
www.manaraa.com

Managing Software Engineering Knowledge

www.manaraa.com

Springer-Verlag Berlin Heidelberg GmbH

www.manaraa.com

Aybüke Aurum Ross Jeffery

Claes Wohlin Meliha Handzic (Eds.)

Managing Software
Engineering Knowledge

With 47 Figures and 23 Tables

Springer

www.manaraa.com

Editors:
Aybüke Aurum

School ofInformation Systems,
Technology and Management
University ofNew South Wales
Sydney, NSW, 2052 Australia

Claes Wohlin

Dept. of Software Engineering and
Computer Science
Blekinge Institute of Technology
Box 520 SE-372 25 Ronneby, Sweden

Ross Jeffery

School of Computer Science
and Engineering
University ofNew South Wales
Sydney, NSW, 2052 Australia

Meliha Handzic

School ofInformation Systems,
Technology and Management
University ofNew South Wales
Sydney, NSW, 2052 Australia

Library of Congress Cataloging-in-Publieation Data applied for

Bibliographie information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publieation in the Deutsche
Nationalbibliografie; detailed bibliographie data is available in the
Internet at <http://dnb.ddb.de>.

ACM Subject Classification (1998): D.2.8 D.2.9 JA K.6.1 K.6.3 K.6A

ISBN 978-3-642-05573-7 ISBN 978-3-662-05129-0 (eBook)
DOI 10.1007/978-3-662-05129-0

This work is subjeet to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduetion on mierofilm or in any other way, and storage in data banks. Duplication
of this publieation or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its eurrent version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable for proseeution under the German Copyright Law.

© Springer-Verlag Berlin Heide1berg 2003
Originally published by Springer-Verlag Berlin Heidelberg New York in 2003
Softcover reprint of the hardcover 1st edition 2003

The use of designations, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant protective laws and regulations and
therefore free for general use.

Cover Design: KünkelLopka, Heidelberg
Typesetting: Computer to fIlm by author·s data
Printed on acid-free paper 45/3142XT 5432 1 0

www.manaraa.com

Foreword

H Dieter Rombach

Software development is a human-based knowledge-intensive activity. In addition to
sound methodology and technology, the success of a software project depends heavily
on the knowledge and experience brought to the project by its developers. In the past,
developers have mostly depended upon implicit knowledge. This resulted in problems
when experienced people left a project and new developers entered. The implicit
knowledge was not owned by the development organization, and therefore the
necessary learning curve for novice developers resulted in a significant lowering ofthe
software quality and developer productivity. The concept of continuous improvement
remained commercially nonattractive as no improvements could be sustained in the
face ofpersonnel turnover.

For too long knowledge management and software engineering existed as separate
communities with different paradigms and terminology. The knowledge management
community developed models and methods for handling knowledge in many areas'
however, they did not adequately address the specific needs of human-based
development activities such as software engineering. On the other hand, the software
engineering community understood the requirements of software engineering tasks
and in an "amateur-style", reinvented many ofthe knowledge management models and
methods. Only in the past ten years have these two communities begun to grow
together.

Knowledge management is comprised of the elicitation, packaging and
management, and reuse of knowledge in all its different forms. Explicit software
engineering knowledge includes all types of software engineering artifacts, ranging
from traditional software artifacts such as code, design and requirements to process
knowledge in the form of models, data and standards, and lessons learned. In that
sense, reuse of knowledge can be viewed as the most comprehensive form of reuse
possible. One ofthe most important aspects ofknowledge management is therefore the
focus on reuse scenarios.

The blind population ofknowledge repositories will not lead to success. Rather, the
careful and goal-oriented inclusion and packaging of knowledge for specific reuse
scenarios should be aimed for. The "store and hope for reuse" paradigm has failed in
the past in its attempts to get code artifacts reused; it also will fail in the attempt to get
comprehensive knowledge reused. The term "packaging" is related to the important
distinction between data, information and knowledge. Whereas most definitions use
the terms "data" and "information" interchangeably, "knowledge" is mostly referred to
as information in a reusable context.

www.manaraa.com

vi Foreword

Finally, software process improvement people tend to refer to "experience" as a
specific form of knowledge resulting from "actually doing it in your own
environmenf'. The advantage is that the context is clear, and consequently the
credibility and acceptance of experience is high. For example, it is clear that etTort
estimation models based on data from one's own environment are better accepted than
estimation models imported from foreign environments.

This book aims to provide a comprehensive overview of the state-of-the-art and
practices in knowledge management and its application to software engineering. It is
structured in four parts addressing the motives for knowledge management, the
concepts and models used in knowledge management, its application to software
engineering, and practical guidelines for managing software engineering knowledge.
The editors have included authors from many research groups actively involved in the
interdisciplinary area between knowledge management and software engineering. This
book has the potential to serve as a benchmark for the state-of-the-art practices in this
important interdisciplinary area. I am convinced it will become one of the most
important background materials to graduate students, practitioners and researchers. I
compliment the editors on an important service to the software engineering
community. Weil done!

Autbor Biograpby

Dr. H. Dieter Rombach is a full professor in the Department of Computer Science,
Universität Kaiserslautern, Germany. He holds achair in software engineering and is
executive director of the Fraunhofer Institute for Experimental Software Engineering
(lESE). His research interests are in software methodologies, modeling and
measurement of the software process and resulting products, software reuse, and
distributed systems. He has more than 120 publications in international journals and
conference proceedings. Prior to his current position, Dr. Rombach held faculty
positions with the Computer Science Department and University of Maryland Institute
for Advanced Computer Studies, University of Maryland, USA, and was a member of
the Software Engineering Laboratory.

He has a Ph.D. in computer science from the University ofKaiserslautem, Federal
Republic of Germany. In 1990 he received the prestigious Presidential Young
Investigator Award from the National Science Foundation, USA, in recognition ofhis
research accomplishments in software engineering. In 2000 he was awarded the
Service Medal ofthe State ofRhineland-Palatinate, Germany, for his accomplishments
in software engineering research and his contributions to the economic development of
the state through the establishment of a Fraunhofer institute.

Dr. Rombach heads several research projects funded by the German Govemment,
European Union and Industry. He currently is the lead principal of a federally funded

www.manaraa.com

Foreword vii

project (ViSEK) aimed at building up a German repository of knowledge about
innovative software engineering technologies. He consults for numerous companies on
issues including quality improvement, software measurement, software reuse, process
modeling, and software technology in general, and he is an advisor to federal and state
government on software issues. He is an associate editor of the Kluwer journal
Empirical Software Engineering and serves on the editorial boards of numerous other
journals and magazines. He is a member ofGI and ACM, and a Fellow ofIEEE.

www.manaraa.com

Preface

Aybüke Aurum, Ross Jeffery, Claes Wohlin, Meliha Handzic

Arecent trend in software engineering is the management of software engineering
knowledge. The articles in this book explore the interdisciplinary nature of this
area and portray the current status of management of software engineering
knowledge. This book introduces researchers' and practitioners' knowledge
management principles in the field of software engineering in a way that will
capture their interest, excite and provoke them.

An Introduction to Knowledge Management in Software
Engineering

Software development is a complex problem-solving activity where the level of
uncertainty is high. There are many challenges conceming schedule, cost
estimation, reliability, security, defects and performance due to great increases in
software complexity and quality demands. Furthermore, high staff tumover,
volatile software requirements, competitive environments, dynamics of team
members' psychologyand sociology as individuals - as well as in groups - are
only a few examples of the challenges that face software developers.

Increasing application complexity and changing technology provide,
opportunities for the utilization of available experience and knowledge. There is a
need to collect software engineering experiences and knowledge, and reuse them
for software process improvement. Thus, developing effective ways of managing
software knowledge is of interest to software developers. However, it is not weIl
understood how to implement this vision. On a higher level, a knowledge
repository can improve an organization's professional image and can also create a
competitive advantage. Knowing and learning how to manage software
engineering knowledge directly address this perception.

In what way can knowledge management assist software development? To
discuss this question, it is necessary to first defme knowledge and knowledge
management.

Knowledge and Knowledge Management

A variety of definitions of knowledge have been presented in the literature.
Knowledge is a broad and abstract notion. The Australian Webster's dictionary
defmes knowledge as ''the act, fact, or state of knowing; the body of facts,
principles, accumulated by mankind".

Nonaka [3] distinguishes between implicit (tacit) and explicit knowledge.
Explicit knowledge is stored in textbooks, software products and documents.

www.manaraa.com

x Preface

Implicit knowledge is stored in the minds ofpeople in the form ofmemory, skills,
experience, education, imagination and creativity. Choo [2] adds cultural
knowledge to Nonaka's c1assification. On the other hand, Spender [5] classifies
knowledge in terms of implicit, explicit, individual and collective knowledge.
There is a common agreement that both implicit and explicit knowledge are
important, however, implicit knowledge is more difficult to identify and manage.

The terms "knowledge" and "data" are often used intercbangeably in both
information systems and software engineering literature. Knowledge is seen a type
of information that is attached to a particular context. Alavi and Leidner [1]
speculate that information becomes knowledge once it is processed in the mind of
an individual, which then becomes information once it is articulated and
communicated to others in the form of text, software product or other means. The
receiver can then cognitively process the information so that it is converted back
into tacit knowledge.

Wilson and Snyder [6] define two types of information: support information
and guidance information. Support information includes descriptive explanations
that provide abasie understanding of a product or process by answering questions
such as who, what, when, where and why. The information on guidance illustrates
how to accomplish a task. In order to be able to accomplish a task, to solve a
problem or to answer questions we need to be able to access both types of
information so that we can cognitively process and interpret it.

Information has an economic value derived from its accuracy, timeliness and
exclusivity. According to the economists G.A. Akerloff, A.M. Spence and J.E.
Stiglitz, who won the 2001 Nobel Prize in economies, asymmetrie information can
distort economic behavior and is seen as a competitive advantage [7]. Basic
intellectual capital management strategies are based on beliefs that value creation
comes from people. Furthermore, ideas are the source of beliefs, and corporate
growth is a natural process and derived from skill transfer. Thus, knowledge is
considered a crucial resource for organizations and it should be managed
carefully.

The management of knowledge is regarded as a main source of competitive
advantage for organizations. Keeping organizational knowledge up-to-date is seen
as a competitive strategy, especially when the knowledge at band helps to generate
considerably significant returns [4].

In essence, the objective of knowledge management is to transfer implicit
knowledge to explicit knowledge, as weH as to transfer explicit knowledge from
individuals to groups within the organization. Hence, knowledge management is
concemed with creating, preserving and applying the knowledge that is available
within organizations. This implies that knowledge management requires an
appropriate infrastructure for creating and managing explicit as weH as implicit
knowledge about artifacts and processes.

www.manaraa.com

Preface xi

The Role of Knowledge in Software Development

Software developers possess highly valuable knowledge relating to product
development, the software development process, project management and
technologies. As knowledge intensive work, software development requires
various forms of explicit as weIl as implicit knowledge. This knowledge is
dynamic and evolves with technology, organizational culture, and the changing
needs ofthe organization's software development practices. There are cases where
the knowledge is created at irregular intervals and the value of its use can only be
displayed over time. There are also cases where the knowledge for the task is weIl
defmed and reusable. Improving software products, software processes and
resources are special cases of knowledge management. F or instance, process
support includes improved processes and their results, well-defmed tasks,
improved communication and guiding people to perform their task. The use ofthe
Internet facilitates the storage and utilization of activities, thus improving the
quality of the software development process. Experience also plays a major role in
knowledge-related activities. Software development can be improved by
recognizing the related knowledge content and structure as weIl as the required
appropriate knowledge, and performing planning activities.

What Can We Learn from Knowledge Management to Support
Software Development?

Knowledge management is an area that has much to otTer to software developers
because it takes a multidisciplinary approach to the various activities of gathering
and managing knowledge. The knowledge management viewpoint draws from
weIl established disciplines such as cognitive science, ergonomics, computer
science and management. Most importantly, it views the management of
knowledge as a human endeavor and acknowledges the fact that human assets are
buried in the minds of individual software developers and leverages it into a team
asset that can be used, learned and shared by other team members.

A knowledge management system in a software organization provides an
opportunity to create a common language of understanding among software
developers so that they can interact with each other, negotiate and share their
knowledge and experiences. A knowledge management system supports the
ability to systematically manage innovative knowledge in software development.
It facilitates an organizational learning approach to software development by
structuring and assisting knowledge transfer at the project-organization level. This
system has a knowledge repository that stores long-term reusable solutions and
illustrates how novel problems can be solved by adapting similar solutions that fit
the organization's technical and business context. It provides "lessons learned"
functions for solving specific problems e.g. knowledge acquired from past projects
for customer-specific solutions or for handling similar tasks such as planning for
software projects. It aids in the development of an organizational memory bank
for practitioners. In this way it facilitates repetitive administrative oriented as weIl

www.manaraa.com

xii Preface

as knowledge-intensive tasks (also known as workflow management) in a software
development environment.

Finally a knowledge management system repository fosters the use of fault
measurement processes and continuous improvement, and encompasses the
development of generic standards as weIl as specific development methods. It acts
as a facilitator at both individual and collective levels, for example, by defming
relevant qualitative and quantitative measurements, and by establishing regular
feedback.

Potential Issues

Although the idea of creating a system that allows software developers to share
knowledge is an attractive idea, the literature is filled with questions that software
developers need to address. What kind of knowledge would be useful to store for
software system design? What kind of problems can we solve in software
development by using knowledge management principles? How do you acquire
and represent software development knowledge?

There are number of obstacles to the introduction of knowledge management
into software engineering communities. First, a knowledge management system in
a software organization essentially involves the development of a technical and
organizational infrastructure. This requires significant effort for the development
of knowledge content, filtering and organizing knowledge, capturing intellectua1
assets and capturing processes. The system needs continuous updating and
monitoring of knowledge resources. Furthermore, training of software developers
for timely, effective and efficient reuse of experience in subsequent projects is a
necessity. The communication ofknowledge for accessibility and its application to
support effective software development is expensive and time consuming. In other
words, a considerable amount of investment is required for the application of
knowledge management principles in a software development environment, where
the effort is critical to its success.

In addition to the above, a lack of awareness of knowledge management
practices among software developers, or their reluctance to share knowledge
because they are afraid that sharing and transferring their knowledge to colleagues
decreases their value and job security are only few examples of dilemmas that
software practitioners face.

Software developers commonly agree that software engineering can benefit
from knowledge management solutions. It is important to remember that software
team members need encouragement and support to share information and learn
from each other. They need an interactive environment where they can
continuously leam in an everyday environment and improve job performance.

www.manaraa.com

Preface xiii

Aims of the Book and Target Audience

Management of knowledge and experience are key means for systematic software
development and process improvement. This book illustrates several examples of
how to get this vision to work in theory as weIl as how to apply these solutions to
industrial practice. Furthermore, it pro vi des an important collection of articles for
researchers and practitioners on knowledge management in software development.
It is hoped that this book will become a useful reference for postgraduate students
undertaking research in software development. Although it is recommended that
the readers have a sound background in software development, this book offers
new insight into the software development process for both novice software
developers as weIl as experienced professionals.

Book Overview

This book is organized into four major parts. Each part contains three to five
chapters. Although it is preferable to fIrst familiarize yourself with the fIrst
chapter of Part 1, or at least with portions of other chapters in Part 1, the book is
designed to permit reading of the parts in many different orders, depending on
readers' interests.

Part 1: Motives for Knowledge Management Initiatives

ChaUenge: Why manage software engineering knowledge?

There may be many different motives for starting knowledge management
initiatives in organizations. These motives may be grouped into two broad
categories: survival and advancement. The difference is in the focus on existing or
new knowledge. Survival strategies concentrate on knowledge management
initiatives around capturing and locating valuable company knowledge and
making the maximum use of the existing knowledge through transferring and
sharing practices. Advancement strategies, on the other hand, focus on generation
of new knowledge and processes necessary for enabling successful innovations.

Articles in Part 1 of this book cover several major motivational aspects of
knowledge management in software engineering from three different perspectives:
people, process and product. The three chapters are by John. S. Edwards (Aston
Business School, Birmingham, UK); June M. Vemer and William M. Evanco
(College of Information Science and Technology, Drexel University, USA);
Torgeir Dingseyr (SINTEF Telecom and Informatics, Norway) and Reidar
Conradi (Norwegian University ofScience and Technology, Norway).

www.manaraa.com

xiv Preface

Part 2: Supporting Strudures for Managing Software Engineering
Knowledge

Challenge: Need to clarify concepts and models

Some observers predict that knowledge management is a vague concept that will
neither deliver what it promises nor add to the bottom line. Part 2 examines the
existing knowledge management frameworks, focusing on those that may
potentially be helpful for managing software engineering knowledge. Existing
problems of managing software engineering knowledge will be addressed.

The five chapters are by Mikael Lindvall and Ioana Rus (Fraunhofer Center for
Experimental Software Engineering Maryland, USA); Tore Dybä (SINTEF
Telecom and Informatics, Norway); Gary R. Oliver, John D'Ambra and Christine
Van Toom (University ofNew South Wales, Australia); Allen Dutoit (lnformatics
Department of Technische Universitaet Muenchen, Germany), Barbara Paech,
(Fraunhofer Institute for Experimental Software Engineering, Germany); and
David Lowe (University ofTechnology, Sydney Australia).

Part 3: Application ofKnowledge Management in Software Engineering

Challenge: The use ofknowledge management in software engineering

Knowledge Management is not a single technology but instead a collection of
indexing, classifying, retrieval and communication technologies coupled with
methodologies designed to achieve results desired by the user. Part 3 covers the
applications ofknowledge management in software engineering

The five chapters are by Martin Shepperd (Boumemouth University, UK); Sira
Vegas, Nata1ia Juristo (Universidad Polirecnica de Madrid, Spain) and Victor
Basili (University of Maryland, USA); Stefan Biffi (Vienna University of
Technology) and Michael Halling (Johannes Kepler University, Austria); Linda H.
Rosenberg (Goddard Flight Space Center, NASA, USA); and Klaus-Dieter
Althoff and Dietmar Pfahl (Fraunhofer Institute of Experimental Software
Engineering, Germany).

Part 4: Practical Guidelines for Managing Software Engineering Knowledge

Challenge: Lack of standards

Some industry observers say that the lack of standards is fragmenting deployment
of enterprise-wide knowledge management products. Many organizations,
including Standards Australia, are working on standardizing various aspects of
knowledge management functionality. Part 4 concludes the book by looking at the
industrial practices in software development.

The four chapters are by Rini van Solingen (CMG Technical Software
Engineering, The Netherlands), Rob Kusters (Eindhoven University of

www.manaraa.com

Preface xv

Technology and Open University, The Netherlands), Jos Trienekens (Eindhoven
University of Technology, The Netherlands); Christof Ebert, Jozef De Man and
Fariba Schelenz (Alcatel, France); and Pankaj Jalote (Department of Computer
Science and Engineering, LI.T., India).

Acknowledgement

There are many people whom we would like to thank for their help and support.
We wish to thank all the authors for their hard work and effort in creating this
book. We are especially grateful to Fethi Rabhi, Adrian Gardiner, Peter Parkin and
Paul Scifleet for their participation in the external review process and for their
valuable comments. We would also like to thank Liming Zhu for his assistance in
creating the Web site and formatting this book and Irem Sevin~ for assisting with
the proof reading. A special thanks goes to Ralph Gerstner of Springer, Germany
for providing professional advice during the publishing process. Finally, a big
thank you is due to our families for enduring the lengthy editing process. This
book is dedicated to our families.

References

1. Alavi M., Leidner D. (1999) Knowledge management systems: emerging views and
practices from the field. In: Proceedings of 32nd annual Hawaii international
conference on system sciences, Maui, Hawaii, USA, 11 p.

2. Choo C.W. (1998) The knowing organization. Oxford university press, New York, NY
3. Nonaka I. (1994) A dynamic theory of organizational knowledge creation.

