards whenever possible; the result
is to encourage more standardization not only across NASA but also within the
international aerospace industry.

SQA is an ongoing process that attempts to ensure that software development is
carried out according to procedures set forth by a standard or model. SQA’s other
role is to measure the effectiveness of the procedures on product quality.

12 Lessons Learned in Software Quality Assurance 257

12.2.3.2 Product Assurance

Product assurance includes activities that focus on the quality of the products with
the objective of identifying and eliminating defects early in order to reduce testing
and maintenance costs. Many different methods are applied to achieve these goals,
such as traceability of requirements, software development folders, configuration
audits, formal inspections, reviews, and testing. Software products follow a
development process, and many plans are developed that define details of the
processes. For each of the documents listed in the following sections, the SQA
function is to ensure that procedures are followed as well as that final products are
accurate.

At GSFC, the depth and breadth of coverage depends on the mission’s
criticality, risk and funding. SQA engineers depend on guidance and collaboration
with more experienced engineers, developers, and test teams but especially on
project managers to determine appropriate evaluation criteria for individual
projects.

12.2.4 Lesson 4: There Must Be a Software Assurance Plan

Most project managers feel there are too many plans, and suggesting another one
that specifically lays out SQA might be the proverbial straw that breaks the
camel’s back! The ultimate success of any undertaking is tightly coupled with
knowing exactly what you are trying to achieve and how you expect to accomplish
it. Therefore, a plan for software quality assurance can be critical to successful
development projects. A good plan clearly specifies project goals, what is to be
performed, standards against which the development work is to be measured, and
all relevant procedures. In addition, the organizational structure of the quality
assurance group in relation to the other parts of the project should be carefully and
clearly specified. At NASA, a software assurance plan is required.

The software assurance plan serves another function. It is an agreement
between the project and the quality assurance engineers stating what the scope of
responsibility is in order to ensure no misunderstandings. It should start by stating
which standards, guidelines, processes, and procedures the quality engineers are to
use to monitor and evaluate the project. It is, furthermore, a statement by
management regarding accountability: all reviews, analyses, audits, tools,
techniques, and methodologies that are going to be used should be spelled out in
advance.

A comprehensive software assurance plan also includes a baselined schedule
(we say “baselined” since schedules change and evolve during the course of a
project to reflect real-world events). A timetable of when critical milestones are
planned should also be included. The document should state what the SQA
expects from the project teams in order to complete their work as well as their
possible needs for technical support.

The extent and nature of participation in project- and software-specific reviews,
inspections, configuration management, testing, problem reporting, corrective

258 Rosenberg

action processes, and so on needs to be clearly specified. Since software is often
developed by teams, roles and responsibilities need to be stated unambiguously,
e.g., how SQA will work with IV&V, contractors, subcontractors, system safety,
operations, and so forth. Finally, the project team has both the right and need to
know what, when, and how SQA will deliver its products, services, reports, and
findings to the project team and what the appropriate communication paths will
be. A software assurance plan should spell out the steps to resolve any
disagreements or conflicts that may arise in completing the defined activities.
NASA has developed many standards and guidelines over the years. However,
the trend is to rely on those developed by organizations recognized as experts in
the field of software engineering. An example of this is the use of IEEE Standard
730, which specifies the constituent elements of a SQA Plan [6]. The sections of
the plan have been very useful at NASA in achieving the objects discussed above.

12.2.5 Lesson 5: Software Quality Assurance Must Span the Entire
Software Development Life Cycle

At NASA’s Goddard Space Flight Center (GSFC), SQA is carried out by an
independent group of people whose function is solely to monitor the
implementation of quality. In this context “independence” means not being part of
the development organization, which avoids any conflicts of interest. At GSFC,
responsibility for SQA is assigned to the Office of Systems Safety and Mission
Assurance. In an effort to help project managers and less-experienced software
quality engineers, the Assurance Management Office at GSFC recently created a
list of tasks that SQA should perform at each phase of the software development
life cycle [13]. Below is a partial list of activities associated with the various life
cycle development phases. This information is not in any book or standard, rather
it was gleaned from the experiences of countless quality assurance engineers at
GSFC over 25 years of developing software applications.

12.2.5.1 Concept Phase Activities

e Attend concept reviews and facilitate tracking and resolution of issues,
concerns, risks, and so on.

e Generate or assist in the identification of program and project risks, and
mitigation strategies and techniques.

12.2.5.2 Requirements Phase Activities

e Review and analyze requirements for industry — acceptable and required
characteristics (testability, traceability, consistency, clarity, and so on. See
IEEE Standards.

e Review and provide guidance on_program and project metrics including
strengths, weaknesses, limitations, and so forth.

12 Lessons Learned in Software Quality Assurance 259

e Observe witness and participate in prototyping efforts. Provide feedback as
applicable on prototyping efforts and results.

12.2.5.3 Design Phase Activities

o Attend and participate in design reviews, and track and maintain any issues or
resolution tracking logs, tools, and so on.

e Observe witness and participate in prototyping efforts. Provide feedback as
applicable on prototyping efforts and results.

12.2.5.4 Implementation Phase Activities

o Attend code walkthroughs and peer reviews. Participate in the tracking and

resolution of any issues, and so forth.

Review and assess code per organization’s coding standards.

Review unit test plans and procedures.

Test Phase Activities.

Witness, observe and assist in testing activities (integration, system acceptance,

operational readiness and launch readiness).

e Attend change control and defect review board meetings and participate in the
assessment of changes and defects.

12.2.5.5 Operations and Maintenance Phase Activities
¢ Support launch range activities in an oversight capacity.

This list represents an “ideal” set of SQA activities on a project, but projects
rarely have sufficient funds or need to perform them all. For most projects, the
amount of SQA to be applied is negotiated based on the purpose, degree of
mission risk, and the funding level of the project. As stated previously, experience
guides these decisions.

12.2.6 Lesson 6: Requirements, the Birthplace of Successful Projects

Although SQA is performed across the entire life cycle, success of a project can
often be determined by the attention paid to requirements. It is generally accepted
that the earlier in the life cycle potential risks are identified, the easier it is to
eliminate or at least manage the conditions that introduce that risk. Problems that
are not found until the testing phase are as much as 14 times more costly to fix
than they would have been if they were found early in the requirements phase [2,
3]. The requirements specification document is the first tangible representation of
the functional and performance capabilities to be produced, whether they are
system, hardware, software, or operational requirements. The document also
serves to establish the basis for all of the project’s engineering management and
assurance functions. If the quality of the requirements specification is poor, the

260 Rosenberg

project is at risk even before work begins [18]. Therefore, a specific lesson in
SQA is on the importance of high quality requirements [14].

Requirements are the basis for software development, but if they are neither
complete nor understandable, the final product cannot be either. Effort must be
invested in the development of requirements, as well as their verification and
validation. There are specific attributes that can be used as guidelines when
evaluating the quality of the requirements; in addition, tools are currently available
to assist in this area.

It is critical that the requirements be written in such a way that no
misunderstanding between the developer and the client is possible. For successful
projects, requirements must be structured, complete, and easy to implement
(design and code). A set of complete requirements is both stable, that is, not
subject to significant modifications, and thorough in specifying the functional
expectations. Furthermore, they must be sufficiently detailed to be translatable
into a design without being so specific that they force design decisions onto the
developer. Requirement specifications should not contain placeholders or phrases
such as to be determined (TBD), or to be added (TBA) since vagueness only leads
to a disjointed architecture, low functional integrity, or completely missing system
capabilities.

To increase the ease of capturing requirements, they are usually written in
ordinary language (as opposed to symbolic notation such as “Z”). The result of
using everyday language is a level of ambiguity due to the inherent richness of
meanings, terms, and implications. In order to develop reliable software of high
quality, the requirements must never contain ambiguous terms, nor should a
requirement statement be interpretable as an option. Ambiguous requirements are
those that may have multiple meanings; optional ones leave the choice of
inclusion or omission up to the development organization. Requirements are not
choices or options.

The importance of correctly documenting requirements has spurred the
software industry to produce a significant number of tools that aid in the creation
and management of the requirements specification documents as well as the
individual statements themselves. Very few tools, however, are capable of
addressing the inherent quality of either the requirements document or the
individual specification statements.

The Software Assurance Technology Center (SATC) at GSFC developed a tool
to parse requirement documents. The Automated Requirements Measurement
(ARM)! software was developed to scan a file that contains the text of the
requirement specification. During this scan process, it searches each line of text
for specific words and phrases. SATC studies have found these search arguments
(specific words and phrases) to be indicators of a document’s quality, which are
useful to the QA engineers [12]. The evaluation of the quality of the requirements
should be one of the primary emphases of QA, assessing both the process of
iteratively developing them and the final requirements themselves.

L ARM is available from the SATC homepage: http://satc.gsfc.nasa.gov.

12 Lessons Learned in Software Quality Assurance 261

12.2.7 Lesson 7: Software Quality Assurance # Testing

All too often project managers assume they have adequate quality assurance
coverage simply by planning for significant software testing. Alternatively, they
might even believe that no software quality assurance activities are needed prior to
a formal testing phase, but unfortunately these assumptions are incorrect. IEEE
defines testing as
the process of operating a system or component under specified conditions,
observing or recording the results, and making an evaluation of some aspect of the
system or component. The process of analyzing a software item to detect the
differences between existing and required conditions (that is, bugs) and to evaluate
the features of the software items.

Simply stated, testing is way of demonstrating that the system performs
according to expectations, i.e., the requirements are met. It is important to note in
the IEEE definition there is no reference to quality assurance; nor should there be,
since the activities and purposes are different.

From the perspective of quality assurance, the purpose of testing is to

o Assure problems are documented, corrected, and used for process improvement

o Assure problem reports <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>