Organization science, 5: 14-37
4. Schulz M., Lloyd A.J. (2001) Codification and tacitness as knowledge management

strategies: an empirical exploration. Journal of high technology management research,
12: l39-165

5. Spender J.C. (1998) Pluralist epistemology and the knowledge-based theory of the
firm. Organization science, 5: 233-256

6. Wilson, L.T., Snyder C.A. (1999) Knowledge management and IT: how are they
related? IT Professional, 1: 73 -75

7. Williams J. (2002) Practical issues in knowledge management. IT Professional,
4: 35-39

www.manaraa.com

Contents

List of Contributors .. xxi

Part 1 Why Is It Important to Manage Knowledge? ... 1

1 Managing Software Engineers and Their Knowledge 5
1.1 Introduction ... 5
1.2 History of the Profession ... 6
1.3 Problematic Areas in Software Engineering .. 12
1.4 Previous Work on Knowledge Management in Software Engineering 15
1.5 Potential for Knowledge Management .. 18
1.6 Overall Knowledge Management Strategy .. 20
1.7 Conclusion and Summary .. 22

2 An Investigation into Software Development Process Knowledge 29
2.1 Introduction ... 29
2.2 Software Development Process Research .. 30
2.3 Background and Related Research .. 32
2.4 Research Approach .. 35
2.5 Results ... 36
2.6 Discussion ... 41
2.7 FurtherWork ... 43

3 Usage ofIntranet Tools for Knowledge Management in a Medium-Sized
Software Consulting Company ... 49

3.1 Introduction ... 49
3.2 Alpha Consulting ... 50
3.3 Knowledge Management Strategies and Tools 51
3.4 Research Method ... 53
3.5 Usage ofKnowledge Management Tools at Alpha 54
3.6 Discussion ... 64
3.7 Conclusion, and Further Work .. 67

Part 2 Supporting Structures for Managing Software Engineering
Knowledge .. 69

4 Knowledge Management for Software Organizations •••••••••••••••••••••••••••••••••• 73
4.1 Introduction ... 73
4.2 Business and Knowledge Needs .. 74
4.3 Knowledge Management in Software Engineering 76
4.4 KM Activities and Tools ... 77
4.5 KM in Support ofLearning ... 85

www.manaraa.com

xviii Contents

4.6 Challenges and Obstacles .. 88
4.7 State ofthe Practice ... 90
4.8 Conclusions ... 91

5 A Dynamic Model ofSoftware Engineering Knowledge Creation •••••••••••••• 95
5.1 Introduction ... 95
5.2 Organizational Context. ... 97
5.3 Learning Cycle .. 99
5.4 Organizational Performance .. 109
5.5 Facilitating Factors .. 112
5.6 Summary ... 114

6 Evaluating an Approach to Sharing Software Engineering Knowledge
to Faeßitate uarning ... _. 119

6.1 Introduction ... 119
6.2 Knowledge-Sharing Models ... 122
6.3 Applying SEKS to CORONET ... 125
6.4 Conc1usion and Implications for Further Research 131

7 Eliciting and Maintaining Knowledge for Requirements Evolution ••••••••• 135
7.1 Introduction ... 135
7.2 Requirements Change .. 137
7.3 Knowledge for Requirements Evolution ... 139
7.4 Using Options for Dealing with Evolving Requirements 146
7.5 Open Issues and Future Directions .. 152

8 Emergent Knowledge in Web Development .. 157
8.1 Introduction ... 157
8.2 Web System Characteristics and Implications 158
8.3 Evolving Project Knowledge ... 165
8.4 Future Trends and Conclusions ... 171

Part 3 Application ofKnowledge Management in
Software Engineering .. 177

9 Case-Based Reasoning and Software Engineering 181
9.1 Introduction ... 181
9.2 An Overview ofCase-Based Reasoning Technology 183
9.3 Software Engineering Applications ofCBR. 189
9.4 Summary and Future Work ... 194

10 A Process for Identifying Relevant Information for a Repository:
A Case Study for Testing Techniques _ .. 199

10.1 Introduction ... 199
10.2 Related Work .. 201
10.3 Proposed Process for Discovering Relevant Information 203

www.manaraa.com

Contents xix

10.4 Case Study: Developing a Characterization Schema for
Software Testing Techniques ... 209
10.5 Process Evaluation ... 226
10.6 Conclusions .. 227

11 A Knowledge Management Framework to Support
Software Inspection Planning ..•................... 231

11.1 Introduction .. 231
11.2 Knowledge in Software Inspection .. 233
11.3 A Conceptual Knowledge Management Framework for
Software Inspection Planning .. 235
11.4 Discussion .. 242
11.5 Conclusion ... 245

12 Lessons Leamed in Software Quality Assurance 251
12.1 Introduction ... 251
12.2 Lessons Learned .. 252
12.3 Conclusion ... 267

13 Making Software Engineering Competence Development Sustained
through Systematie Experience Management. _ 269

13.1 Introduction and Background .. 269
13.2 Towards Integrating E-Learning and Knowledge Management ... 274
13.3 Recent Innovations in Experience Management. 281
13.4 Integrating Experience Management with E-Learning 285
13.5 Summary and Conclusion .. 289

Part 4 Practical Guidelines for Managing Software Engineering
Knowledge .. 295

14 Practical Guidelines for Learning-Based Software Product
Development ... 299

14.1 Introduction .. 299
14.2 Learning During Embedded Product Development 300
14.3 Guidelines for Model Application in Practice303
14.4 Conclusions ... 314

15 In-Project Leaming by GoaI-oriented Measurement 319
15.1 Introduction ... 319
15.2 The Goal Question Metric Approach ... 320
15.3 Feedback ofSoftware Measurement Results 324
15.4 Application ofthe GQM Approach in Practice 330
15.5 Conclusion ... 335

16 e-R&D: EtJectively Managing and Using R&D Knowledge 339
16.1 Introduction .. 339

www.manaraa.com

xx Contents

16.2 Case Study Setting ... 342
16.3 Knowledge Management in Software Engineering 343
16.4 Practical R&D Knowledge Management .. 348
16.5 Knowledge Management Return on Experience 353
16.6 Conclusions ... 355

17 Knowledge Infrastructure for Project Management 361
17.1 Introduction ... 361
17.2 Process Specification and Process Assets .. 362
17.3 Process Database ... 366
17.4 Body ofKnowledge ... 370
17.5 Use ofKnowledge Infrastructure in Projects 371
17.6 Summary ... 373

Index ... 377

www.manaraa.com

List of Contributors

K1aus-Dieter AlthotT
Fraunhofer lESE, Sauerwiesen 6
D-67661 Kaiserslautern, Germany
althoff@iese.thg.de

Aybflke Aurum
School ofInformation Systems, Technology and Management
University ofNew South Wales
NSW, 2052 Australia
aybuke@unsw.edu.au

Victor Basili
Department of Computer Science
University ofMaryland
College Park, MD 20742, USA
basili@cs.umd.edu

Stefan Bim
Institute for Software Technology
Vienna University ofTechnology
Karlsplatz 13, A-I040 Vienna, Austria
Stefan.Biffi@tuwien.ac.at

Reidar Conradi
Norwegian University ofScience and Technology
NO-7491 Trondheim, Norway
Reidar.Conradi@idi.ntnu.no

John D' Ambra
School ofInformation Systems, Technology and Management
University ofNew South Wales
NSW 2052 Australia
j.dambra@unsw.edu.au

www.manaraa.com

xxii List of Contributors

JozefDeMan
Alcatel
Fr.-Wellesplein 1, B-2018 Antwerpen, Belgium
jozef.de man@alcatel.be

Torgeir Dingssyr
SINTEF Telecom and Informatics
SP Andersens vei 15
NO-7465 Trondheim, Norway
Torgeir.Dingsoyr@sintef.no

Allen Dutoit
Technische Universität München, Institut fiir Informatik, Boltzmannstraße 3
D-85748 Garching b. München, Germany
dutoit@in.tum.de

ToreDybä
SINTEF Telecom and Informatics
S.P. Andersensv. 15, NO-7465 Trondheim, Norway
tore.dyba@sintef.no,

Christof Ebert
Alcatel
54 rue La Boetie, 75008 Paris, France
Christof.Ebert@alcatel.com

John S. Edwards
Aston Business School
Birmingham, B4 7ET, UK
j.s.edwards@aston.ac.uk

William Evaneo
College ofInformation Science and Technology
Drexel University
3141 Chestnut St, Philadelphia, PA 19104, USA
William.evanco@cis.drexel.edu

www.manaraa.com

Michael Halling
Dept. of Systems Engineering and Automation
Johannes Kepler University
Linz Altenbergerstr. 69, A-4040 Linz, Austria
Michael.Halling@univie.ac.at

Meliha Handzic

List of Contributors xxiii

School ofInformation Systems, Technology and Management
University ofNew South Wales
NSW, 2052, Australia
m.handzic@unsw.edu.au

Pankaj Jalote
Department of Computer Science and Engineering
Indian Institute ofTechnology Kanpur
Kanpur, India 208016
Jalote@iitk.ac.in

Ross Jeffery
School of Computer Science and Engineering
University ofNew South Wales
NSW, 2052 Australia
rossj@cse.unsw.edu.au

Natalia Juristo
Facultad de Infonmitica. Universidad Politecnica de Madrid
Campus de Montegancedo
28660 Boadilla deI Monte, Madrid, Spain
natalia@fi.upm.es

Rob Kusters
Eindhoven University ofTechnology,
Den Dolech 2, 5600 MB Eindhoven, The Netherlands,
R.J.Kusters@tm.tue.nl

Mikael Lindvall
Fraunhofer Center for Experimental Software Engineering Maryland
4321 Hartwick Rd, Suite 500
College Park, MD 20740, USA
mlindvall@fc-md.umd.edu

www.manaraa.com

xxiv List of Contributors

DavidLowe
University ofTechnology, Sydney
PO Box 123, Broadway
NSW, 2007, Australia
david.lowe@uts.edu.au

GaryOliver
Australian Graduate School ofManagement
University ofNew South Wales
NSW, 2052, AustraIia
gary@agsm.edu.au

Barbara Paech
Fraunhofer lESE, Sauerwiesen 6
0-67661 Kaiserslautern, Germany
paech@iese.thg.de

Dietmar Pfahl
Fraunhofer lESE, Sauerwiesen 6
0-67661 Kaiserslautern, Germany
pfahl@iese.thg.de

Dieter Rombach
Fraunhofer lESE, Sauerwiesen 6
0-67661 Kaiserslautern, Germany
rombach@iese.thg.de

Linda H. Rosenberg
Goddard Space Flight Center, NASA
Greenbelt, MD 20771, USA
Linda.H.Rosenberg@nasa.gov

loanaRus
Fraunhofer Center for Experimental Software Engineering Maryland
4321 Hartwick Rd, Suite 500
College Park, MD 20740, USA
irus@fc-md.umd.edu

www.manaraa.com

Fariba Schelenz
Alcatel
54 rue La Boetie, 75008 Paris, France
faribaschelenz@alcatel.fr

Martin Shepperd
Empirical Software Engineering Research Group

List of Contributors xxv

School ofDesign, Engineering and Computing, Bournemouth University
Bournemouth, BHI 3LT, UK
mshepper@bmth.ac.uk

Jos Trienekens
Eindhoven University ofTechnology
Den Dolech 2, 5600 MB Eindhoven, The Netherlands
J.J.M. Trienekens@tm.tue.nl

Rini van Solingen
LogicaCMG Technical Software Engineering
P. O. Box 8566, 3009 AN Rotterdam, The Netherlands
Rini. van.Solingen@cmg.nl

Christine Van Toorn
School ofInformation Systems, Technology and Management
University ofNew South Wales
NSW 2052 Australia
c.vantoom@unsw.edu.au

Sira Vegas
Facultad de Infornuitica Universidad Politecnica de Madrid
Campus de Montegancedo
28660 Boadilla deI Monte, Madrid, Spain
svegas@fi.upm.es

JuneVerner
College ofInformation Science and Technology
Drexel University
3141 Chestnut St., Philadelphia, PA 19104, USA
june.vemer@cis.drexel.edu

www.manaraa.com

xxvi List of Contributors

Claes Wohlin
Department of Software Engineering and Computer Science
Blekinge Institute ofTechnology
Box 520, SE-372 25 Ronneby, Sweden
Claes. Wohlin@bth.se

www.manaraa.com

Part 1
Why Is It Important to Manage Knowledge?

Meliha Handzic

Investment in knowledge pays best interest.
- Benjamin Franklin

Rapid change and competition for customer loyalty have forced firms to seek
sustainable competitive advantage in order to distinguish themselves from their
competitors. Business leaders view knowledge as the chief asset of organizations
and the key to sustaining a competitive advantage [4]. For this reason, companies
have started to focus more on what they know, and less on what they OWD. It is
therefore not surprising that knowledge has been identified as the new basis for
competition and as the only unlimited resource, the one asset that grows with use.

Many frrms have also come to understand that they require more than just a
casual approach to corporate knowledge if they are to succeed in the new
economy [2]. Companies have to fmd out where their business-specific knowledge
is, and how to transform it into valuable products and services that differentiates
them from the rest of the market. Good knowledge management can foster the
creation of new knowledge to meet new challenges and enables the effective and
rapid application ofknowledge to create value.

The main purpose of knowledge management is to make sure that the right
people have the right knowledge at the right time. In particular, knowledge
management needs to ensure that people have the necessary talents, skills,
knowledge and experiences to implement corporate strategies. Implementations of
knowledge management also need to provide structures and systems that enable
people to share and apply their knowledge to support decisions, to present services
to the customer, to support customers' needs, to develop solutions required and
expected by the customer, as weIl as to stay in business and to secure
employability.

It is argued here that there is a need for holistic approaches that can help
practitioners to understand the sorts of knowledge management initiatives or
investments that are possible and to identifY those that make sense in their context
[I]. Accordingly, Part 1 brings together various perspectives on motives for
knowledge management.

While there may be many different individual reasons for starting knowledge
management initiatives in organizations, they can be grouped into three broad
categories: minimizing risk, seeking efficiency and enabling innovation which
ensure business survival or advancement.

If the prime motive for knowledge management is minimizing risk, the
response typically involves identifYing and holding onto the core competencies of
a company. Thus, risk minimization is closely related to knowledge initiatives

www.manaraa.com

2 Handzic

aimed at locating and capturing valuable company knowledge [5]. In software
engineering, people have been recognized as key holders of valuable knowledge
content. Therefore, identifying, locating and capturing what is known by
individuals and groups of software developers is of critical importance for
software businesses survival.

In today's complex economy, businesses are constantly confronted with the
need to operate more efficiently in order to stay competitive and satisfy increasing
market demands. Seeking efficiency usually relates to knowledge initiatives for
transferring experiences and best practices throughout the organization in order to
avoid unnecessary duplication and to reduce cost. Technology is often an
important part of achieving efficiency improvements [5]. In particular, companies
that develop software are under increasing pressure from their customers to
deliver software solutions faster and cheaper. Therefore, researchers and
practitioners in the field of software engineering need to turn their attention to new
ways and tools for improving the software development process as a possible
means for achieving enhanced efficiency and sustaining the competitive advantage
of software fmns.

There is a growing beliefthat knowledge can do more than improve efficiency.
The new products and services resulting from knowledge and technology may
bring profound changes in the way businesses operate and compete in the new
economy. The unifying thread among various theoretical views is the perception
that innovation is the key driver of an organization's long-term economic success.
Innovation of products, processes and structures has been assessed as a critical
component in the success of new-age fmns.

Typically, innovative organizations focus both on new knowledge and on
knowledge processes. They constantly engage and motivate people, creating the
overall enabling context for knowledge creation. These organizations take a
strategic view of knowledge, formulate knowledge visions, tear down knowledge
barriers, develop new corporate values and trust, catalyze and coordinate
knowledge creation, manage various contexts involved, develop conversational
culture and globalize local knowledge [3].

The greatest challenge for software engineering companies is to move in a
knowledge-enabling direction by consciously and deliberately addressing
knowledge management. By nurturing knowledge, enabling its sharlng and use,
getting knowledge out of individual minds into the social environment, and by
turning individual creativity into innovativeness for everyone, software firms can
ensure their long-term advancement and business success.

The review of literature on knowledge management reveals large gaps in the
body of knowledge in this area. The ultimate challenge is to determine the best
strategies to improve the development, transfer and use of organizational
knowledge at the individual and collective levels. We believe that the integrated
approach adopted in this book can help make sense of many different issues and
theoretical concepts, and provide an underlying framework that can guide future
research and practice.

The overall field of knowledge management can accommodate a wide range of
themes and approaches. Articles in Part! of this book cover several major

www.manaraa.com

Part 1 Why Is It Important to Manage Knowledge 3

motivational aspects of knowledge management in software engineering from
three different perspectives. These include people, process and product
viewpoints.

Software engineering has been recognized as one of the most knowledge
intensive professions. In the ftrst article, John Edwards takes a closer look at
software engineers (people) and identiftes major issues involved in managing
these professional knowledge workers. He then uses this as a framework to
discuss how knowledge management may be relevant to further advancing the
software engineering profession.

Despite extensive research into project faHure and the many guidelines for
successful software development that have been proposed, projects still faH.
Therefore, in the second article, June Verner and William Evanco speciftcally
address the improvement of software development (process), focusing primarily
on project risk management because of its major influence on project success.
First, the authors describe the current state of the practice and identity critical
success factors. Then, they propose a preliminary knowledge-based model to
predict future software project success.

Software is often a major part of most innovative products and services or is an
innovative product in its own right. In the third article, Torgeir Dingseyr and
Reidar Conradi illustrate the importance of innovative knowledge management
software (product) as an engine of a learning software organization. In particular,
the article shows the need for software organizations to work with both
codiftcation and personalization strategies to achieve effective knowledge
management.

References

1. Handzic M. (2001) Knowledge management: a research framework. In: Proceedings of
the 2nd European conference on knowledge management, Bled, Slovenia, pp. 219-229

2. Nonaka I. Takeuchi H. (1995) The knowledge creating company: How Japanese
companies create the dynamies of innovation. Oxford university press, New York,
USA

3. Nonaka 1., Nishiguchi T. (2001) Knowledge emergence. Oxford university press, New
York, USA

4. Raich M. (2000) Managing in the knowledge based economy. Raich Ltd., Zurich,
Switzerland

5. Von Krogh G., Ichijo K., Nonaka I. (2000) Enabling knowledge creation. Oxford
university press, New York, USA

Editor Biography

Dr. Meliha Handzic is a senior lecturer at the School of Information Systems,
Technology and Management, University ofNew South Wales. She is the founder
and the group leader of knowledge management research group (kmRg) in the
University of New South Wales. Her main research interest is Knowledge

www.manaraa.com

4 Handzic

Management, more specifically processes and enablers of knowledge creation,
sharing, organization and discovery. Her other interests include forecasting and
decision support. She has published over 50 research papers on these topics.
Presently she is regional editor of the journal Knowledge Management Research
and Practice, and on the editorial boards of In Thought and Practice and Journal
0/ Information Technology Education.

www.manaraa.com

1 Managing Software Engineers and Their Knowledge

John S. Edwards

Abstract: This chapter beg ins by reviewing the history of software engineering as
a profession, especially the so-called software crisis and responses to it, to help
focus on what it is that software engineers do. This leads into a discussion of the
areas in software engineering that are problematie as a basis for considering
knowledge management issues. Some of the previous work on knowledge
management in software engineering is then examined, much of it not actually
going under a knowledge management title, but rather "learning" or "expertise".
The chapter goes on to consider the potential for knowledge management in
software engineering and the different types of knowledge management solutions
and strategies that might be adopted, and it touches on the crucial importance of
cultural issues. It concludes with a list of challenges that knowledge management
in software engineering needs to address.

Keywords: Knowledge management, Software engineering, Software process
improvement, Learning, Expertise, Knowledge management strategy

1.1 Introduction

Software engineering is one of the most knowledge-intensive professions.
Knowledge and its management are relevant to several aspects of software
engineering at different levels, from the strategie or organizational to the
technical. These include:

• Estimation of costs and time scales
• Project management
• Communicating with clients and users
• "Problem solving" in system development
• Reuse of code
• Training and staff development
• Maintenance and support

It might therefore be expected that software engineers would be weIl advanced
in the practiee of knowledge management. However, there are few signs that this
is being the case. Although the general knowledge management literature contains
many examples of knowledge management systems in successful use in
information technology - related companies, relatively few are specifically for
software engineering. Most reported systems in these companies address areas
such as overall company performance, sales and marketing, or perhaps trouble
shooting hardware failures. Mouritsen et al. [40] for example, give a very detailed

www.manaraa.com

6 Edwards

account ofknowledge management in the form ofproducing an intellectua1 capital
statement for a software engineering firm, Systematic Software Engineering.
However, there is virtually nothing in their article that is specific to software
engineering.

One reason for the lack of ''visibility'' of software engineering in the wider
knowledge management literature is the tendency for discussion of such topics to
take place at conferences for the software engineering community. These include
the Learning Software Organizations Workshop, the International Conference on
Software Engineering, the International Conference on Software Engineering and
Knowledge Engineering and the European Software Process Improvement
Conference. Thus there is an active knowledge management community in
software engineering, but it is interesting that much of their work is distanced
from the knowledge management mainstream.

In this chapter, we begin by reviewing the history of software engineering as a
profession, to provide a background for discussing the issues involved in
knowledge management in software engineering. We then look at the aspects of
software engineering that may make knowledge management problematic, but
equallyare often the reasons why it is important. We next consider what has been
done so far by way of knowledge management in software engineering, and in
particular the question of whether knowledge management has been taking place,
but under other names. Finally, we look at the potential for knowledge
management in software engineering by offering a framework for discussing
knowledge management, including the cultural issues that most influence this
profession. We conclude by identifying the principal challenges for knowledge
management in software engineering and by arguing for a "complementary"
strategy to address them.

1.2 History of the Profession

In this section, we review some of the key features of the history of software
engineering, both as an activity and a profession. This serves to introduce the
relevance of knowledge management to software engineering. The topics include
the impression given of perpetual crisis, efforts at software process improvement,
what software engineers actua1ly do in technical/functional terms, and whether or
not software engineering is knowledge work.

1.2.1 Perpetual Crisis?

At one level, the history of software engineering gives the impression of a
profession in perpetual crisis. Even before the 1968 NATO conference on
software engineering, which brought the term into common use [41], back in the
days of punched cards and paper tape, the development of software was regarded
as being problematic. Indeed, it is asserted [47] that the term software engineering

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 7

was chosen for this conference title deliberately in order to be provocative. The
tendency for commercial and govemmentaI systems to be delivered late, over
budget and lacking functionality was already becoming apparent. There was a
need for the development of computer systems to be performed with the rigor and
discipline associated with branches of engineering.

More than 30 years later and in another century, not much seems to have
changed, as the paper by Bryant indicates [12]. Granted, the majority of software
development now takes places in specialized companies rather than in the in
house departments of large organizations, but the problems relating to cost, time
and quality still seem to be similar. One might therefore conclude that nothing
much has changed in software engineering over this period. Yet the situation is not
as simple as this. Recent major successes of software engineering, such as
avoiding (for the most part) any major Y2K problems and coping with the
introduction of the euro, have earned the profession little credit either extemally or
intemally. The profession presents itself in a strange light, presumably because
this is how it sees itself-a crisis of identity, at least. Indeed, one of the UK's
weekly magazines for professionals in this field has areputation for almost always
headlining a negative story. Bryant rightly questions whether software engineering
as a profession is part ofthe solution or part ofthe problem.

Towards the middle of the period we have been discussing, Andrew Friedman
(with Dominic Cornford) produced an influential account of the history of
software engineering [22]. One of the frameworks used for this analysis was a
model based on three phases, derived from ''the story so far" up to the late 1980s.
The phases were dominated by hardware constraints, software issues and user
needs, respectively. Baxter [7] argues that if Friedman's time-based phasing
model had been correct, then "by now software writing would be unproblematic",
but that this does not seem to be the case, as we would agree. However, Friedman
himself said that phase three (dominated by user needs) would not necessarily give
way to a phase four, and that "one possibility .. .is to revert back to the domination
of earlier phase concems". Programming issues still have a great influence on
what software is created, rather than just the requirements of the users. Baxter
points out that "beta versions", "patches" and "bugs" are all commonplace in the
software world, but, as she puts it "can the reader imagine having a "beta" set of
wheels on their car?"

The view within the software engineering departrnent is no more reassuring.
For example, Perlow [46] refers to the "fast paced, high-pressure, crisis-filled
environment in which software engineers work". If a general expectation that
software will not work properly and a crisis-filled environment are reasonable
indications, then software engineering is indeed a profession in a continuing state
ofcrisis.

1.2.2 Software Process Improvement

The comments in Sect. 1.2.1 should not be taken as evidence that nothing has been
done to improve matters. On the contrary, many systematic attempts have been

www.manaraa.com

8 Edwards

made to produce software that is more reliable and of higher quality. One way to
do this is simply to improve the testing procedures, but we will not consider this
further here for two reasons. First, this approach goes against all the principles of
total quality management, since it is far cheaper and easier to avoid errors rather
than to find and correct them. Second, the ever-increasing complexity of modem
software [23] makes it much harder to test than, say, a piece of mechanical
equipment. The emphasis has therefore rightly been on producing software that is
more reliable and of higher quality by methods that are more predictable and
robust. These approaches are generally grouped under the heading of software
process improvement. A good review of various different improvement
''technologies'' is given by the experienced commentator on the field, Robert Glass
[24].

In this section we concentrate on those improvement methods termed "process
models" by Glass, since these have the greatest relevance to the management
aspects of the software engineering profession, as opposed to the technical
aspects. If improvements are left solely to the technicallevel, then the best that is
likely to be achieved will be isolated "islands of knowledge". This is a widely
recognized problem in knowledge management. Among these process models are
the Capability Maturity Model (CMM), the Quality Improvement Paradigm (QIP),
Software Process Improvement and Capability dEtermination (SPICE), and the
ISO 9000 series of internationally agreed standards.

1.2.2.1 The Software Capability Maturity Model

One of the most widely recognized frameworks for looking at the extent of
professionalism in a software engineering company or unit is the software
Capability Maturity Model [33, 44, 45]. This was developed at Carnegie Mellon
University's Software Engineering Institute (SEI). The CMM for software (there
are now other related CMMs) is organized into five maturity levels:

I. Initial: The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defmed, and success depends on individual effort
and heroics.

2. Repeatable: Basic project management processes are established to track cost,
schedule, and functionality .. The necessary process discipline is in place to
repeat earlier successes on projects with similar applications.

3. Defined: The software process for both management and engineering activities
is docwnented, standardized and integrated into a standard software process for
the organization. All projects use an approved, tailored version of the
organization's standard software process for developing and maintaining
software.

4. Managed: Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively understood
and controlled.

www.manaraa.com

I Managing Software Engineers and Their Knowledge 9

5. Optimizing: Continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and technologies.

Here we see the progression from a "let' s run the program and see what
happens" approach to the technically rigorous and managerially disciplined
approach that an engineering discipline should have. Perlow frequently refers to
"individual heroics" in discussing the organization that he studied [46]; c1early it
belongs at level 1. Knowledge management is by definition nonexistent in a level
1 unit, but becomes increasingly important as the level rises. Indeed, it could be
argued that more effective knowledge management is one of the haIlmarks
distinguishing the higher levels of capability maturity.

1.2.2.2 Quality Improvement Paradigm

The Quality Improvement Paradigm (QIP) is an approach that draws on the field
of Total Quality Management (TQM). One of the pioneers of this approach was
the Software Engineering Laboratory at NASA's Goddard Space Flight Center
[6]. The phrase coined for the resuiting organization is the "experience factory".
The relationship between the QIP and the experience factory is weH described by
Basili and Caldiera [5]. They also explain why manufacturing-based total quality
approaches have not worked weH in software engineering. Such approaches do not
deal weH enough with the nature of a software product. For example, any
particular piece of software is only developed once, so that statistical quality
control approaches are impossible. Some of the lessons learned at the Goddard
Space Flight Center are described in Chap. 12 ofthis book [48].

1.2.2.3 Software Process Improvement and Capability Determination

Software process improvement and capability dEtermination (SPICE) is an
initiative intended to produce an international standard for software process
assessment [31]. This covers not only software development and operation, but
also procurement and support as related to packaged software. Extensive trials
have occurred for some years. Thus far it has reached the status of a technical
report (lSOIIEC TR 15504: 1998) published by the international organization for
standardization (ISO), with the intention that this will evolve into a fuH
international standard. More general international quality standards are covered in
the Sect. 1.2.2.4.

1.2.2.4 ISO 9000 Series Standards

The ISO 9000 series of standards [30] relates to quality management systems of
all kinds in organizations, but some parts of the software engineering industry
have been particularly attracted by the idea of systems designed to deliver
products that meet customer needs. In many industries, ISO 9000 certification is

www.manaraa.com

10 Edwards

either a source of competitive advantage or an essential qualifier in order to be
considered as a supplier at all. Software consultancies, therefore, have shown great
interest in becoming accredited llOder ISO 9000. A particular point of
commonality with the other methods mentioned is that the latest version, ISO
9000:2000, is constructed around the idea of viewing a business in terms of its
processes, and separating those into the "realization processes" , which form the
core of what the organization does, and support processes. Thus in a software
house or consultancy, developing software is a core realization process. However,
in an organization whose business is making diesel engines or selling insurance, it
would be a support process.

1.2.3 What Functions Do Software Engineers Carry Out?

In this section, we look at the functional or technical activities carried out by
software engineers, to complement the ''management'' perspective of the previous
section. Historically, atternpts to describe what software engineers do have usually
gone band in band with attempts to formalize the process by which they do it.
Thus the "waterfall" led to the life cycle approaches and then to structured
methods, also sometirnes called methodologies; see [22]. Similarly, prototyping,
onee the ultima te in ''make it up as you go along" approaches, has acquired far
more structure and transferability in reeent years because of initiatives such as the
development of dynamic systems development method (DSDM).

As an example of a structured method, we shall use the UK governrnent
approved structured systems analysis and design method (SSADM) [59]. In its
most recent version (4.3), SSADM comprises five modules: feasibility study,
requirements analysis, requirements specification, logical system specification,
and physical design.

DSDM by its very nature has a more complex structure than the hierarchical
one of SSADM. At the top level, the project proeess has five phases: feasibility
study, business study, functional model iteration, design and build iteration,
irnplementation. In addition, there are the preproject and postproject phases,
rnaking seven in alt. The authoritative source for information on DSDM can be
found at http://www.dsdrn.org(lastaccessedNovemberl.2002).Fromthis.itis
c1ear that in DSDM, the term project refers to the actua1 system development, not
to its maintenance or support. SSADM, unusually for a structured method, is even
more restricted, stopping before even the programming, let alone the
implementation or rnaintenance.

This is not just an issue of semantics, however. In principle, a software
development project may be cancelled at any time before its completion. Often,
the method being used inc1udes specific points at which a "stop/go" decision is to
be taken. However, Baxter [7] points out that in fact there is in reality only one
gate (as she terms such decision" points), at the end of what she terms the
feasibility phase. As she puts it, "projects are never cancelled once started". Our
own experience supports this view. Thus there is a very specific knowledge
management issue in identifying knowledge relevant to this single gate.

www.manaraa.com

I Managing Software Engineers and Their Knowledge II

There are many other methods for systems development; some of the principal
ones are reviewed and compared in [26]. Drawing on these together with SSADM
and DSDM, we obtain the following list of ten activities involved in systems
development and maintenance: investigation, determine feasibility, systems
analysis, system design, programming, testing, training, documentation,
implementation, and maintenance/support.

Figure 1.1 gives an idea of the relationship between these various technical and
functional activities of software engineers. It is not intended to be an exact
representation, because the time spent on activities varies from one project to the
next, and there will be loops back. Also shown in Fig. 1.1, there are in addition
two higher-Ievel activities: project management, control, and people management
(users, clients, project team). For the remainder ofthis chapter, we shall keep this
list in our minds as our description of "what software engineers do".

1.2.4 Is Software Engineering Knowledge Work?

Let us now consider whether software engineering qualifies as knowledge work at
all. Newell et al. suggest [42] that knowledge work has three particular distinctive
characteristics. The first two ofthese are autonomyand co-Iocation. Autonomy of
the workers is a consequence of the creativity and problem-solving aspects of the
work. Creativity and problem solving have long been recognized as vital elements
of software engineering. Clearly, therefore, this feature is present. Co-Iocation is
described by Newell et al. as ''the need to work remote from the employing firm,
typically physically located at the c1ient firm". This does not apply to all software
engineers, but it is a definite feature of the profession, as seen in the widespread
use of contractors and the outsourcing of either or both of development and
maintenance work. Newell et al. comment that "The c1ient frrm rnight therefore be
in direct competition with the employing frrm for the services of knowledge
workers" will strike a chord with many in the IT industry.

The third feature identified by Newell et al' is that knowledge workers are
"gold collar" workers, a term coined by Kelley [35]. Such workers need to be
"provided with excellent working conditions and generally afforded exceptional,
or at least very good, terms and conditions of employment". No doubt many
software engineering professionals would challenge the notion that their pay and
conditions are excellent as a matter of principle, but by and large they do receive a
better remuneration and benefits package than their opposite numbers in many
other jobs. For example, the average salary for graduates entering IT jobs in the
UK is typically 10% higher than the average for all graduates.

We can safely conclude, therefore, that software engineering is knowledge
work, and hence that knowledge management is of high importance in software
engineering-or at least it should be. We now go on to look at the problematic
issues in software engineering and its management.

www.manaraa.com

12 Edwards

FJap;al tiIre

([Project }
---I ~mt ,---.----

((~}

Fig. 1.1. Software engineering activities

(~)

[~)
[ImurairäD)

T~)

1.3 Problematic Areas in Software Engineering

M
a
i
n
t
e
n
a
n
c
e

s
u
p
p
o
r
t

Various authors have studied software engineers and software engineering over
many years [5, 7, 28, 36, 39, 46, 63]. Combining their views with our own
experience, we see that among the problematic features particular to this
profession are:
• The tension between systems development and maintenance/support work
• A combination of organizational and technical aspects
• The nature ofteam working

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 13

• A combination of generic skills and extremely specific skills
• Constant change, some of it externally imposed
• The need for a quick response coupled with long system lifetimes

1.3.1 The Tension Between Systems Development and Maintenance/Support
Work

Fundamentally, the work of software engineering splits into two parts
development and maintenance. These can be characterized (or perhaps
caricatured) as the creative, interesting, exciting part and the boring, routine,
annoying part, respectively. Glass [23] points out that software engineering theory
tended to ignore maintenance for many years, perhaps for this reason. Naturally,
as with almost all such categorizations, there is a grey area in the middle where the
two overlap. An important consequence of this division in the work, however, is
that in many cases there is a corresponding split into separate teams. This is a
distinct obstacle to successful knowledge management, because it is as important
to share knowledge between the two "functions" as within them. The maintenance
team needs access to knowledge about how a system was developed, but equally
the development team might weIl benefit from knowledge of maintenance issues
relating to a similar system developed previously. Sharing knowledge across
teams is bound to be more difficult than within teams.

1.3.2 A Combination of Organizational and Technical Aspects

The discussion in the Sect. 1.2 identified that that there are both technical and
organizational or managerial aspects to a software engineer's work. It is also
important to realize that very few of those involved in software engineering have
only technical or only organizational or managerial responsibilities. Table 1.1
shows a broad characterization of the relationship between these responsibilities
and the activities identified earlier. This balance, or indeed tension, between
technical and organizational activities is an issue to which we shall return later.

1.3.3 The Nature ofTeam Working

Another relevant feature is that software engineers-and especially software
developers-normally work in groups. However, compared to similar groups in
other professions, software development groups change very rapidly. For this
reason, Baxter [7] prefers to call them coalitions rather than teams. Perlow [46]
reports that although individuals worked together, success meant doing high
visibility work, and that this was associated with the individual rather than the
team. The knowledge management implications of this are readily apparent.
Sharing knowledge is necessary to get the work done, but the rapidly changing
membership of the teamlcoalition means that the basis of the knowledge is often

www.manaraa.com

14 Edwards

an individual rather than a group. As Perlow found, helping others is often seen as
a distraction rather than something that is rewarded by management.

Table 1.1. The different aspects ofvarious software engineering activities

Activity
Investigation
Detennine feasibility
Systems analysis
System design
Programming
Testing
Training
Documentation
Implementation
Maintenance/support
Project management and control
People management

Main responsibilities (in descending order)
Organizational
Organizational
Organizational, technical
Technical, organizational
Technical, managerial
Technical, managerial, organizational
Organizational, managerial
Technical, managerial
Organizational, technical, managerial
Technical, organizational, managerial
Organizational, managerial
Managerial

1.3.4 A Combination ofGeneric Skills and Extremely Specific Skills

Skills possessed by software engineers are a curious combination of the very
general and the very specific. A database administrator, for example, needs to
have not only generic knowledge about the principles of database design and
structure, but also very detailed specific knowledge about the particular software
package version, hardware configuration and operating system for which she is
responsible [4]. This is by no means unique to software engineers; a similar
problem applies to automobile mechanics, for example. However, the balance
between the general and the specific seems far less clear in software engineering
than in many other professions. For example, when does knowledge about a
particular facet of database design in Oracle 81 on a Unix platform override more
general knowledge of database design principles?

1.3.5 Constant Change, Some ont Externally Imposed

Change increases the importance of knowledge management whilst
simultaneously making it more difficult to do it effectively. A further degree of
control over potential change is lost because most of the changes faced by
software engineers are, to a greater or lesser extent, extemally imposed. At the
highest level, if a govemment decides to change the way in which a particular tax
is calculated, then all systems relating to that tax have to be amended. However, in
another sense, most of what software engineers do is extema11y determined,
because it is client driven. Thus there is the need to anticipate change, as weH as to
react to it.

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 15

1.3.6 The Need for a Quick Response Coupled with Long System Lifetimes

This raises an issue of what knowledge to keep, and what to discard. At one
extreme, keep everything, and the response provided to a query or problem is
likely to get slower and slower. At the other, keep only what is used daily, and you
will soon find yourself in trouble for example, when reports or procedures that are
only run annually come along. The tradition that documentation is the poor
relation in software development does not help matters here.

1.4 Previous Work on Knowledge Management in
Software Engineering

As we said at the start of the chapter, there are relatively few "mainstream"
articles about knowledge management in software engineering, for example, as
defmed by the result of a keyword search. However, the situation is beginning to
change, including eight articles in a special May/June 2002 issue of IEEE
Software. The article by the guest editors for that issue, Rus and Lindvall [49],
gives a good overview of the present state of the art, as does Chap. 4 of this book,
contributed by the same authors [38].

Carter [13] interviews Kathy Schoenherr, a software engineering manager
about knowledge management in her organization, an American insurance
company. Schoenherr identifies three categories of activity in software
engineering where knowledge management can contribute:

• Problem tracking and resolution
• Method documentation
• Human resource issues

She also argues that effective use ofknowledge management would allow more
sharing of analysis and design from previous applications. (Again, the remainder
of the article is about knowledge management more generally, not specifically
knowledge management in software engineering.)

Hellstrom et al. [27] use a software engineering firm as an example of what
they call the "decentralized management of knowledge work". They argue that
top-down approaches to knowledge management are inappropriate in such
circumstances, and propose instead that "semiorganized" knowledge exchange, or
brokerage, between individuals is most effective. This approach resonates with the
view sometimes heard expressed that managing software engineers is like
herding cats!

Kautz et al. also look at knowledge management, specifically knowledge
creation, in a small Danish software house [34]. They look in particular at the role
of IT systems in knowledge management and discuss varlous tasks as knowledge
processes, especially quality assurance for the software. They conclude that the IT
systems played "an important, yet subordinate role". Openness, trust and mutual
respect were vital in enabling learning to take place.

www.manaraa.com

16 Edwards

Doctoral theses (which have an inevitable three- or four-year time lag) are also
beginning to appear in the area of knowledge management in software
engineering, for example those of Birk [8], Dings0)'l' [16] and van Aalst [57].
Some ofDings0)'l"s work may also be found in Chap. 3 ofthis book [17].

1.4.1 Knowledge Management by Another Name?

As well as the research outlined above, there is also much work that is relevant to
knowledge management in software engineering that does not actually call itself
knowledge management, either by choice (especially in the case of some of the
conferences referred to earlier), or because the term was not current when the
article was written. There are three strands of relevant work, one being that on
professional expertise in software engineering, a second on leaming and
experience in software engineering, and the third on the use of knowledge-based
systems in software engineering.

1.4.1.1 Professional Expertise in Software Engineering

We have already drawn on this literature in our earlier discussions, including [22].
The work in this strand stresses that knowledge is socially constructed. Although
there must be limits to the extent to which this affects, say, a work-around for a
bug in a COBOL compiler, the organizational dimension of software engineering
knowledge management is clearly dependent on this. Scarbrough [51] explains
this position weil.

Williams and Procter discuss IT expertise in a bank, using an extended case
study [60]. They use a typology developed by Winstanley [61] to identify four
different situations for the software engineer, according to the power that their
expertise possesses in internal (within their own organization) and externallabor
markets. This is shown in Table 1.2.

Table 1.2. Winstanley's typology [61]

Positive worker power in
extemallabor market

Negative worker power in
extemallabor market

Undeveloped intemal
labor market

A. Independent mobile
professional

C. Insecure contract
worker

Developed intemallabor
market

B. Company professional

D. Dependent worker

Expertise in this context appears to mean the same as what we have termed
knowledge. The external labor market has a strong component of technical
knowledge. The internal labor market has a strong element of organizational
knowledge. Williams and Procter identified three teams of software engineers
(including all roles from programmers up to management) within the bank who
fell into three different categories in the typology. The first team was very

www.manaraa.com

Managing Software Engineers and Their Knowledge 17

technically oriented, and their knowledge related mainly to programming
languages and technology. They thus fell into category A, independent mobile
professionals. A second team, although possessing strong programming
knowledge, relied even more on its internal reputation---earned by knowledge of
the bank's systems. They come into category B, company professionals. The third
team had a much broader range of knowledge, but not the same in-depth
knowledge of any area as the other two. They came under category D, dependent
workers.

Newell et al. [42] continue to draw on this school ofwork, although nowadays
with an explicit knowledge management label. They remark that IT experts are
increasingly subject to market pressures, because of developments such as the rise
in outsourcing and the use of consultants, and that this tends to dilute the role of
the profession in regulating abstract knowledge. In the Williams and
Procter/Winstanley terms, software engineers are being pushed from category A to
category C, and from category B to category D. This substantially increases the
knowledge management problems for user organizations, who are becoming more
and more dependent on their "providers" for software knowledge. It will also have
adverse effects on the attitude of the software engineers towards sharing their
knowledge, especially for those in category C.

Where the outsourcing or consultancy is provided from another country, the
problems will be still more acute. Davenport and Prusak [15] explain the need for
face-to-face meetings to facilitate knowledge sharing. Edwards and Kidd [20]
describe some ofthe additional problems of cross-border knowledge management.

1.4.1.2 Leaming and Experience in Software Engineering

A central element ofthis strand is the "experience factory" work referred to earlier
[5]. More recent papers drawing on the earlier work [52, 29] describe
DaimlerChrysler's implementation of an Experience Center in software
engineering. These ideas have now spread widely; for an Austra1ian example see
[37], and also [11, 14]. The thrust ofthis work involves robust processes with a
strong emphasis on managing the people as weIl as the software systems. There
are strong connections between this strand of work and the extensive literature on
learning organizations, much ofwhich was inspired by the work ofSenge [54].

1.4.1.3 Knowledge-Based Systems in Software Engineering and More
Generally

This strand of work also has a long history, although just as most knowledge
management research about software engineering firms is not specifically related
to software engineering, so most knowledge-based systems in software
engineering firms are not specifically related to software engineering either. One
of the themes that carries over into knowledge management work has been that of

www.manaraa.com

18 Edwards

understanding the nature of what software engineers do. See, for example, all
eight ofthe articles in Part I ofthe collection edited by Partridge [43].

The more important lessons from past research or applications in this strand are
often not the knowledge-based systems that were created (or even in some cases
that failed to be created), but the processes of knowledge elicitation and
representation that the developers, experts and users went through. For example,
the issues of work in teams and the balance between general and specific
knowledge were central to the work of Barrett and Edwards [4] on a system for
database design and maintenance. No fewer than eight layers of expertise, from
the most general to the most specific, were identified. Different experts proposed
different solutions to a problem, and some means of "adjudicating" between them
was necessary. A "knowledge czar" approach-nominating someone as the senior
expert-was chosen.

A great deal of knowledge-based systems work in software engineering has
been carried out at the Fraunhofer Institute for Experimental Software Engineering
(lESE). Examples ofthis can be found in [10] and in some ofthe papers in [2],
and Chap. 11 ofthis book gives the current position [3].

More generally in the knowledge-based systems field, one of the most widely
used methods for building knowledge-based systems, CommonKADS, an
extension of the earlier KADS [53, 58], is based on a philosophy of knowledge
modeling. CommonKADs incorporates no fewer than six types of model:
organizational, task, agent, expertise, communication, and design. There are
librarles of common problem-solving methods and extensive ontologies.
Knowledge modeling surely is one approach to knowledge management, but the
knowledge management literature makes virtually no reference to KADS or
CommonKADS at alt.

1.5 Potential for Knowledge Management

Let us now attempt gradua1ly to bring these diverse themes together. Picking up
the earlier theme from Kautz et al. [34], there have been many studies over the
years of the psychologica1 profiles and personality traits of computer programmers
and software engineers. A relatively recent example by Wynekoop and Walz [62]
is interesting in that it considers programmers, systems analysts and project
managers separately. Many previous studies have either considered only one of
these groups, or have combined all ofthem together. Wynekoop and Walz found
that the three groups differed both from each other, and from the general
population:

Tbe picture that emerges is that IS personnel are more conventional,
conscientious, diligent, dependable, organized, logical, and analytical than the
general population. However, systems analysts and managers also possess more
leadership characteristics, and are more ambitious hardworking and creative with
more self-confidence and a stronger self-image. Programmers, on the other hand,
are more inflexible and predictable and less social than the general population.

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 19

Assuming that we ean equate "IS personnei" , as identified by Wynekoop and
Walz, with software engineers, a further important point is that their results
eonfirmed earlier findings that software engineers are innovative and ereative
[55]. Thus both innovative/ereative and analytieallteehnieal dimensions of
knowledge are present in software engineering, and both may benefit from being
managed.

In order to proeeed further, we present in Fig. 1.2 a model that we have used
before [18]. This model takes an organizational viewpoint regarding what happens
to a partieular element of knowledge. First, knoeledge is ereatedlaequired; then it
goes through a eyele of retain, use and refme/update (any of these aetivities may
be temporary, or indeed missing entirely). It mayaIso be shared with/transferred
to those outside the eirele of people who originally ereated/aequired it, in parallel
with this retain - use - re fine eyele.

Fig. 1.2. A view ofthe knowledge management process

These five knowledge aetivities need to be eonsidered in relation to the list of
software engineering aetivities Seet. 1.2.3. In principle, there needs to be a process
to earry out eaeh of the knowledge aetivities effeetively for eaeh of the software
engineering aetivities. In general, there ean be no mIes as to which is more
important or easiest to do. Knowledge management must be situated in an
organizational eontext; these priorities must be determined for any given software
engineering unit at any given time.

Types of Solution: An investigation into the approaehes that managers believe
should be used in knowledge management [21] identified that, broadly speaking,

www.manaraa.com

20 Edwards

there are three types of "solution" that can be applied in knowledge management.
These are technological, people and process solutions. Although this research
looked at knowledge management in general, we believe that the categories apply
to knowledge management in software engineering.

Technological solutions are concemed with installing new technology or
making better use of existing technology. Specific technologies in the study
included data mining, databases or intranet access. Activities included
standardization of hardware or software, eliminating duplicate systems or data,
and in one case trying to discourage the use of privately owned personal
organizers and laptops, which were seen as a barrler to sharing information and
knowledge.

People solutions are concemed with staff retention and motivation, training,
debrieflng and networking. One organization identified the need to rely less on
''training through osmosis". Significantly for software engineering, another
thought the processes should involve removing their previous "culture of
confidentiality" .

Process solutions are concemed partly with paper-based specifications and
process instructions but also with the mix between formal and informal methods
of sharing knowledge. The emphasis is on ''working smarter". In the study
mentioned above, these solutions tended to be favored by the smaller
organizations--the ones in which, at least in principle, everyone knew who
everyone else was.

1.6 Overall Knowledge Management Strategy

The last element in our framework is that, broadly speaking, there are two overall
strategies in knowledge management: codification and personalization, as pointed
out by Hansen et al. [25]. These may be applied either separately or, more
profitably, in a complementary fashion. Within the overall strategy, any or all of
the three types of solution mentioned in the previous section may be deployed.
Certain combinations tend to occur naturally. Codification strategies tend to be
associated with technological solutions such as intranets and knowledge
repositories. Personalization strategies more often favor people-based solutions
such as communities ofpractice (CoPs) and storytelling. A more complementarist
approach may favor process-based solutions, especially those that integrate top
down and bottom-up knowledge management concerns; see Edwards and Kidd
[19] for further discussion ofthe latter. We now look at the possibilities for each
ofthese three strategies in software engineering knowledge management.

1.6.1 Codification Strategies

Some software engineers might be more sympathetic to a codification strategy.
The work of Wynekoop and Walz [62] suggests that this ought to be especially

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 21

true of programmers. Codification strategies seem appropriate when the "right
answer" from one context is easily transferable to another. Thus sharing
knowledge about programming issues should be suited to this strategy. There has
indeed been a considerable amount of work on tools to support programming and
design work (two of the most technical activities from Table 1.1). These include
so-called Computer Aided System Engineering (CASE) tools and designer
workbenches. These are most useful for retain, share and use activities in
knowledge management; they provide little support for refining knowledge and
none for creating knowledge.

Problem tracking and resolution, and method documentation, identified earlier
as categories of knowledge management activity, also seem to be targets for
codification strategies. There is, however, a snag here: Much of this work has
concentrated on retaining and sharing knowledge within a single project. As was
argued by Schoenherr [13], effective sharing of analysis and design knowledge
between applications is a major potential benefit.

The more concrete products ofthe knowledge-based systems work on software
engineering mentioned earlier also correspond to a codification approach to
knowledge management.

1.6.2 Personalization Strategies

Having identified codification strategies as best suited to the more technical
activities within software engineering, personalization strategies by implication
are more suited to the managerial and/or organizational activities. Personalization
strategies can be very effective for creating and refining knowledge, and also
effective for sharing and retaining it. They provide less direct help in using it.

Human resource issues in software engineering are clearly candidates for a
personalization strategy for knowledge management. Most of the discussion by
Hellstrom et al. [27] concerns successful personalization strategies. The
professional expertise and learning and experience strands of research into
software engineering also ally themselves naturally with this viewpoint. We would
argue that the managerial activities (Le. those relating directly to the people
involved with the project) are those where a personalization strategy is likely to be
most successful, along with higher-Ievel technical activities such as those in
analysis and implementation where Creating and Refming knowledge is crucial,
Le. existing solutions aren't good enough.

1.6.3 Complementary Strategies

Our view is that, while codification and personalization both have their place, a
complementary strategy is the most effective. This must involve process-based
solutions, often to link technological- and people-based ones. How, for example,
does an organization ensure that knowledge created in a community of practice is
then successfully retained? What elements can be stored in some kind of

www.manaraa.com

22 Edwards

repository, and what cannot? Post mortems, as advocated by Birk, Dings0)'r and
Stälhane [9], are useful under all types of strategy. In a personalization strategy, a
post mortem aids both individual and group understanding, while in a codification
strategy, it assists in determining what documents, databases and so on are worth
keeping.

The paper by Kautz et al. [34] is a good example of a complementary strategy
towards knowledge management using IT for codification where it is appropriate,
but also employing a range of other approaches. The knowledge-based systems
work where the emphasis was on elicitation of the knowledge rather than building
a system also fits weIl into this category.

1.6.4 The Importance of Cultoral Issues

Although we come to this heading last, research suggests that in many ways
culture generally is the most important aspect ofknowledge management [50, 42].
Software engineering should be no exception, because most ofthe emphasis in the
process improvement and experience approaches is on understanding and
controlling the process and the product. This must be a shared rather than an
individual understanding, or else there is no guarantee that the process will be
.repeatable. Individuals may excel in creating or using knowledge (to use the
Fig. 1.2 terminology), but successful knowledge management in software
engineering means an emphasis on retaining and sharing knowledge, whether the
overall strategy is codification, personalization, or both. This can only be achieved
with an appropriately supportive knowledge-sharing culture [56, 32]. Such a
culture may not come naturally to all software engineers or their departments,
given the findings of Wynekoop and Walz [62] that programmers are less social
than average, and the rewarding of individual heroics found by Perlow [46].

Crucially, such a culture needs to be generated both from the top down, from
management expectations and leadership, and from the bottom up, from the
community ofsoftware engineers within the organization [19].

A final cultural issue is that knowledge management in software engineering
may not involve just the software engineers. The culture of the users may be
important too. Al-Karaghouli et al. [1] discuss a system to help what they term the
system developers and their customers to understand and communicate with each
other. However, such a technological solution will be of little help unless the
customers also trust the developers, whether they are external consultants, or in
house colleagues.

1.7 Conclusion and Summary

The way in which software engineering is organized has changed substantially
over the past 35 years, but many of the knowledge management issues have not.
Software engineers face issues connected with technical, managerial and

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 23

organizational activities. The balance between these activities depends both on the
particular individual's job, and the context they are working in at any given time.
Among the principal challenges to be faced are:

• Software engineering is knowledge work. Effective knowledge management is
therefore vital in improving the professionalism of a software engineering
department or unit. Analysis and design knowledge particularly needs to be
shared between projects.

• The fact that projects are rarely cancelled except at the end of the feasibility
study makes retaining knowledge about how to make this stop/go decision
crucial.

• The division between development and maintenance can easily become a split
with dire consequences if knowledge management is not performed weH,
especially sharing knowledge between individuals and teams.

• Rapid turnover of staff makes it important to retain continuity of knowledge.
However, the high workloads that are in part a consequence of this high
turnover mean a lack oftime for knowledge sharing and for reflective activities
such as knowledge refinement.

• Software engineering knowledge contains an unusually complex combination
of different layers of expertise, from the very general to the very specific. This
is especially problematic when using knowledge.

• The culture of the department or unit, and indeed the organization it is part of,
must encourage a bottom up "buy in" to knowledge management activities that
matches the knowledge management strategies employed from the top down.

Despite the many problems, effective knowledge management in software
engineering is possible. There are technological, people and process-based
solutions, and the best approach is surely a combination of all three within an
overall knowledge management strategy that includes both personalization and
codification elements. At least any obstacles facing software engineers are not
related to technical issues of computer support for knowledge management, since
using computer-based tools poses few such problems for software engineers. The
most important aspect overall, however, is to develop a culture that encourages
both knowledge sharing and reflection.

Referenees

1. AI-Karaghouli W., Fitzgerald G., Alshawi S. (2002) Knowledge requirements systems:
an approach to improving and understanding requirements. In: Coakes E., Willis D.
Clarke S. (Eds.), Knowledge management in the sociotechnical world: the graffiti
continues, Springer, Berlin Heidelberg New York, pp. 170-184

2. Althoff K.-D., Feldmann R., Müller W. (Eds.) (2001) Advances in learning software
organizations. Springer, Berlin Heidelberg New York

3. Althoff K.-D., Pfahl D. (2003) Integrating experience-based knowledge management
with sustained competence development. In: Aurum A., Jeffery R., Wohlin C.,

www.manaraa.com

24 Edwards

Handzic, M. (Eds), Managing software engineering knowledge, Springer, Berlin
Heidelberg New York

4. Barrett A.R., Edwards J.S. (1995) Knowledge elicitation and knowledge representation
in a large domain with multiple experts. Expert systems with applications, 8: 169-176

5. Basili V.R., Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sloan management review, 37: 55-64

6. Basili V.R., Caldiera G., McGarry F., Pajerski R., Page G., Waligora S. (1992) The
software engineering laboratory: An operational software experience factory. In:
Proceedings ofthe 14th international conference on software engineering, Melbourne,
Australia, pp. 370-381

7. Baxter L.F. (2000) Bugged: The software development process. In: Prichard C., Hull
R., Chumer M., Willmott H. (Eds.), Managing knowledge: critical investigations of
work and learning, Macmillan, Basingstoke, pp. 37-48

8. Birk A. (2000) A knowledge management infrastructure for systematic improvement
in software engineering. Dr. Ing Thesis, University ofKaiserslautern, Germany

9. Birk A., Dingseyr T., StAlhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19: 43-45

10. Bomarius F., Althoff K.-D., Müller W. (1998) Knowledge management for learning
software organizations. Software process: improvement and practice, John Wiley and
Sons, West Sussex, UK, pp. 89-93

11. Brössler P. (1999) Knowledge management at a software house: An experience report.
In: Learning software organizations: methodology and applications. In: Ruhe G.
Bomarius F. (Eds.) Lecture Notes in Computer Science, Springer Berlin, Heidelberg
New York, 1756: 163-170

12. Bryant A. (2000) It's engineering Jim; but not as we know it: software engineering,
solution to the software crisis or part of the problem? In: Proceedings of 22nd
international conference on software engineering Limerick, Ireland, pp. 78-87

13. Carter B. (2000) The expert's opinion: knowledge management. Journal of database
management, 11: 42-43

14. Chatters B. (1999) Implementing an experience factory: maintenance and evolution of
the software and systems development process. In: Proceedings of the IEEE
International conference on software maintenance, Oxford, UK, pp. 146-151

15. Davenport T.H., Prusak L. (1998) Working knowledge: how organizations manage
what they know. Harvard business school press, Boston, USA

16. Dingseyr T. (2002) Knowledge managemt:!lt in medium-sized software consulting
companies. PhD Thesis, Norwegian University ofScience and Technology, Norway

17. Dingseyr T., Conradi R. (2003) Usage ofintranet tools for knowledge management in
medium-sized software consulting companies. In: Aurum A., Jeffery R., Wohlin C.
Handzic M. (Eds.), Managing software engineering knowledge, Springer, Berlin
Heidelberg, New York

18. Edwards J.S. (2000) Artificial intelligence and knowledge management: How much
difference can it really make? In: Proceedings of KMAC2000, (Eds), Edwards J.S.,
Kidd J.B. (Eds.) Operational research society, Aston university, Birmingham, UK, pp.
136-147

19. Edwards J. S., Kidd J.B. (2001) Knowledge management when ''the times they are a
changing" . In: Proceedings of 2nd European conference on knowledge management,
Bled, Slovenia, 171-183

www.manaraa.com

1 Managing Software Engineers and Their Knowledge 25

20. Edwards J.S., Kidd J.B. (2003) Knowledge management sans frontieres. Journal ofthe
operational research society, 54: 130-139

21. Edwards J.S., Shaw D., Collier P.M. (2002) Group perceptions of knowledge
management. In: Proceedings of 3rd European conference on knowledge management,
Dublin, Ireland pp. 209-222

22. Friedman A.L., Cornford D.S. (1989) Computer systems development, history,
organization and implementation. John Wiley and Sons, Chichester, UK

23. Glass R.L. (1996) The relationship between theory and practice in software
engineering. Communications ofthe ACM, 39: 11-13

24 .. Glass R.L. (1999) The realities of software technology payoffs. Communications of
the ACM, 42: 74-79

25. Hansen M.T., Nohria N., Tierney T. (1999) What's your strategy for managing
knowledge? Harvard business review, 77: 106-116.

26. Harry M.J.S. (2001) Business information: A systems approach. Financial times,
Prentice Hall, Harlow

27. Hellstrom T., Malmquist U., Mikaelsson J. (2001) Decentralizing knowledge:
managing knowledge work in a software engineering firm. Journal ofhigh technology
management research, 12: 25-38

28. Hohmann L. (1997) Journey of the software professional: a sociology of software
development. Prentice Hall, New Jersey

29. Houdek F., Schneider K., Wieser E. (1998) Establishing experience factories at
Daimler-Benz: an experience report. In: Proceedings of the 20th international
conference on software engineering, Kyoto, Japan, pp. 443-447

30. Hoyle D. (2001) ISO 9000 quality systems handbook. Butterworth-Heinemann,
London UK

31. http://www.sqi.gu.edu.auJSPICE/ The software process improvement and capability
dEtermination Website, (accessed November 6, 2002)

32. Huber G.P. (2000) Transferring sticky knowledge: Suggested solutions and needed
studies. In: Proceedings of knowledge management beyond the hype: looking towards
the new millennium, Edwards, J.S., Kidd, J.B. (Eds.), Operational research society,
Birmingham, pp. 12-22

33. Humphrey W.S. (1989) Managing the software process. Addison-Wesley, Reading,
MA,USA

34. Kautz K., Thaysen K., Vende10 M.T. (2002) Knowledge creation and IT systems in a
small software firm. OR Insight, 15: 11-17

35. Kelley R. (1990) The gold collar worker: harnessing the brainpower of the new
workforce. Addison-Wesley, Reading, MA

36. Kidder T.L. (1981) The soul ofa new machine. Avon, New York
37. Koennecker A., Jeffery R., Low G. (2000) Implementing an experience factory based

on existing organizational knowledge. In: Proceedings of the Australian software
engineering conference, Canberra Australia, pp. 53-62

38. Lindvall M., Rus I. (2003) Knowledge management in software engineering. In:
Aurum A., Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering
knowledge, Springer, Berlin Heidelberg New York

39. Moody F. (1990) I sing the body electric: a year with Microsoft on the multimedia
frontier. Viking, New Y ork

www.manaraa.com

26 Edwards

40. Mouritsen J., Larsen H.T., Bukh P.N., Johansen M.R. (2001) Reading an intellectual
capital statement: describing and prescribing knowledge management strategies.
Journal ofintellectual capital, 2: 359-383

41. Naur P., RandeIl B. (Eds.) (1969) Software engineering: report on a conference
sponsored by the NATO science committee, Garmisch, Germany

42. Newell S., Robertson M., Scarbrough H., Swan J. (2002) Managing knowledge work.
Palgrave, Basingstoke

43. Partridge D. (Ed.) (1991) Artificial intelligence and software engineering. Ablex,
Norwood, NJ, USA

44. Paulk M.C., Curtis B., Chrissis M.B., Weber C.V. (1993) Capability maturity model,
Version 1.1. IEEE Software, 10: 18-27

45. Paulk M.C., Weber, C.V., Curtis B. (1995) The capability maturity model: guidelines
for improving the software process. Addison-Wesley, Reading, MA

46. Perlow L.A. (1999) The time famine: Toward a sociology of work time.
Administrative science quarterly, 44: 57-81

47. RandeIl B. (1996) The 1968/69 NATO software engineering reports. Presented at
Dagstuhl-Seminar 9635: "History of software engineering", Schloss Dagstuhl,
Germany, 26-30 August, 1996

48. Rosenberg L.H. (2003) Lessons leamed in software quality assurance. In: Aurum A.,
Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge,
Springer, Berlin Heidelberg New York

49. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

50. Scarbrough H. (1996a) The management of expertise. Macmillan Business,
Basingstoke

51. Scarbrough H. (1996b) Strategie IT in financial services: the social construction of
strategie knowledge. In: Searbrough H. (Ed.), The management of expertise
Macmillan, Basingstoke, pp. 150-173

52. Schneider K., von Hunnius J.-P., Basili V.R. (2002) Experience in implementing a
leaming software organization. IEEE Software, 19: 46-49

53. Schreiber A.T., Wielinga BJ., Akkermans J.M., van de Velde W., de Hoog R. (1994)
CommonKADS: a comprehensive methodology for KBS development. IEEE Expert,
9: 28-37

54. Senge P.M. (1990) The fifth discipline, the art and praetice of the leaming
organization. Doubleday, New York

55. Sitton S., Chmelir G. (1984) The intuitive computer programmer. Datamation, 30:
137-140

56. Snowden D. (2000) Cynefin, a sense of time and place: an ecological approach to
sense making and leaming in formal and informal communities. In: Proceedings of
KMAC2000, Edwards J.S., Kidd J.B. (Eds.), Operational research society,
Birmingham, UK, pp. I-ll

57. van Aalst J.-W. (2001) Knowledge management in courseware development. PhD
Thesis, Delft University ofTechnology, DeUt, The Netherl~ds

58. van Heijst G., Schreiber A.T., Weilinga BJ. (1997) Using explicit ontologies in KBS
development. Internationaljoumal ofhuman-computer studies, 46: 183-292

59. Weaver P.L. (1993) Praetical SSADM 4. Pitman, London

www.manaraa.com

I Managing Software Engineers and Their Knowledge 27

60. Williams R., Procter, R. (1998) Trading places: a case study of the formation and
deployment of computing expertise. In: Williams R., Faulkner W., Fleck, J. (Eds.),
Exploring expertise: issues and perspectives, Macmillan, Basingstoke, pp. 197-222

61. Winstanley D. (1986) Recruitment strategies as a means of managerial control of
technical labor. In: Proceedings of labor process conference, Aston University,
Birmingham, UK

62. Wynekoop J.L., Walz D.B. (1998) Revisiting the perennial question: are IS people
different? Database for advances in information systems, 29: 62-72

63. Zachary G.P. (1994) Showstopper! the breakneck race to create Windows NT and the
next generation at Microsoft. Free Press, New York

Author Biography

John S. Edwards is Professor of Operational Research and Systems at Aston
Business School, Birmingham, UK. His principal research interests are in
knowledge management and decision support, especially methods and processes
for system development. He has published more than 60 research papers on these
topics, and two books, Building Knowledge-Based Systems and Decision Making
with Computers. Current work inc1udes the transferability of best practices in
knowledge management, linking knowledge-based systems with simulation models
to improve organizationalleaming, and an investigation of knowledge management
in organizations using group facilitation techniques. He is also editor of the
journal Knowledge Management Research and Practice.

www.manaraa.com

2 An Investigation into Software Development Process
Knowledge

June M Verner and William M Evanco

Abstract: Knowledge management elevates individual knowledge to the
organizational level by capturing and sharing infonnation and turning it into
organizational knowledge. In order to provide a better understanding of the most
serious software project risks and the interrelations among risks, we collected
software project data from developers. This data includes information about senior
management, customers and users, requirements, estimation and scheduling, the
project manager, the software development process, and development personnel.
In order to elevate our data to organizational knowledge we conducted a variety of
studies on this data and found that the most critical success factor was good
requirements. Other critical success factors were either influenced by the
requirements, or themselves influenced the development of the requirements.

Keywords: Software project success, Critical success factors, Software
development, Developer perspective

2.1 Introduction

Developing software systems is an expensive, often difficult process with high
failure rates. While one recent study found that 20% of software projects failed,
and 46% experienced cost and schedule overruns or significantly reduced
functionality [41], another study suggested that failure rates for software
development projects are as high as 85% [31]. Software development projects are
plagued with too many problems, such as poor project management, cost and
schedule overruns, poor software quality, and under-motivated developers [5, 9,
65]. Development failures lead to a lack of credibility and to communication
problems among software developers, senior management, customers, and users,
which in turn makes software development an even more difficult task [23, 24].

Despite extensive research into and many guidelines for successful software
development, systems still fail [7, 42, 46, 51]. The majority of organizations have
software development practices that keep them at levelIon the Software
Engineering Institute's capability maturity model (CMM) scale [32]. Few project
post mortems are conducted [65], little understanding is gained from the results of
previous projects within the organization, and past mistakes continue in new
projects. Too frequently, key development practices are ignored and early warning
signs that lead to project failure are not understood. Of course, it is hard to capture
lessons learned and there are few incentives to use prior knowledge, especially
when the project manager is under pressure [57].

www.manaraa.com

30 Verner and Evanco

Much of the literature regarding project failure is from the customer/user
perspective [22, 33, 72]. But it is just as important to recognize the effect that
project failure has on development staft: Troubled projects cause developers to
suff er long hours of unpaid overtime, loss of motivation, and burnout, leading to
excessive staff turnover and its associated costs. Developers have acquired
valuable individual experience from each project with which they have been
involved. Organizations and individuals could gain much insight if they could
share such knowledge [59].

From the discussion above, it is clear that the ability of the project manager to
understand the consequences of actions taken during the development process and
the effect that various decisions have on the development outcome are critical to
project success. Identifying project success and failure factors and their
consequences as early as possible may provide valuable clues that help the project
manager to improve the software development process.

A quantitative approach to software development is in alignment with the 1998
NSF Software Research Program for the 21st Century Workshop fmdings [3, 6,
45]. The participants at this workshop suggested that future research activities
should "develop the empirical science underlying software as rapidly as possible"
and to "analyze how some organizations have learned to buHd no-surprise systems
in stable environments. By extracting principles from these analyses, empirical
research can help enlarge the no-surprise envelope." Our research fits into this
quantitative approach providing a better understanding of the most serious project
risks, the interrelations among risk factors, and their impacts on project failure
probabilities.

Factors affecting software project success and failure can be classified as risks,
critical success factors, and mitigants. Risks involve events in the development
environment or situations in the external environment that threaten project
success. Knowledge management can be viewed as a risk prevention and
rnitigation strategy because it addresses risks that are too often ignored [59].
Critical success factors are the handful of factors that the development team must
ensure are present; in their absence, faHure of the project is highly probable!.
Mitigants are actions or activities in which the development team can engage once
a risk appears to be likely.

2.2 Software Development Process Research

Risks, critical success factors, and rnitigants are related to project success and
faHure in a very complex fashion. It is the long-range goal of our research to use
knowledge management to shed light on these complex interrelationships and to
provide a tool that project managers can use to better manage their development
projects. Knowledge management elevates individual knowledge to the

! This is a probabilistic definition of critical success factors rather than the deterministic
definition often used.

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 31

organizational level by capturing and sharing this information and turning it into
knowledge that the organization can access [59]. The development of automated
tools could provide the project manager with more objective criteria for the
prediction of project outcomes and an early warning of potential problems. Our
thesis is that there will be fewer software development failures if project managers
improve their understanding of the project success determinants at a conceptual
level. An automated project management tool could help project managers and
software development teams evaluate the likelihood of a successful project
outcome and better understand the risks associated with a project. They would be
able to perform "what if' analyses that would enable them to determine areas in
which the concentration of scarce resources will ensure the best project outcomes.

Our research approach is unique in its focus on software practitioners and their
perspectives. From industry interviews, we know that the software practitioner
perspective is extremely valuable to the discipline of software engineering in
general, and to the management ofthe software development process in particular.
Support for this approach is provided by a number of process quality improvement
models (e.g., CMM, ISO 9000 and Software Process Improvement and Capability
dEtermination (SPICE» which are based on the widely held beliefthat improving
the software development process improves the quality of the software product
[50,66].

We are engaged in aseries of research projects and are in the process of
developing comprehensive statistical models that relate software development
risks, critical success factors, and mitigants to help project managers predict
software project success or failure. The data used to calibrate our models come
from extensive case studies of real life projects, interviews with software
practitioners, and survey questionnaires. Methodologies based on multiple and
logistic regression, principal component analysis, and Bayesian belief networks
serve as a basis for the development of the predictive models.

Our research agenda fits with that suggested by Fenton and Neil [21]. They
noted that the future for software metrics lies in using relatively simple existing
metrics to build management decision-support tools that combine different aspects
of software development and testing. This will enable managers to make many
kinds of predictions, assessments, and trade-offs during the software life-cycle.
They note that we need to handle the key factors largely missing from the usual
metrics approaches, namely: causality, uncertainty, and combining different
(sometimes subjective) evidence. Thus, they suggest that the way forward for
software metrics research lies in causal modeling, empirical software engineering,
and multi criteria decision aids. The causal model teils the story that is missing
from the naive approach. It can be used to help make intelligent decisions for risk
reduction and to identify factors that can be controlled or influenced.

The rest of our discussion is organized as folIows. We review the background
to our work and other related research; this is followed by a seetion that reviews
the general background to our work and other related research. Sect. 2.4 discusses
our research approach. We then provide an outline ofresearch completed to date
and the results obtained from this research. Finally, we conclude with a discussion
of our findings thus far and future research.

www.manaraa.com

32 Vemer and Evanco

2.3 Background and Related Research

In Sect. 2.3.1, we review and discuss research related to the definition of software
project success. In Sect. 2.3.2, we discuss the factors influencing project success
and faHure.

2.3.1 Project Success

Many studies have shown that project success or failure is a question of
perception, and that the criteria may vary from project to project [34, 35, 48, 68,
69]. Glass [26] noted a profound difference of opinion between managers and
team members concerning software project success, and our recent research agrees
with his views [54]. In Linberg's [41] study of several projects, the criteria for
success that had strong agreement among all the involved parties were "meets user
requirements, achieves purpose, meets time scale, meets budget, happy users, and
meets quality". Other researchers cite successful software development projects as
having met agreed upon business objectives and being completed on time and
within budget [2, 36, 41, 49, 61, 70, 71]. Still other definitions ofsuccess inc1ude
the degree to which the project achieved its goals; reliability, maintainability and
meeting of user requirements; user satisfaction; effective project teamwork;
professional satisfaction on the part ofthe project manager [28, 52]; and the extent
to which the software is actually used [14, 25]. Another important consideration
for management is that a successful project does not result in cancellation [38, 39].

2.3.2 Factors Affecting Project Success or Failure

Factors leading to project faHure are summarized below [41, 52]:

• Estimation and scheduling failures: Resource failures leading to conflicts of
people and time, and schedule pressure

• Requirements failures: Poor specification of requirements, poor scope
definitions, and goal faHures caused by inadequate statement of project goals
by management

• Communication failures: User contact faHures inc1uding the inability to
communicate with the customer/user, organizational faHures caused by poor
organizational structure, lack of leadership, lack of top-level management
support, or excessive span of control, people management failures involving a
lack of effort, stifled creativity, and personality c1ashes

• Process failures: Technology faHures inc1uding faHure to meet specifications,
technique faHures caused by the failure to use effective software development
approaches and poor business processes, methodology failures with a failure to
perform necessary activities; planning and control failures characterized by
vague assignments and use of inadequate project management and tracking

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 33

tools; and size failures with projects that are too large for the performing
organization

Although there is a significant amount of risk management literature [8, 10, 11,
30], this review is necessarily briefbecause of space limitations. Many researchers
have investigated the components of software risk; for example, Boehm [8]
suggested ten risk categories while Ropponen and Lyytinen [58] identified six
categories of risk.

Based on an extensive review of the risk literature, we identified seven
categories of software project risk: (1) senior management, (2) customers and
users, (3) requirements, (4) estimation and scheduling, (5) the project manager, (6)
software development process, and (7) development personnel [65,63,54,55]. In
the following paragraphs, we further discuss the seven major risk categories.

Senior management/sponsor: lnadequate management' practices have far-reaching
implications for project success [1]. A serious project risk is lack of sponsor
support [50]. Inadequate senior management and sponsor support can lead to a
lack of commitment on the part of customer/users and their availability. Serious
consequences may also result from interference by senior management that leaves
a project manager without the authority to properly manage the project. Arbitrarily
changing the project manager during the project may also have serious project
consequences.

Customerlusers: Lack of end-user involvement in any of the phases of the
development life cycle will also have a negative impact on project success [1, 44].
While customer/user problems are one of the major contributors to failed projects
[65], realistic customer expectations can reduce conflict which in turn, supports
the perception of project success from both the developer and managerial
standpoint [42].

Requirements: Understanding requirements is an essential critical success factor in
the development of a system; a poor understanding of both the problem and its
scope leads to poorly defined requirements and serious project risk [60]. Ifthere is
no clear agreement on the part of customers and users regarding the project's
requirements, unrealistic expectations regarding software projects often surface
[51]. Requirements continue to be a huge problem for IT development, and poor
requirements are involved in most project failures [4, 26, 60]. Requirements
gathering early in the development process using well-defined methodologies that
result in well-documented requirements understood by all stakeholders reduces
project risk [12]. In addition, well-defined procedures for changes to those
requirements increase the probability of project success.

Effort estimation and scheduling: Much has been written about the detrimental
effects of underestimated schedules on the development process and the resulting
shortchanging of development activities [8, 50, 51]. A poor estimate of effort and
schedule is often found to be a major contributor to software project failure [7].

2 When we refer to management, we are referring to corporate management. Where
appropriate, we will explicitly refer to a project manager.

www.manaraa.com

34 Vemer and Evanco

Brooks [9] stated that more projects have gone awry for lack of calendar time than
from allother causes combined. Since the late 1970s there has been on-going
research into effort and schedule estimation. DeMarco [17] suggested that "the
software cost estimation problem is solved" and ''though software managers know
what to do, they just don't do it." More recent research by Vemer and Evanco [63]
also shows that although many cost estimation models are available, they are not
in general use. Poor requirements gathering can result in poor effort estimation,
hence poor resource estimation, stressed developers, and shortchanged project
activities; testing activities are usually the main casualty. Unfortunately, senior
management does not always permit projeet managers to be involved in project
estimates [63]. Perhaps if project managers were better educated in estimation
techniques and methodologies, they might improve their effort and schedule
estimation credibility and thus be permitted to have more involvement.

Project management: A project without a project manager, or one who does not
have the appropriate background and experience, is at serious risk [65].
Inadequate projeet management practices also have far-reaching implications for
software projeet success [1]. Many key project risks are associated with the
management process itself, and much of good management practice is the control
of pervasive and fundamental process risks [67]. Good managers do not merely
accept, or worse, ignore risky aspects of the development projeet. However,
during project execution many projeet managers become so busy and subject to
mounting resource and time pressures that they neglect risk control procedures
[56].

Effeetive project management is focused on people, problems, and process [19,
51]. Though most managers admit that they face more people-related problems
than those of a technical nature, managers seldom manage that way [18] as they
are generally not schooled in managing the sociological aspects of software
development [16].

Developers: The impact of developers on the software development process is
critical both in terms of what they do and with whom they interaet. Lack of projeet
control that results in developers working long hours without adequate rewards,
and the associated negative effects on their personal lives, are serious risks to the
success of a project [15]. Most productivity studies have found that motivation is a
stronger influence on productivity than any other contributing factor [7, 42].
Properly motivated employees will also more readily support the achievement of
broader organizational-Ievel goals [18].

Software development process: Project risk management is just one facet of the
development process. However, the analysis, tracking, and control of risks are
weak areas of the development process [56]. Risk can be reduced through the
improvement of the development process [32]. The idea behind the CMM is to
place the process of developing software under statistical control to make it more
predictable. Inappropriate life-cycle models, poor planning, monitoring, and
control, and inadequate change-management procedures add significantly to
project risk.

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 35

2.4 Research Approach

Our research approach is divided into pilot studies and questionnaires; each of
these is described below.

2.4.1 Pilot Studies

The objective of our pilot studies was to investigate software project success,
project success risk factors, and their relationships to obtain a better understanding
of the success components. Such studies are instrumental in the preliminary
identification ofthe critical success factors associated with project success.

Structured interviews formed the basis of this part of the research. The
procedures used in Wohlin et al. [70] and Wohlin [71] to study the relationships
between project characteristics and project success using subjective evaluation
factors form the basis of some of this work. Several structured discussions with
software developers from a variety of organizations took place. Initial discussions
were with 25 software practitioners who were employed in the same organization.
These discussions covered a number of important software development topics.
Following the initial discussions, we had further discussions with another group of
21 software development personnel from a large fmancial/insurance institution.
We identified a comprehensive list of critical success factors, risks, and mitigants.
The success components identified during these discussions were later used to
develop a comprehensive project success questionnaire.

2.4.2 Questionnaires

As noted above, after our structured discussions, we developed a comprehensive
software project success questionnaire. All the respondents to our questionnaire
were software developers. The questionnaire, which dealt with completed
software projects and the factors that led to the success or otherwise of these
projects, was organized under the seven headings described in Sect. 2.3.2 above,
namely (1) senior management, (2) customers and users, (3) requirements, (4)
estimation and scheduling, (5) project manager, (6) software development process,
and (7) development personnel. In addition, we asked (I) "Did senior
management in the organization consider the project to be a success?" and (2) "00
you (the developer) consider this project was a success?" When we refer to
management's perception of success, we are actua11y describing the developer's
perception of senior management's view. Although this may appear a little
strange, at the time this work was done we did not have access to a sufficient base
of senior managers to obtain their views directly. As a result of this work, we
discovered that developers appear to have a different view of project success from
other software project stakeholders and that their perspectives on a successful
project needed to be further investigated. Each of the 21 respondents from the
large financiallinsurance institution answered two questionnaires, one that focused

www.manaraa.com

36 Vemer and Evanco

on a successful projeet and the other on an unsueeessful projeet. Data from 42
software projeets was thus gathered (data set 1). The software development
projects in data set 1 involved from 5 to 500 software practitioners.

We subsequently held diseussions with software praetitioners from a number of
U.S. (data set 2) organizations and asked them to eomplete our questionnaire.
Data Set 2 includes 78 projeets from a diverse group of practitioners. These
respondents were from different organizations, ranging from small business IT
departments to large firms that are eontractors to the US Government. The
employing organizations ranged from level 1 to level 4 on the CMM seale. A
colleague eollected data set 3, whieh eonsisted of 43 Australian projects.

We then developed a small pilot study questionnaire to investigate factors that
eontribute to practitioners' pereeptions of project success. Twenty-nine questions
relating to success were inc1uded in this questionnaire [55]. Statistical analysis
including correlation analysis and factor analysis was used to develop a suceess
definition [13, 29, 37, 40, 43]. Note that our foeus is on the developer perspective.

During our pilot diseussions, we collected over 80 pages of comments related
to the developers' definitions of project suecess and factors that lead to software
project success and failure. Though we have completed some data analysis, as
described below, further investigation ofthis data is warranted.

2.5 Results

Our results are organized as follows: definition of project suecess, issues raised
during discussions, and data analysis.

2.5.1 Definition ofProjeet Success

A notable result of our pilot study is that software developers have a different
definition of project success from that usually cited in the literature. Our results
show that the practitioner view of project sueeess consists of two parts, namely
personal factors associated with the work and customer/user factors.

1. The personal factor ineludes asense of achievement while working on a
project, a good job was done (Le., quality was delivered), the project work was
satisfying, and the projeet resulted in professional growth.

2. The customer/user factors include whether the customer/users were involved, if
they had realistic expectations, and whether the project met all of their
requirements.

We note that there is nothing in this definition that mentions budget or schedule.
Details ofthis part ofthe study can be found in [55].

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 37

2.5.2 Issues Raised During the Discussions

Discussions of software projects with the developer groups were wide ranging and
resulted in the following factors being perceived as having major impacts on
project success:

1. Little or no senior management support
2. Customer and user problems
3. Poor requirements
4. Project management problems, including inadequate management skills, the

lack ofa project manager, and midstream changes ofthe project manager
5. Estimation and scheduling problems, inc1uding short-changed testing and poor

quality products
6. The development process itself, inc1uding problems with the life-cycle model

used, and with project monitoring and control
7. Lack of a change control system

Notably, not a single respondent addressed risk assessment, or the lack of it,
when discussing failed projects. This suggests to us that, in the organizations we
studied, risk assessment is not routinely part of the development process. Other
findings from the discussions showed that management regarded staff turnover as
a major contributor to the failure of software development projects.

2.5.3 Data Analysis

We have not conducted a complete analysis of all the data. Rather we have
focused our attention thus far on management support, customers and users,
requirements, and estimation and scheduling. We now describe the investigations
we have completed to date. Some of the investigations involve a single data set,
while other investigations analyze all three data sets.

2.5.3.1 Investigations into Estimation and Seheduling

Data set 1: Chi-square analyses related estimation and scheduling responses to
success outcomes, i.e., developers' views of the success of the project and their
perceptions of management's view of the projects' success. In addition, logistic
regression was used to predict success from both developers' and management's
views. Estimation and scheduling critical success factors significantly associated
with developer's views ofsuccess were as folIows:

1. Project estimates were based on appropriate requirements information
2. The ability of the project manager and developers to have input into the

schedule
3. Goodness ofthe effort estimates

www.manaraa.com

38 Verner and Evanco

The only estimation and scheduling critical success factor that was associated
with management's view of success was that the customers/users had input into
the schedule [63].

nata sets 1 and 2: What was striking about the data was that in two thirds ofthe
projects, the project manager was not involved in the initial project estimates, and
in only half of these projects was the project manager able to negotiate schedule
changes [63].

For the combined data (120 projects), 3 additional estimation and schedule
critical success factors emerged, namely:

1. Good project estimates
2. Adequate staff
3. No late staffadditions to meet an aggressive schedule

Critical success factors perceived to be important to management's view of
success included: the project manager had input into the schedule and the quality
of the estimates.

Logistic regression was used to predict project success for the first 42 projects
(i.e., data set 1, all respondents from the same organization), and these results
were compared with the 78 projects (data set 2, the diverse group ofrespondents).
Equations developed for data set 1 were used to predict success for Data Set 2, and
vice versa. The prediction equation developed from Data Set 2 was the better
predictor of success for both data sets showing that the results were generalizable
in this instance. It is illuminating to note that two thirds of the projects that the
respondents suggested had "estimates of average quality" were underestimated,
which suggests that the respondents were so accustomed to underestimates that
they did not consider this to be unusual. Even worse, 85% of those projects that
supposedly had above average estimates were underestimated.

nata Sets 1, 2 and 3: In order to conduct a more comprehensive analysis, the
additional project data set (set 3) was added to the database ofprojects, the details
ofwhich are reported in [64]. This data was used to investigate the generalizability
of some of the estimation and scheduling prediction equations. The majority of
projects in our sampies were estimated with unclear requirements. In view of the
fact that 69% of our projects were underestimated, our results reiterate that it is
still true that we are optimistic and assume that things will go weH. Inadequate
requirements severely handicap the project team's ability to apply estimation
techniques and methodologies that might provide reasonable cost and schedule
estimates. The most surprising results of this study are that (1) project manager
involvement in the initial effort and schedule estimates was not significantly
correlated with project success from either the management or developer point of
view and (2) developer input to the estimates was negatively correlated with the
quality of the estimates and with both success variables. While many factors
impinge on project success and failure, this investigation suggests that the most
important ofthe estimation and scheduling factors are:

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 39

1. Project estimates were based on appropriate requirements information
2. Goodness of the effort estimates
3. Taking staffleave into account
4. The effect ofadding stafflate to meet an aggressive schedule

Commonsense tells us that poor requirements are unlikely to lead to good effort
estimates. The lack of risk assessment affects the development process, with
schedule and cost underestimates leading to inadequate staffmg. Staffing itself
then becomes a major risk factor. Adding stafflate to meet an aggressive schedule
is still a problem and is perceived by both managers and developers as leading to
project faHure.

2.5.3.2 Investigations of Management Support, Customers and Users, and
Requirements

Data Set 1: Analysis of data set 1 resulted in the identification ofthe following
management, customer/user, and requirements critical success factors from the
developers' perspective:

1. Lasting sponsor commitment
2. The level of customer/user confidence in the development team
3. Level of customer involvement
4. Customers/users stayed through the project
5. Realistic customer expectations
6. Requirements were completed adequately, were good overall
7. Customers/users involved in requirements gathering

Data Sets 1 and 2: In a study ofthe combined data set of 120 projects, described
in detail in Procaccino et al. [53], developers' views of success were explained by
the following critical success factors:

1. The level of customer/user confidence in the development team
2. Level of customer involvement
3. Customers/users involved in requirements gathering
4. The size ofthe project was large and affected requirements elicitation

Management's view of success was explained only by the scope ofthe project
being well-defmed. Because the data consisted of two data sets, we were able to
investigate the generalizability of our results. Logistic regression models
developed from data set 1 and applied to data set 2 correctly predicted 80% ofthe
successful projects from the developers' point of view and 57% of the successful
projects from management's point of view. Regression models calibrated from
data set 2 and then applied to data set 1 correct1y predicted 73% of the projects
with regard to developer success and 88% of the projects with regard to
management success. "Good" prediction was suggested by Boehm [7] to be within
25% ofactua1 values at least 75% ofthe time. Hence, predictions of80% and 88%
can be considered good from Boehm's perspective.

www.manaraa.com

40 Vemer and Evanco

Data Sets 1 and 2, path analysis: Further research by Evanco et al. [20] applied a
number of statistical techniques including tetrachoric correlation analysis, path
analysis, probit regression analysis, and Bayesian belief networks to the data from
data sets 1 and 2. These methodologies allowed us to investigate cause/effect
models within the software development process.

Path analysis, like any other statistical technique cannot prove causality, but it
can serve to test the goodness-of-fit of a theorized causal model based on
correlation among independent and dependent variables. The steps we used in
developing oUf path analysis diagrams were as follows: based on OUf extensive
review of the literature and the results of the previously cited studies, we
constructed an apriori theoretical model of relationships among a number of
dichotomous variables (i.e., yes/no or high/low) with their proposed causal
linkages supported by tetrachoric correlational analysis.

Sponsor
Involved In Sponsor

proJect Lastad
decislons

Customer Success from Involved Customer developer
throughout Lastad

proJect
perspective

i
Customer Well-clellned

Involved with Customer SW
Requlrements Confidence deliverabIes Gatherlng

Well-clefined
project scope

Fig.l.l. Path model for project success

The path model is depicted graphically in Fig. 2.1. AB shown in Fig. 2.1, if
customers/users devote adequate time to the requirements gathering process, we
might expect a higher probability of a well-defined project scope. In turn, a well
defined project sCOpe will lead to well-defmed software deliverables. Involvement
in requirements gathering and interaction with the developers will also instill
greater confidence on the part of the customer/user with respect to the
development team. Customer/user confidence, in turn, may result in a greater level

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 41

of customer involvement throughout the rest of the project. This involvement can
include milestone and progress reviews, user interface testing, development of test
cases, and acceptance testing.

If the sponsor is involved in project decisions, we might expect the probability
that the sponsor remains committed throughout the project to increase. Similarly,
both the level of customer involvement in various aspects of the development
process and the sponsor remaining committed throughout the project, increases the
probability that the customer will last through the project. Finally, from the point
of view of the project developers, project success is governed by both the sponsor
and customer lasting through the project and the ability to produce well-defmed
software deliverables.

A test ofthe overall model fit is the generalized squared multiple correlation [62,
47], whose value was calculated to be 0.64. We also ran a probity regression
analysis for the success variable with the eight variables included without regard
to causality. We found an R2=0.40, which is substantially less than the generalized
square multiple correlation. The model's generalized squared multiple correlation
being greater than the R2 for the overall regression model is evidence that our
proposed model is a good fit based on the overall correlation of the observed data.

Finally, from the probity estimates for the various paths, we computed the
probabilities for each of the two dichotomous dependent variables. These
probabilities were used in a Bayesian belief network model to compute the
probabilities of success given the possible values of the independent dichotomous
variables, customer involved with requirements gathering and sponsor involved in
project decisions. The probabilities ranged from 55% when both variables had
"no" answers to 68% when both variables had ''yes'' answers. Thus, customer and
sponsor involvement increase the likelihood of project success.

2.6 Discussion

The analyses we have conducted thus far focused on data relating to only four of
the seven major software project success categories we identified earlier, namely
senior management, customers/users, requirements, and estimation and
scheduling. The data for the other four categories still requires detailed analysis.

Using knowledge management techniques that can elevate individual
knowledge to the organizational level, we have identified a number of critical
success factors for software development projects. Our investigations suggest that
the most important ofthe estimation and scheduling factors are:

1. Project estimates were based on appropriate requirements information
2. Goodness of the effort estimates
3. Taking staff leave into account
4. The effect of adding staff late to meet an aggressive schedule

www.manaraa.com

42 Verner and Evanco

It is notable that input by developers into the estimates was negatively correlated
with project success and with good estimates. The most important factors in the
categories of management support, customersJusers, and requirements are:

1. The level of customer/user confidence in the development team
2. Level of customer involvement
3. Customers/users involved in requirements gathering
4. The size ofthe project was large and affected requirements elicitation

The path analysis shows that in addition to the first three variables above, other
variables affecting success were:

1. Sponsor is involved in project decisions
2. Customer is involved throughout the project
3. Both sponsor and customer lasted throughout the project
4. There was a well-defined project scope
5. Software deliverables were well-defmed

Note that the variable, ''the size ofthe project was large and affected requirements
elicitation," did not enter our path analysis.

The most critical success factor was good requirements. Other critical success
factors were either affected by the requirements, or themselves affected the
development of good requirements. The above results make it clear that a project
manager needs to consider seriously the risk to a project if the requirements are
poor. Good project estimates and the number of staff assigned to the project
depend on good requirements. Critical success factors, such as sponsor
involvement in project decisions and a well-defined project scope, influence the
development of good requirements.

We have shown that a project manager must juggle many factors that influence
project success and that many project managers are unable to do this. Better
project management education and more guidance, based on both successful and
unsuccessful project experiences, will help project managers who are ill prepared
to deal with so many diverse factors. It is noteworthy that good requirements and
issues related to good requirements are so important in predicting project success.

Three observations impacting future studies are significant from the above
studies: increasing the size of the respondent population leads to more robust
statistical results; for most analyses, fewer variables tend to be related to
management success when compared to developers' view of project success; and
many of the explanatory variables derived from our questionnaire are correlated.
The fact that not a single respondent addressed risk assessment, or the lack of it,
when discussing either successful or failed projects suggests that risk assessment
is not routinely part of the development process.

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 43

2.7 Further Work

Our next step is to add estimation and scheduling variables to our path analysis
model to develop a more comprehensive path model. This will be followed in turn
by analysis of each of the other categories-namely, the software development
process, the development personnel, and the project manager-and the integration
of their critical success factors into an increasingly comprehensive path model.

Because we found it very interesting that software developers have a different
defmition of project success from that usually cited in the literature, we have
developed a revised project success questionnaire to investigate further the
definition of project success. We are collaborating with several international
researchers in order to discover if, or how, cultural factors affect developers'
definition of software project success.

The lack of risk assessment for the projects in our sampies surprised uso The
practice of risk assessment in real-world environments, when and how often it is
done, and how formal or informal the process is, needs further investigation.

References

1. Amoako-Gyampah K., White K.B., (1997) When is user involvement not user
involvement. Information strategy: the executive'sjournal, 13: 40-45

2. Baccarini D., (1999) The logical framework method for defining project success.
Project management journal, 30: 25-32

3. Basili V, Belady L., Boehm B., Brooks F., Browne J., DeMillo R., Feldman S.I., Green
C., Lampson B., Lawrie D., Leveson N., Lynch N., Weiser M., Wing J. (1999) Final
report. In: NSF workshop on a software research program for the 21st century,
software engineering notes, 24: 3

4. Beizer B. (1984) Software system testing and quality assurance. Van Nostrand
Reinhold Company, New York, USA

5. Bennatan E.M. (2000) On time, within budget. John Wiley and Sons, UK
6. Boehm B.W., Basili V., (2000) Gaining intellectual control of software development.

IEEE Software, 33: 27-33
7. Boehm B.W., (1981) Software engineering economics. Prentice Hall, Englewood

Cliffs, NJ, USA
8. Boehm B.W. (1991) Software risk management: principles and practices. IEEE

Software, 1: 32-41
9. Brooks F.P. Jr., (1975) The mythical man month. Essays on software engineering,

Addison Wesley, USA
10. Carr M.J., Konda S., Monarch 1., Ulrich C., Walker C. (1993) Taxonomy-based risk

identification. Software engineering institute, Carnegie-Mellon university, technical
report CMU/SEI-93-TR-6

11. Charette R.N., (1989) Engineering risk analysis and management. McGraw-Hill
New York, USA

12. Clavadetscher C. (1998) User involvement key to success. IEEE Software, 15: 30-32
13. Cohen J. (1960) A coefficient of agreement for nominal scales. Educational and

psychological measurement, 20: 37-46

www.manaraa.com

44 Vemer and Evanco

14. Davis F.D. (1989) Perceived usefulness, perceived ease ofuse and user acceptance of
infonnation technology. MIS quarterly, 13: 319-339

15. DeMarco T. (2001) Keynote speech at the international conference on software
metrics, London, April 4

16. DeMarco T., (1991) Non-technical issues in software engineering. In: Proceedings of
IEEE Conference on software engineering, Austin, Texas, pp. 149-150

17. DeMarco T., (1995) What "lean and mean" really means. IEEE Software, 12: 101-102
18. DeMarco T., Lister T. (1989) Software development: state of the art vs state of the

Practice. In: Proceedings of IEEE conference on software engineering, Pittsburgh,
USA, pp. 271-275

19. DeMarco T., Lister T. (1999) Peopleware: productive projects and teams. Dorset
House Publishing Co. New York, NY

20. Evanco W., Procaccino J.D., Verner J.M. (2002) Software project success: a path
analysis. Submitted to IEEE transaction on engineering management

21. Fenton N.E., Neil M. (2002) Software metrics: roadmap. In: Finkelstein A. (Ed.), The
future of software engineering, 22nd international conference on software engineering,
ACM press, pp. 357-370

22. Garrity EJ., Saunders G.1. (1998) Introduction to infonnation systems success
measurement. In: Garrity E., Saunders 1. (Eds.), Infonnation system success
measurement, Idea publishing group, Hershey, Pennsylvania, pp. 1-12

23. Gefen D. (2000) It is not enough to be responsive: the role of cooperative intentions in
MRP 11 Adoption. The DA TA BASE for advances in infonnation systems, 31: 65-79

24. Gefen D., Keil M. (1998) The impact of developer responsiveness on perceptions of
usefulness and ease of use: an extension of the technology acceptance model. The
DATA BASE for advances in infonnation systems, 29: 35-49

25. Gefen D., Straub D. (2000) The relative importance of perceived ease-of-use in IS
adoption: a study of e-commerce adoption. JAIS, 1: 1-30

26. Glass R.1., (1998) Software runaways. Prentice-Hall, Upper Saddle River, New Jersey
27. Glass R.L. (1999) Evolving a new theory ofproject success. Communications ofthe

ACM, 42: 17-19
28. Hagerty N. (2000) Understanding the link between IT project manager skills and

project success: research in progress. In: Proceedings of SIGCPR conference,
Evanston, IL, USA, pp. 192-195

29. Hair J.F., Jr., Anderson R.E., Tatham R.1., Black W.C. (1995) Multivariate data
analysis with readings. Prentice Hall, Englewood Cliffs, NJ

30. Higuera R., Haimes Y. (1996) Software risk management. Software engineering
institute, Technical report, CMU/SEI-TR-012

31. Hoffinan T. (1999) Study: 85% of IT departments fall to meet business needs.
Computerworld, 33: 24

32. Humphrey W.S. (1988) Characterizing the software process: a maturity framework.
IEEE Software, 5: 73-79

33. Ishman M. (1998) Measuring infonnation systems success at the individual level in
cross-cultural environments. In: Garrity E., Saunders L. (Eds.), Infonnation system
success measurement, Idea publishing group, Hershey, Pennsylvania, pp. 60-68

34. Johnston J. (1999): (The Standish group), Turning CHAOS into success. Software
magazine, 19: 30-39

35. Johnston J. (1999): (The Standish group) The ghost of Christmas future: small
movements speIl where big shifts will come. Software magazine, 19: 15-17

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 45

36. Jones C, (1995) Patterns of large systems failure and success. IEEE Computer,
28: 86-87

37. Katchigan S.K. (1986) Statistical analysis - an introduction to interdisciplinary
introduction to Univariate and multivariate methods. Radius press, New Y ork, USA

38. Keil M., (1995) Pulling the plug: software project management and the problems of
project escalation. MIS quarterly, 19: 421-444

39. Keil M., Montealegre R. (2000) Cutting your losses: extricating your organization
when a big project goes awry. Sioan management review, 41: 55-68

40. Kellner M.I. (1991) Non-technical numbers in software engineering (Panel Session
Overview). ICSE, Austinn, USA, pp. 149-150

41. Linberg K.R. (1999) Software developer perceptions about software project failure: a
case study. Journal of systems and software, 49: 177-192

42. McConnell S. (1996) Rapid development. Microsoft Press, Redmond, Washington
43. Miles M., Huberman M. (1994) Qualitative data analysis: an expanded sourcebook,

Sage Publication, USA
44. Nolan AJ. (1999) Learning from success. IEEE Software, 16: 97-105
45. NSF (2000) Final report. In: NSF workshop on a software research program for the

21 st century http://www.cs.umd.eduiprojects/SoftEngltame/nsfw98/FinaIRep.rtf
(accessed 17th April, 2003)

46. Paulk M., Curtis B., Chrissis M., Webster C. (1993) Capability maturlty model for
software. In: Technical report, CMU/SEI-93-TR-024, Software engineering institute,
Camegie Mellon, Pittsburgh, USA

47. Pedhazur E.J. (1982) Multiple regression in behavioraI research: explanation and
prediction. Holt, Rinehart and Winston, New York, NY, USA

48. Pinto J.K., Mandel S.J. (1990) The causes of project failure. IEEE transactions on
engineering management, 34: 269-276

49. Pinto J.K., Sievin D.P. (1988) Project success: defmitions and measurement
techniques. Project management journal, 19: 67-72

50. Pfleeger S.L. (1998) Software engineering: theory and practice. Prentice-Hall,
(Englewood Cliffs, NJ

51. Pressman R. (1996) Software engineering: a practitioners approach, McGraw HilI,
London,UK

52. Pressman R. (1998) Fear of trying: the plight of rookie project managers. IEEE
Software, 15: 50-54

53. Procaccino J.D., Verner J.M. (2000) Early risk factors for software development. In:
Proceedings of the 12th European software control and metrics conference, London,
pp.l07-116

54. Procaccino J.D., Verner J.D., Overmyer S.P., Darter, M. (2002) Case study: factors For
early prediction of software development success. Information and software
technology, 44: 53-62

55. Procaccino J.D., Verner J.D. (2002) Software practitioner's perception of project
success: a pilot study. International journal of the computer, the Internet and
management, 10: 20-30

56. Raz T., Michael E. (2002) Use and benefits for project risk management. International
journal ofproject management, 19: 9-12

57. Reifer DJ. (2002) A Iittle bit ofknowledge is a dangerous thing. IEEE Software, 19:
14-15

www.manaraa.com

46 Vemer and Evanco

58. Ropponen J., Lyytinen K. (2000) Components of software development risk: how to
address them? A project manager survey. IEEE transactions on software engineering,
26: 98-112

59. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

60. Schenk K.D., Vitalari N.P., Shannon D. (1998) Differences between novice and expert
systems analysts: what do we know and what do we do? Journal of management
information systems, 15: 9-51

61. Standish Group (1994) CHAOS, http://www.pm2go.comlsampleJesearch (accessed
date 17th April)

62. Schumacker R.E., Richard G.L. (1996) A beginner's guide to structural equation
modeling. Lawrence Erlbaum Associates, Mahwah, NJ, USA

63. Verner J., Evanco W. (2000) The state ofthe practice ofsoftware effort estimation in
business organizations. In: Proceedings of ESCOM-SCOPE, Munich, Germany,
pp. 229-237

64. Verner J.,W., Evanco W., Cerpa N. (2002) How important is effort estimation to
software development success? Submitted to the journal of empirical software
engineering research

65. Verner J.M, Overmyer S.P., McCain, K.W. (1999) In the 25 years since the mythical
man-month what have we leamed about project management? Information and
software technology, 4: 1021-1026

66. Wang Y., Court 1., Ross M., Staples G., King G., Dorling A. (1997) Quantitative
evaluation of SPICE, CMM, ISO 9000 and BOOTSTRAP. In: Proceedings ofthe 3rd
IEEE international symposium on software engineering standards, IEEE computer
society press, USA, pp.57-68

67. Ward S.C., Chapman C.B. (1995) Risk management perspective on the project
lifecycle. Internationaljoumal ofproject management, 13: 145-149

68. Wateridge J. (1995) IT projects: a basis for success. International journal of project
management, 13: 169-172

69. Wateridge J. (1998) How can ISIIT projects be measured for success? International
journal of project management, 16: 59-63

70. Wohlin C., Mayrhauser A. von, Host M., Regnell B. (2000) Subjective evaluation as A
tool for learning from software project success. Information and software technology,
42: 983-992

71. Wohlin C., Amscheler Andrews A. (2001) Assessing project success using subjective
evaluation factors. Software quality journal, 9: 43-70

72. Woodroof J., Kasper G.M. (1998) A conceptual development ofprocess and outcome
user satisfaction. In: Garrity E., Saunders L. (Eds.), Information system success
measurement, Idea publishing group, Hershey, PA, pp. 122-132

Author Biography

Dr June Vemer is a Professor of Information Systems in the College of
Information Science and Technology at Drexel University, Philadelphia. She has
been involved in research into software quality, software process improvement,
software project management, and software metrics for many years. Dr. Vemer
has published over 50 research papers and is a member of the Technical Council

www.manaraa.com

2 An Investigation into Software Development Process Knowledge 47

on Software Engineering. Dr. Vemer's received her Ph.D. in software engineering
from Massey University NZ.

Dr. William Evanco has a Ph.D. from Comell University. He is currently on the
faculty of the College of Information Science and Technology at Drexel
University. Before Dr. Evanco joined Drexel he was on the technical staff ofMitre
Corp in Washington, DC. He has many years of IT consulting experience with US
industry and govemment agencies. His research interests are in software quality,
software testing, and software project management and risk analysis.

www.manaraa.com

3 Usage of Intranet Tools for Knowledge Management
in a Medium-Sized Software ConsuIting Company

Torgeir DingsliJyr and Reidar Conradi

Abstract: Many software companies have invested in or developed knowledge
management tools. This chapter examines intranet-based knowledge management
tools in a medium-sized software consulting company. We present four tools: the
Project Guide, a structured knowledge repository designed to help developers and
managers carry out projects; the "wen ofExperience", an unstructured knowledge
repository containing more than 600 experience notes; the Competence Block
manager for organizing internal courses; the Skins Manager, which gives an
overview of employee competence. In addition to presenting the tools, we
describe how developers and managers use the tools, and find that knowledge
management tool usage depends on what work tasks an employee has, as wen as
the employee's personal preferences. We argue that medium-sized software
companies should choose a knowledge management strategy that supports the
actual work tasks and personal preferences of employees.

Keywords: Knowledge management tools, Intranet, Knowledge cartography,
Knowledge repository and Hbrary, Personalization, Codification.

3.1 Introduction

This chapter describes how intranet-based knowledge management tools are used
in a medium-sized software consulting company. Medium-sized software
consulting companies are interesting because there are relatively few studies of
knowledge management in this type of company. Also, many companies belong to
this category, and they often use other technical solutions than those used by
larger companies. By studying how knowledge management tools work, we can
leam how to improve them.

The company Alpha Consulting focuses on knowledge engineering and has 150
employees. The company has chosen a knowledge management strategy that reHes
on both codification, to represent knowledge in written form and personalization,
to foster the exchange of tacit knowledge. Alpha Consulting has developed tools
to support both of these strategies, and we describe four tools, including how they
are used, based on 14 interviews with employees in different groups in the
company. We analyze how the tools support company strategies, and argue that
the synergy between personalization and codification work particularly weH in this
medium-sized company.

First, we first present details of Alpha Consulting and then continue with a
discussion of knowledge management tools in general. We focus on the

www.manaraa.com

50 Dingseyr and Conradi

knowledge management tools at Alpha in particular and how they are used, and
end by discussing this usage. A more detailed description of knowledge
management at Alpha Consulting can be found in [2]. For a survey of other case
studies of knowledge management initiatives in software companies, see also
Dingseyr and Conradi [3].

3.2 Alpha Consulting

Alpha Consulting ("Alpha") is a software consulting company based in Norway,
develops knowledge-based systems for a variety of customers. When it was
founded in 1985, it was a spin-off of a larger, more general consulting company,
and according to a Norwegian newspaper, "an international staff of specialists will
develop expert systems that above all will cover the needs of the demanding oil
industry". The newspaper continues: the company shall "offer services in
industrial use of knowledge-based expert systems, and software in the field of
artificial intelligence".

Since then, the company has grown organically, from just a few employees in
the beginning; to approximately 150 in 2002 both by increasing staff and through
and acquisition in 2000. The company has also extended their services and market.

In the annual report for 1999, they state that their vision is to "make knowledge
sharing in organizations more effective, and thereby contribute so that knowledge
is refined and used to achieve the organization's goal". Their mission is to

Deliver services, solutions and products to organizations and individuals who
wish to make their business more effective through innovative use of information
technology. The company's core competence is knowledge management, process
support and implementation of intelligent systems for knowledge-based behavior
and knowledge processes. Within this business area, Alpha will seek international
activity based on their role as aleading vendor in Norway.

In July 2001, the company discussed with a major aircraft company about
delivering a system for modeling software and organizations.

The important technologies for delivering these solutions include network and
database technology, document management and search, Web technology, work
process support, co-ordination technology, artificial intelligence and data mining.
The underlying technology is Java, Microsoft and SmallTalk technology.

Customers come from the public, marine and industry sector. Projects for these
customers typically include 3 - 10 people working for at least half a year, and in
some cases for several years. In projects, the participants take on different roles, as
''project manager", ''technical manager", and "customer contacf'. In addition to
these projects, the company has arecord of participating in cooperative research
projects, from highly applied research to more advanced research in EU- and
Norwegian Research Council-funded projects.

The company is organized around ''processes'' and ''projects''. The ''process
organization" means that they have defmed important areas for the company,
which has one ''process manager", usually with support from a small team.
Examples of processes are management, delivery and support, and also knowledge

www.manaraa.com

3 Usage oflntranet Tools for Knowledge Management 51

management. Many employees in the company are responsible for some process
issues while working on a project. Most employees have a university degree in
computer science, and some have doctoral degrees, specifically in artificial
intelligence.

The knowledge management process at Alpha hands out a prize to the
"knowledge sharer of the month" in order to promote knowledge management.
This prize has been given to people who share their knowledge through Alpha's
knowledge management tools, or through oral cornmunication.

On first sight, the organization seems very tlat with people rotating between
different process manager positions. But as one employee told us, "of course,
there is a hierarchy here as well, it is just not written down any place".

While working on projects, most of the development has traditionally been
done in-house rather than at the customer's site. However, situation where
employees work at the customer's sites are becoming more frequent. When we
visit the company, approximately 20% of the staff were working elsewhere
outside the main company building.

3.3 Knowledge Management Strategies and Tools

Here we present what strategies a company can choose when applying knowledge
management, and then present categories of tools that support these strategies.

3.3.1 Knowledge Management Strategies

There are essentially two main strategies for knowledge management [7]:

• Codification: To systematize and store information that represents the
knowledge of the company, and make this available for the people in the
company.

• Personalization: To support the tlow of information in a company by storing
information about knowledge sourees, like a ''yellow pages" of who knows
about what in a company.

Hansen et al. [7] argue that companies should focus on just one of these
strategies. We wish to add however, that the codification strategy does not fit all
types ofknowledge. In situations where knowledge is very context-dependent and
where the context is difficult to encode and transfer, it can be dangerous to reuse
knowledge without analyzing it critically. For some exarnples of problems with
this strategy, see J0rgensen and Sj0berg [8].

Another alternative to the two strategies could be to support the growth of
knowledge, that is, creation of new knowledge by arranging for innovation
through speciallearning environments or expert networks, but we will not discuss
that here. Note that some have referred to these strategies by other narnes: Cod
ification can also be called "exploitation", and personalization "exploration" [9].

www.manaraa.com

52 Dingseyr and Conradi

3.3.2 Knowledge Management Tools

In terms of tools for knowledge management, we mean tools that have severai
users anci are widely available for employees in an organization. This is usually
what we call intranet tools [11] which support knowledge management in "at least
three ways: 1) providing compression of time and space among the users. 2)
offering the flexibility to exchange information, and 3) supporting information
transfer and organizational networking independent of direct contacts between the
users".

Knowledge
Repositories and

Libraries

Knowledge
Flow

Knowledge
Cartography

Communities of
Knowledge

Workers

Fig. 3.1. Types ofknowledge management tools [1]

There are many dimensions for describing knowledge management tools.
Ruggles [10] mentions tools that generale knowledge, for example, tools for data
mining that discover new patterns in data. Further, we have knowledge
codification lools to make knowledge available for others, and knowledge transfer
lools to decrease problems with time and space when communicating in an
organization. Another dimension is whether the tools are active [6] or passive. By
active tools, we mean tools that notify users when it is likely that users require
some kind of knowledge. Passive tools require a user to actively seek knowledge
without any system support. We now categorize the tools according to a model
from the book Information Technology for Knowledge Management [1], because
it is widely known. The authors divide technology for a "corporate memory" into
four parts, shown in Fig. 3.1 :

www.manaraa.com

3 Usage oflntranet Tools for Knowledge Management 53

• Knowledge repositories and libraries: Tools for handling repositories of
knowledge in form of documents

• Communities 01 knowledge workers: Tools to support communities of practice
in work; like organizing workspaces for communities for online discussions
and distributed work

• Knowledge cartography: Tools for mapping and categorizing knowledge, ftom
core competence in a company to individual expertise; what we can refer to as
"metaknowledge"

• The flow 01 knowledge: Here we find tools for supporting the interaction
between tacit knowledge, explicit knowledge and metaknowledge that is, that
combines the three parts above

3.4 Research Method

The aim of the research reported in this chapter is to investigate how intranet
based knowledge management tools are used in a medium-sized software
consulting company. We selected Alpha as a case company because we know that
they have many knowledge management tools and have been working intemally
on knowledge management for several years.

To obtain the data for the research reported in this article, we used a method
inspired by ethnography [5]. For the analysis, we relied on a grounded theory
approach. We spent four weeks at Alpha, obtained access to their intranet systems
and attended all meetings where all the employees were invited as well as
meetings concerning one project.

3.4.1 Data Collection

We used the following data sources:

• Interviews: We used semistructured interviews with open-ended questions.
The interviews were transcribed in fuH, and in total we obtained 120 pages of
transcripts for analysis.

• Usage logs: We collected logs ftom the usage ofthe knowledge management
system on the intranet Web pages.

• Documents: We gathered documents about the design and intent of the
Knowledge Management tools.

• Screenshots: We gathered screenshots ftom different areas ofthe knowledge
management system.

• Pietures: We took pictures ofpeople in normal work-situations to get a better
understanding ofthe workplace and work processes.

• Logbook: We registered observations ftom everyday life in the company in a
logbook, together with memorandums from conversations, meetings and
presentations.

www.manaraa.com

54 Dings0)'1' and Conradi

3.4.2 Data Analysis

We analyzed the qualitative data using the principles of grounded theory [12]. We
also kept quantitative data in logs, which first had to be preprocessed before we
could plot them for analysis.

How did we organize the analysis of the data that was collected? First, we
gathered the qualitative material that was collected on each knowledge
management too1. We constructed a database l with information from the
interviews, documents and our own logbook observations. We tagged the
information to show what kind of source it came from, and categorized the people
who interviewed: managers, project managers, developers, and people responsible
for knowledge management.

We then searched this database for areas of interest, and gathered information
from the different sources. For example, a search in the database for the keyword
"skill" resulted in 43 occurrences in 10 documents.

After that, we analyzed (and "coded") the chunks of information to find
interesting categories that might later contribute to theory building. Would there
be any special patterns in what the people were saying? A triangulation approach
was used to see if there were differences between groups of people or between
what people were saying and logs or collected documents.

3.5 Usage of Knowledge Management Tools at Alpha

We now present some of the knowledge management tools at Alpha, and divide
them into two groups: knowledge repositories and libraries and knowledge
cartography tools. We do not discuss other types oftools because there has been
more work on tools supporting communities of knowledge workers. Also, there
were no tools that we can describe as knowledge jlow tools at Alpha All the tools
that we examined were "passive" knowledge management tools.

The usage situations found for each tool are presented, as weH as the types of
user groups. We start by giving a general overview of the front page on the
intranet system, then present knowledge repository tools, knowledge cartography
tools, and fInally, we give a general assessment ofthe tools.

3.5.1 Knowledge Management Tools in General

At the main Web page ofthe knowledge management system at Alpha, there are
links to several different subsystems. The fust page provides company-internal
news. Above that, there is a calendar, which shows the current events. On the left,
there are links to several other Web pages: The skills manager, competence
blocks, the knowledge repository W oX and several other tools.

I Using N5, a tool for analysis ofnon-numerical data from (QSR international, Australia)

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 55

On the top of the page, there are links to each employee's timesheet, a
telephone list, the external Web pages, and the possibility to send an e-mail to the
Webmaster. On the right-hand side, there is a "tip" about a knowledge
management magazine, and a link to an informal "newspaper" that covers social
events in the company. At the bottom of the screen, there is a "quiz of the day"
and viewers may answer this quiz in a box below.

When we asked employees in the company how often they would use the tools
for knowledge management, most of the employees from Alpha said that they
were used it several times a day. Adeveloper said he used it "between five to ten
tirnes a day", and another said "a couple of times a week to register hours. [since]
it is always something you must do ... look at news. If you want to follow what is
happening in the company, you have to look at it a couple oftimes a day. When I
open Internet Explorer, it is the first page I get". Of other people we spoke to at
Alpha, it seemed that most were using the tools "several times a day", some
"daily" and a few "weekly".

3.5.2 Knowledge Repository and Library Tools

With this group, the following tools are highlighted: the project guide and the well
of experience.

3.5.2.1 Project Guide

This is a practical guide to assist project work that contains descriptions of
different processes that are common, such as project start-up and closure, how to
do testing and so on. It contains templates for documents that are normally
produced during project execution, as well as examples. Different company roles,
such as developer, manager and customer contact, have different views to the
guide.

According to one manager this tool "has a form that is very nice-initiatives on
peptalks when projects start and such. It is really a step in the right direction, that
things are triggered by the system, and that people do not just know how to do
things". Another manager commented that the tool was the" result of a lot of
projects, and some routines and terms around it is an indirect resulf'.

Many people at Alpha indicated that they do not use this tool very often. One
manager said, "I must say that this is a tool that I might have used more. And
when I say that, I suppose there are other people as well that could have used it
more". Adeveloper said ''No, I do not use that... or at least not deliberately, but I
suppose that there are many things that we do that you can find in the project
guide". Another developer said, ''No, there is no need for me to use it. It is maybe
aimed more towards project managers, but to be honest I have not used it as
project manager either. Maybe because the projects have been too small. Or that it
has been clever people on the projects that have not needed any training". Another
developer had problems with the form of the project guide: "I do not like it a lot,

www.manaraa.com

56 Dings0)'r and Comadi

maybe because it is available electronically". This developer feit that he lost
overview when reading hypertext documents, for example, when investigating
"acceptance tests, it was a long list of subpoints that you could c1ick on. But you
never get through such a list-it is too much! And lama bit uncertain because it
looks like a whole book, and if I pick out a piece to read it, do I have to read
everything before it?" A third developer said she feit "angry when using if',
because it did not contain a complete set of information, and is difficult to
navigate in.

Overall we found that people mainly used the tool to obtain tips and advice in
project start up and execution. A manager said that he ''used it as a daily support -
in order to solve projects in general, and when we needed an acceptance test
earlier in the project, we had a look there to see what tips and advice we could
find".

Words: IIL-______________ --.J

Include: E2l TeKtlsubjec1 0 Commenls

Yw:credb:O

Fig. 3.2. Tbe weil of experience (WoX) search interface for the knowledge repository of
experience notes

3.5.2.2 Knowledge Repository: The WoX

The Well of Experience WoX" is a small tool for capturing knowledge that WOuld
normally be written on yellow stickers, what the company calls "collective yellow
stickers". It contains everything from the phone number ofthe pizza restaurant on
the corner, to "how you set up SmallTalk on a special platform". You find
information by searching an unstructured database (Fig. 3.2), and you can give
"credits" to notes that you find useful. Notes with more accumulated credits about
an issue show up before notes with less. The tool contains a mechanism to give
feedback to the person who wrote the note, and there has been a kind of
competition in the company to get the most credits. One developer described this
module as "quite useful; it is simple enough to be used in practice". When we
visited the company, it contained around 600 "experience notes".

Examples ofsuch notes are "how to reduce the size ofyour profile in Windows
NT', "how to remove garbage from an image in SmallTalk", ''technical problems
with cookies" and "an implementation ofthe souIidex algorithm in Java".

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 57

According to one developer, "People are very good at subrnitting notes when
they think that something can be useful for others." A manager described the notes
in terms of "a behavioral arena that people use in different ways, to create a
culture of knowledge sharing, and [the tool] lets people experience that others
make use of their knowledge". The tool is promoted by posters, which can be
found in frequently visited places like the one in Fig. 3.3, located just outside the
staff restaurant.

Fig. 3.3. "I've been WoX'ing today, have you?" One of several posters promoting the use
ofthe WoX knowledge repository at Alpha

When we asked employees to describe what kind of tools they were using in
their work, almost all of the developers mentioned that they were using WoX. All
developers but one (seven out of eight) said that they have written experience
notes, and all of them have tried to search for experience notes. The managers
were not as active in using the notes as others. Three out of six managers did not
mention WoX when we asked about knowledge management tools in the
company.

We found five different types ofusage ofthe knowledge repository, to

1. Solve a specific technical problem
2. Get an overview of problem areas
3. Avoid rework in having to explain the same solution to several people
4. Improve individual work situation by adjusting technical tools
5. Find who has a specific competence in the company

www.manaraa.com

58 Dingsß)'f and Conradi

We describe each of these types of usage in more depth:

Solve a specijic technical problem: The most prominent use ofthis tool seemed to
be in ''problem solving". As one developer explains "If you run into a problem,
then you can use WoX to see if anyone else in the company has had a similar
problem", or it can be used "when you sit with a problem that you can't solve, or a
strange bug, or if you do not understand why the computer does not behave the
way it should".

Another developer says: "It happens that I have been searching and have found
things in WoX. And then you do not have to search in other places, and maybe
spend two or three days".

As one developer mentioned, the problem with the notes is that ''the person that
writes something has a certain background, and with that background they
presume that when they write 'first you do this, then that. .. ', the others will also
know what to do". This, however, is not always the case, especially in more
complicated situations.

Get an overview o[problem areas: One employee said, "IfI am stuck and wonder
about something, usually, I remember that it was written somewhere in WoX, and
then I go back and find it". One developer, for example, tends to refer back to
notes about project startup, particularly at a startup phase, which happens ~very
six months or so. Another developer and another manager also said that they
would look almost every day to see what was new on WoXso I know what is in
there, and do not have to search for things".

But people do not write about all types of problems as experience notes. Notes
about issues that are ''unofficial knowledge", or as one developer put it "not things
that are unethical, but things that you do that could easily be interpreted wrongly
by customers" do not appear and that knowledge is transferred through informal
oral communication.

Avoid rework in having to explain the same solution to several people: One
developer said: "When the third person comes and asks about the same thing, then
you realize that it is about time to document it". He would then later tell people
who were asking about the topic to look it up in WoX.

Improve individual work situation by adjusting technical tools: Some said that
they would find information on how to improve the tools that they use in their
daily work, like Outlook, to make them more easy to use. Another example is
"how to reduce your profile in Windows NT", which reduces the booting-time of
your operating system quite a bit. A third example of a small improvement is a
note on how to burn CDs for customers. This note in particular explains how to
design covers for the CDs so that they look more professional when delivering a
final software product.

Find who has a specijic competence in the company: ''Newbies get a short-cut to
discover things that I have spent some time to build up. If they browse WoX a bit,
they can fmd that 'this person knows a lot about low-level Windows-patching' and
that 'this person is good at Apache Webserver set up''', one developer said.

www.manaraa.com

3 Usage oflntranet Iools for Knowledge Management 59

3.5.3 Knowledge Cartography Tools

At Alpha we examined two cartography tools: Competence Blocks and the Skills
Manager.

3.5.3.1 Competence Blocks

The Competence Blocks is a list of company-internal courses that are open for
assigning and viewing, and the courses may be evaluated after completion. Abrief
description of each course is given, together with schedule information and who is
responsible. Most of the courses are given in a day or less. Sometimes, courses
from other suppliers are also offered through this system. A manager described it
as a ''very valuable supplement (to normal on-the-job-training), with blocks that
can be composed specifically". According to adeveloper, the management
"encourage people to organize competence blocks". Ibis tool is used when
someone wants to participate in a course, or plan a course (or Competence Block).

We found six people who mentioned this tool in interviews. This is a tool that
people do not use very often, but must use if they want to participate in a course.
Adeveloper said that this tool "suits me very weIl-I prefer oral communication
to written".

3.5.3.2 Skills Manager

Ihis is a system where all employees can state what level of knowledge they have
in different areas that are of interest to the company, like object-oriented
technology or the ability to program in Visual Basic. It can be used to indicate
wbich level you want to be at, so if you are interested in learning more about
Visual Basic, you can state it in this tool. The tool is used for staffing projects, and
many people in the company also use it to find someone who can help them to
solve a problem. As one developer said: "I can say that 1 need a person that knows
HTML, and then 1 will get a list of people, and see what level of knowledge they
have." For a wider discussion ofthis tool, see Dings"Yf and Reyrvik [4].

Managers, project managers as weIl as developers said in our interviews that
they used this tool. From the interviews, we have divided the usage of this tool
into four categories, some with subcategories, to

1. Search for competence to solve problems
2. Allocate resources
3. Find projects and external marketing
4. Develop competence

We discuss each of these uses more in detail below:

Search for competence to solve problems: Ihe developers often need to know
something about a topic they are not very skilled in themselves. We can then

www.manaraa.com

60 Dingseyr and Conradi

distinguish between two types of usage of the skills management system. First,
people use it to find other peöple in the company who have knowledge about a
specific problem that they have to solve i.e. short-term usage. Second, people
inerease their overall insight in to the core competeneies of the eompany i.e. long
term usage.

Let us look at first the short-term usage. One developer says, "It happens (that I
use it), if I suddenly have a speeifie problem in an area that I do not know mueh
about. Then it sometimes helps to go in there and find someone who knows about
it. I have in fact done that onee ... ". Another developer seems to use it more often:
"of course, when I wonder if there is anyone who ean help me with something, I
look up in the skills management system to see if anyone has the knowledge that I
need." In Fig. 3.4, we show a sereenshot ofthe skins management system, giving
an overview of skills in object-oriented development. Here, you ean also e-mail
people who have a required eompetenee in a speeifie area, or you ean just print a
list of people and ask them yourself, as another developer has done: "I find a list,
and look at what level they have ... and then I go around in the building and ask
them". Of course, this depends on people-to-rate themselves in a honest way. One
developer used the skins management system to fmd people, but after asking the
believed "experts" she found that she "did not get the answers that I needed, so I
bad to go to someone else. It depends very mueh on people to update their skills
eorreetly. To describe a ski1llevel is not that easy, so some overrate themselves
and others underrate themselves strongly." Another developer is critieal of the
categories of eompetenee in the skins management system: ''what you ean get
information about now is if someone knows about Web- and that eontains quite a
lot! Maybe it is not that general, but not too far off. It is based on the eore
competency areas ofthe company, but when it comes to more detailed things, like
who in fact can write a computer program, and who ean find a solution, you do not
find that there."

When we looked at long-term usage, we found very little material in our
interviews. One developer, however, often fmds a group that knows something
about a subjeet on the skins management system, and asks them questions by e
mail. But "if it then happens that you have asked questions about SQL to ten
gurus, and it is always the same two that answers, then you start to go to them and
talk. You leam after a while who it is worth to attempt to get anything out of'.

Allocate resources: In our empirical material from Alpha, we can see some
patterns of the practical uses of the skills tnaIiagement system, in terms of resource
alloeation.

As one new employee said, "eontrary to a lot of other eompanies that use such a
system, here at Alpha we really use the system for resouree planning." Another
comment is on the same track "I think that the Skills Manager is a useful tool, but
a tool that still has got a lot of potential when it comes to practieal use. Those who
do the resouree management already use the tool a lot in the daily resouree
allocation work."

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 61

I) " " ~ _ ~~ f

J

t _ ,. n r , • r f.' ' ,. ~

~~J J ____ ~_~

I : Skills Manaaer

.-.-.... ---tIM_-

._' ~M ___ _

.. u

.OII' . ~.,.....,

,~ . ..--
' """""'-11 .-
-~ '=-' ._-.-. -._-.-.. , ~ ._-

7

I~
6 5

-.,-

--::-~
J,...A:... ~) ..

• I)
0
Jo .)

" .)
• ca)
s CS)

" ~
.. m JI ,

~ • P

0

4 3 'i 2
-AU. - ~ ~
I
I 1 I
I 1 1
I I • • I ~

• ! • ~
I •)

• I I I
(, I I
I I ,
• I S J
I ! • (I , • LI
I , I I ~
I I ') . ~

I I

• I I , I ~ ~ I L , c I 'l
l C • • I I
I I • 0
I I • I • I • I 1 ,
I I

• ,) I !) , !
I I •
I ! I') I ~)
I , • I ,) ,
I I I
(• I · , .' I

~l. ° "1 ---:I _A ~
I
• ..
J V.
I ..
I CI
I H

'" I 1/1
C 11
I .lI

• H
l JI

• H

• ,.
\ Ji

• u
I U
1 M ,
I ..
J H
L " f " SI

-~ R

" • 11 ..
K

Fig. 3.4. An example of a result after querying for competence on "object-oriented
development" in the Skills Manager. The names ofpeople have been removed

A third Alpha employee comments on the SkiIls Manager as an important tool
for resouree alloeation, but also for the strategie development of the eompany:
''The tools I use the most are ... the eompetenee block manager and the Skills
Manager. Definitely! I'm responsible for the eontent in many databases, and partly
the skiIls management base. And the SkiIls Manager is a tool that is very
important for the resouree allocation process. Therefore, many employees come
up with suggestions to new eontent, new elements, in the skiIls database."

Find projects and external marketing: Another use of the system is for the sales
department. One manager said that "even sales can use it (the skills management
system), to fmd new directions to go in", or rather to fmd what types of projeets
suit the eompany weIl. We ean also think of another use that we did not hear from
anyone, probably beeause we did not ta1k to people in the sales department,

www.manaraa.com

62 Dings0)'f and Conradi

namely to use the system as external marketing; that is as proof of a highly skilled
workforce.

Develop competence: Concerning the development of competencies at Alpha, the
skills manager also seems to playapart.

The problem with all of our systems is that they function only to the
degree that they are used. (Systems) like the Skills Manager depends on
everybody to update them often and objectively. That could be solved by
work-process support. Skills updating could be a natural part of the closing
of a project, for example by updating the involved competencies,
particularly those that have been in use during the project. Today, you are
allocated to projects on the basis of what you have in the Skills Manager.
There we have views devoted to people with free time and the competence
required in the project. When you are allocated to a project on the basis of a
competence profile, then there is also knowledge in the system about which
competencies that are expected to be used in the project. Therefore it would
be natural to ask for an update on those competencies when the project is
finished.

Another employee sees the Skills Manager in light of intellectual capital: Such
tools are very good indicators for accounting intellectual capital. Y ou are able to
see what kind of competencies we will need in the long term, evaluate it, and
compare it to what competence we already have in the firm. Theo, you can say
that we have that many person months with C++ or Java competence, and we see
that there is an increase in this competence, and then we can evaluate that.

In the skills management system at Alpha, the employees can use this tool to
state what they want to leam about in the future, not only what they know now. In
that way, people can develop their competence by working on relevant projects.

3.5.4 General Assessment ofTools

When we asked people to assess the tools that they have available for knowledge
management in their daily work, we got a variety of answers. Some said that the
tools that exist now are "primitive", and far from what the company thinks should
be possible to use. Others said they worked "fine", while others think that they
were impractical.

Several people in the company believe in more technically advanced
knowledge management tools. One manager said, If we were allowed to set up a
project with more of our skilIed people, and followed up in the same way as we do
against customers, then we would have had a (set of knowledge management
tools) that are much more functional, support our employees better, and support
knowledge management at Alpha better than what we have today." Another
manager said: "It (the knowledge management system) is characterized by when it
was made, and the need that has been in the organization at different times. That
is, it has been developed once, and has been patched-up a bit afterwards." As a
result, the technical condition of the system is not something that the company

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 63

would seIl to an external customer. This view is also supported by adeveloper,
who said, "We have a number of tools that represent some good ideas, but the
tools' condition today is not the ultimate. We see a lot of possibilities for
improvement, especially on technology. What really could have made a difference
is that we could have had much better integration between the tools". An example
of tools that could be integrated better are the Skills Manager and the W oX.
Another possible integration is between the Skills Manager and the Competence
Blocks.

Other people emphasized that the tools are under constant development. A
manager said "It is under constant development, really, and when you get
something new, you discover at once the need for something more".

Several people mention that they would appreciate a more "active" kind of
knowledge management, like one manager who said:

The problem is not that we do not docurnent enough experience, but to make the
experience appear when it is needed. It is ok in those situations when an employee
recognizes that 'now 1 need knowledge about something' - we could have improved
the indexing possibilities [in interna! knowledge repositories] ... But if we had done
so, it would be like that if 1 was thrown into a new project - or a newly employed
was - and you are to do a relatively specific thing, then it could happen that you do
some searches for knowledge on the essence on the job, but all the side-experience
you have, you would not search for [knowledge that does not fit the search criteria].
1 see it like the essence of the border of passive knowledge management [that the
knowledge management system supports].

One developer said: "I only use the knowledge management system for
registering hours, and doing smaller stuff. I do not think it is easy to find
information there." This was because this developer would normally need
information whilst working on software development, and she feIt it was time
consuming to start a browser and look up a Web page for the internally developed
framework she was mostly working with. Also, she meant that these Web pages
were usually not updated, so she preferred to read code to find answers to
problems. Another user said, "I think the knowledge management system is a bit
messy. 1 do not really know what is in there, because 1 have never had the time to
go through everything".

Others were critical of an extensive use of tools: "Some people talk warmly
about 'taking our own medicine' by using work processes in development and
things like that. That is just bullshit! Maybe it is a good thing for in-house
training, but work processes is not the most effective way of working." This
developer said that if you are an expert user, you have your own way of working
that is probably much better. Work processes would force you into a work pattern
that does not suit you, because the way the company is modeling work patterns is
"extremely static".

Another developer said that the contents of the tools are "much more up to date
than you would expect". He thinks this is because much of the information is
generated from databases that are easier to maintain than Web pages.

www.manaraa.com

64 Dings0yr and Conradi

Over the time period we collected measurements, we found that the front page
was accessed an average of2032 times per week, which is approximately 14 times
per week per employee.

3.6 Discussion

The structure of this discussion highlights again the types of tools and strategies
described in the previous paragraphs. Wehave focused on two main strategies for
knowledge management: codification and personalization. We investigated two
types of tools: knowledge repositories and libraries and knowledge cartography
tools. We now discuss how these tools were used for codification and
personalization in the company, then we examine what kind of learning that takes
place as a result ofthese tools.

3.6.1 Knowledge Repositories and Libraries

When we go on to ask about how these knowledge repository and library tools are
used for transferring knowledge between development projects, we divide the
usage into two types. First, we look at usage of codified knowledge from the tools
in terms ofwhat corresponds to the codification strategy that we have presented in
Sect. 3.3.1. Second, we notice that some types of usage are more suitable to the
personalization strategy.

3.6.1.1 Codification Strategy

For the knowledge repository and library tools, we found the foHowing usage
situations (with the corresponding tool in parentheses):

• Get tips and advice in project startup and execution (project guide)
• Solve a specific technical problem (WeH ofExperience)
• Avoid rework in having to explain the same solution to several people (Well of

Experience)
• Improve work situation by adjusting technical tools (WeH ofExperience)

From the interviews it seemed that the Project Guide was in use by different
employee groups and with a different frequency than the WeH ofExperience. The
Project Guide seemed to be mostly in use by some project managers, and not very
much in use by developers. The WeH ofExperience on the other hand, seems to be
used by many employees, and at a much higher frequency. We note that it was
mainly developers who said that they actively contributed to the contents of the
Well of Experience, and not employees who acted as project managers or
managers.

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 65

Why do we see this difference between the usage ofthese tools? Is it because of
the intended focus ofthe knowledge in the tools, or the way the tools can be used?
The Project Guide is intended to be a support in project work and contains
abstracted knowledge from previous projects. The WeIl of Experience has no
structure and may contain any type of information. Yet, it seems that it is the
developers that use the tool and fill it with technical information, either to make it
easier for others to solve a problem, or to avoid rework oneself by having to
explain the same thing several times, or to adjust technical tools to increase
performance.

The user interfaces of the tools are quite different: The Project Guide can
display knowledge according to different roles in a development project, and is
browsable. The WeIl ofExperience is a small search engine containing company
relevant information.

It might be that developers require more specific information to solve most of
their daily problems. When they have a specific problem, the solution is often in a
"bug fix", or a technical description on how to change something. The solution is
not found in an abstract way to reason on such problems, which is what you might
expect from the Project Guide. Maybe the type of abstract knowledge found there
is better suited in situations that require overall decisions, but not in concrete
problem situations.

3.6.1.2 PersonaIization Strategy

When asking employees about usage, we found two uses of Knowledge
Repositories/ Librarles that are part of the personalization strategy

• Get an overview ofproblem areas (WeIl ofExperience)
• Find who has a specific competence in the company (WeIl ofExperience)

Here, the employees did not use the knowledge found in the WeH of
Experience directly. They saw the available knowledge and who made it, then
used that information for getting an overview of problem areas the company faced
often. They also saw who frequently posted tips on topics: persons who could be
considered some kind of expert. It is an interesting point that the tools with
codified knowledge can be seen as having an additional purpose other than pure
"codification" and "distribution".

3.6.2 Knowledge Cartography

We now discuss how the knowledge cartography tools supported personalization
at Alpha. We did not find any usage types that we classified as codification. Of the
cartography tools, we found the SkiIls Manager to be in use for four different
purposes:

www.manaraa.com

66 Dingsoyr and Conradi

• Searehing for eompetenee to solve problems (Skills Manager)
• Resouree aIloeation (Skills Manager)
• Finding projeets and external marketing (Skills Manager)
• Competenee development (Skills Manager)

Only two employees mentioned that they were using the Competenee Blocks.
From the interviews it seems that this tool is used mueh less than the Skills
Manager that almost everyone mentioned, where most employees had updated
their skillieveis.

Developers said they were using the Skills Manager for solving problems and
eompetenee development. Managers and administration used it for resouree
alloeation, to find external projeets and to market the eompany externaIly.

3.6.3 Learning at Alpha

We now go on to diseuss what kind of leaming the different usage types at Alpha
resulted in. We found some ofthe usage types resulted in problem solving:

• Solve a specifie teehnieal problem (WeIl ofExperienee)
• Searehing for eompetenee to solve problems (Skills Manager)

We also found use in avoiding rework and improving the work situation:

• Avoid rework in having to explain the same solution to several people (WeIl of
Experienee)

• Improve work situation by adjusting teehnieal tools (WeIl ofExperienee)

Other types of use were to obtain orientation in the eompany, and for making
some work processes more effeetive:

• Getting an overview ofproblem areas (WeIl ofExperienee)
• Finding who has eertain eompetenee in the eompany (WeIl ofExperienee)
• Resouree aIloeation (Skills Manager)
• Finding projeets and external marketing (Skills Manager)
• Competenee development (Skills Manager)
• Getting tips and adviee in projeet start-up and exeeution (Projeet guide)

If we deseribe these forms of usage in relation to the theories about leaming in
Alpha, people who had the same position in the eompany would sometimes use
different tools. Some preferred to use the Skills Manager to find experts in order
to solve a teehnieal problem, while others would seareh in the knowledge
repository WoX. This might be an indieation that the expeeted knowledge gain is
not the only faetor that affeets the ehoice of tool sinee there is also an interest in
how the knowledge is presented.

www.manaraa.com

3 Usage ofIntranet Tools for Knowledge Management 67

3.7 Conclusion, and Further Work

We found a variety of specialized knowledge management tools at Alpha. One
contained knowledge that was unstructured, the WeIl of Experience, and one
contained packaged knowledge, the Project Guide. We found two knowledge
cartography tools, the Skills Manager and the Competence Blocks. From the
interviews and the usage logs, we see that the use of these tools varied. From tbis
we conclude that there are many different knowledge management tools in a
medium-sized software company, and the tools were used to varying degrees.

In terms of tool usage, it seems that the repositories that present more
"packaged" knowledge are used less often than the tools with unstructured
knowledge. If we take into account the different groups of employees, it also
seems that project managers prefer tools with more abstracted knowledge, while
the developers prefer tools with more specific knowledge.

Further, usage of tools varied between people in the same group. Some
developers preferred oral communication to written, and tended to make more use
of the personalization tools. Others preferred written communication, and some of
these preferred to have it on paper while others preferred to have it electronically.
Others again were skeptical to the use of tools in general, because it was hard to
find relevant information. Overall, we can conclude that the use of knowledge
management tools varies both between developers, project managers and
managers, and after the employee's personal preferences.

We found 12 different types of usage of the knowledge management tools,
some relying on personalization and some on codification. From this we can
conclude knowledge management tools are used for a variety of purposes. The
practitioners in the company will adapt and use tools to suit their normal work
situations.

Knowledge repositories can function as a personalization strategy as well as a
codification strategy. For companies that want to develop knowledge management
tools, this shows that different groups of users in software companies, such as
developers, project managers, and management benefit from different types of
tools. Developers require more detailed knowledge, while the other groups seem
to benefit more from abstract knowledge in their tool use.

This also shows that a medium-sized software company can gain from being
effective at knowledge transfer through both personalization and codification, and
that it does not have to select a single knowledge management strategy.

Acknowledgement

We are grateful to contact persons and interviewees at Alpha Consulting who
shared their experience on knowledge management. We are further grateful to the
Norwegian Research Council for funding the work through the Process
Improvement for IT industry (PROFIT) project, and to all colleagues working in
the project for providing a stimulating research environment. Finally, we would
like to thank the anonymous reviewers for their helpful input.

www.manaraa.com

68 Dingsayr and Conradi

References

1. Borghoff U.M., Pareschi R. (1998) Infonnation technology for knowledge
management. Springer, Berlin Heidelberg New Yorlc, ISBN 3-540-63764-8

2. Dingseyr T. (2002) Knowledge management in medium-sized software consulting
companies. Doctoral thesis, Department of computer and infonnation science,
Norwegian University ofscience and technology, Trondheim, ISBN 82-7477-107-9

3. Dingseyr T., Conradi R. (2002) A survey of case studies of the use of knowledge
management in software engineering. International journal of software engineering and
knowledge engineering, 12: 391-414

4. Dingseyr T., R0yrvik E. (2001) Skills management as knowledge technology in a
software consultancy company. In: AlthoffK.-D., Feldmann, R.L., Müller W. (Eds.),
Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York,
Kaiserslautern, Gennany, 2176: 96-107

5. Fetterman D.M. (1998) Ethnography: step by step. Sage Publications, London, UK,
ISBN 0-7619-1384-X

6. Gunnar A.S., Coll J., Dehli E., Tangen K. (1999) Knowledge sharing in distributed
Organizations. In: Proceedings of the workshop on knowledge management and
organizational Memories, Stockholm, Sweden

7. Hansen M.T., Nohria N., Tiemey T. (1999) What is your strategy for managing
knowledge? Harvard business review, 77: 106-116

8. J0l"gensen M., Sjeberg D. (2000) The importance of NOT learning from experience.
In: Proceedings ofthe EuroSPI conference, Coppenhagen, Denmark

9. Mathiassen L., Prles-Heje J., Ngwenyama O. (2002) Improving software
organizations: from principles to practice. Addison Wesley, Boston, ISBN 0-201-
75820-2

10. Ruggles R.L. (1997) Knowledge management too18. Resources for the knowledge
based economy, Butterworth-Heinemann, Boston, USA

11. Ruppel C.P. Harrington SJ. (2001) Sharing knowledge through intranets: a study of
organizational culture and intranet implementation. IEEE transactions on professional
communication, 44: 37-52

12. Srauss A. Corbin J. (1998) Basics of qualitative research: grounded theory procedure
and techniques. Sage publications, Newbury Park, CA, ISBN 0-8039-5939-7

Author Biography

Torgeir Dingsayr wrote bis doctoral thesis on Knowledge Management in
Medium-Sizes Software Consulting Companies at the department of computer and
information science at the Norwegian University of Science and Technology in
Trondheim. He is currently working as a research scientist on software process
improvement at SINTEF Telecom and Informatics in Trondheim, Norway.

Reidar Conradi is a professor in the department of computer and information
science at the Norwegian University of Science and Technology in Trondheim.
His interests are process modeling, software process improvement, software
engineering databases, verslomng, object orientation, component-based
development, and programming languages.

www.manaraa.com

Part 2
Supporting Structures for Managing
Software Engineering Knowledge

Aybüke Aurum

No man 's knowledge here can go beyond his experience
-JohnLocke

Software engineering knowledge is dynarnic and evolves with technology,
organizational culture and the changing needs of the organization's software
development practices. Software development processes rely heavily on
knowledge and creativity of both individuals and teams in software development.
The basic principle in software engineering is that the overall quality of software
can be improved when knowledge is made available and used proficiently.
Furthermore, the need for further development of software engineering practices
within organizations adds to the demand for systematic knowledge and skill
management at all stages of the software lifecycle. Thus, developing effective
ways of managing software knowledge is of interest to software developers.

Three enabling factors support the knowledge management process in software
organizations. The first is technology that links developers to one another and
creates an organizational memory bank that is accessible to the entire
organization; second is leadership that encourages knowledge management in
software product development, services and work processes within the
organization. The final factor is organizational culture that supports the sharing of
knowledge, experiences, and technology and innovation.

There is a need to support the systematic storage of evolving knowledge, and to
capture and share emerging knowledge in software organizations [5]. The
challenge is twofold. First, software organizations need to capture, share,
coordinate and manage implicit and explicit knowledge as weIl as find complete
solutions to problems in the project and organizational level. Second they need to
fmd and integrate partial solutions for continuous improvement, and hence,
organizationallearning [4]. Once organizations recognize this need, it is essential
for them to identify their present position to serve as a baseline. In addition to
considering project size and product application domains, software development
processes adopted by organizations must be aligned with the expectations of their
customers, managerial practices, organizational culture, social dynamics and the
knowledge and skills of the developers. Furthermore, these issues have to be
integrated to a coherent guidance for performing theses processes.

Making personal knowledge available to other team members is one of the
objectives of knowledge management, because maximizing access to knowledge
across the development team increases productivity and efficiency. Furthermore,

www.manaraa.com

70 Aurum

knowledge assets related to the production process can generate significant value
within the organization.

In order to build organization-specific software know-how, organizations need
to leam from their past software projects. An organizationallearning approach to
software development involves development of experienced-based knowledge
repositories [2]. Hence, knowledge management applications must be embedded
within the organizational structure to support organizationallearning.

Reuse is one example of transferring existing knowledge to team members.
There are several questions that need to be considered when applying reuse
approaches, e.g. is it economical to spend time and money to store the knowledge?
How frequently do the developers use the knowledge? What is the content of the
data and the metadata that describes the structure ofthe data? What is the best way
to forecast the future changes in knowledge?

Another example of a knowledge management application in software
organizations is change management. This refers to one of the fundamental
aspects of overall project management, i.e. change requests must be documented
and the impact of each change on development artifacts must be tracked and
retested after the change is realized. There are significant long-term project costs
associated with not managing these issues.

Effective knowledge support in software development requires support from
both management and technicallevels in software organizations [1, 3]. This can be
accomplished in three major directions as folIows:
• Supporting software process: Support is needed for techniques and

technology for the software development process. Examples of this type of
support emerge in the form of improving software process models, activities
within processes, process results or communication between developers.

• Supporting software product: Software development is a creative problem
solving activity. Support is needed in design, engineering and modeling with
appropriate technology to deliver innovative solutions to clients.

• Supporting people: Software development processes consist of a number of
different kinds of activities and tasks. These require a considerable amount of
knowledge and experience. Software developers need support and guidance to
perform activities such as adapting a workflow to support knowledge
intensive tasks.

Several potential questions are still waiting to be explored in the field of
software engineering, e.g. how do we get the relevant knowledge, and how do we
make it available to developers? How do we improve the communication between
developers across varlous projects? How do we store and reuse the best practices,
knowledge and experience in different projects? How do we support knowledge
sharing? There are few suggested models and frameworks that provide answers
from a knowledge management perspective in order to provide support for
software engineering to improve the software development process, software
products or software team dynamics.

The objective of this section is to highlight existing problems of managing
software engineering knowledge and to examine knowledge management

www.manaraa.com

Part 2 Supporting Structures for Managing Software 71

frameworks, and to focus on those that may be potentially helpful in managing
software engineering knowledge.

There are five chapters in this part. The first of these is written by Mikael
Lindvall and Ioana Rus. The authors examine the existing problems that can be
addressed by knowledge management in software organizations. The authors
provide a comprehensive and self-contained overview of knowledge management
and a description of opportunities for software development organizations.

Software engineering knowledge creation is a social collaborative activity,
albeit some knowledge management activities are more effective than others. In
Chap. 5 Tore Dybä introduces a dynamic model, which illustrates how software
teams acquire and use knowledge in an organizational setting in order to improve
their software processes. This article provides a model that illustrates
communication, coordination, and collaboration between software teams.

Knowledge has lirnited value to developers if it is not shared. Although we
have the technology that allows knowledge workers to communicate their
knowledge, e.g. by using e-mail and intranet, the technology has a lirnited effect in
communication unless there is an explicit strategy to create, integrate, and share
the knowledge within the organization. Gary Oliver, John D' Ambra and Christine
Van Toom explore software engineering repositories from a knowledge
management perspective in Chap. 6. They propose a framework for capturing and
sharing knowledge to facilitate learning in software engineering from the
experience of others within the same organizational context.

Requirements engineering lies at the heart of software development, which
covers activities such as discovering, documenting, and maintaining requirements
for software systems. Requirements engineering is a complex problem-solving
activity on its own, because the context of requirements changes as more is
leamed about the system being built, and as the competitive environment changes.
Requirements engineering activities engage many stakeholders with varied
knowledge, skills, experiences and viewpoints. It is important to provide a support
structure to facilitate the communication and interpretation of requirements
between stakeholders so that they can better monitor and manage the requirements
engineering activities efficiently and effectively. In Chap. 7, Allen Dutoit and
Barbara Paech focus on the importance of change in requirements and knowledge,
and how to manage this in requirements engineering activities. The article
provides a novel and comprehensive methodological development by capturing
not only standard explicit knowledge, but also the unique experiences from past
projects, the discussion between stakeholders, assumptions, the rationale, or chain
of reasoning in their decisions, as weIl as instances of the problem domain
structure and limitations.

Another example of knowledge management application is in the area of the
development of applications for the World Wide Web. Whilst there has been an
increasing focus on Web-supported knowledge management, particularly in terms
of facilitating learning, knowledge sharing and providing open resources and open
communication to software developers, Httle consideration has been given to
understanding the nature of how the knowledge itself emerges during the
development of Web systems and how this relates to the peculiarities of Web

www.manaraa.com

72 Aurum

development practices and processes. In Chap. 8, David Lowe focuses on
knowledge underpinning the Web development process, examines the differences
between Web systems and conventional software systems, and explores the
implications of these differences for system modeling, development practices and
techniques, and overall development processes. The artic1e introduces specific
problems in Web development and provides a good overview of Web
characteristics and impacts.

Reference

1. Aurum A., Handzic M., Land L.P.W. (2001) Knowledge management for disaster
planning: a case study. In: Proceedings of 2nd European conference on knowledge
management, Bled, Siovenia pp. 19-30

2. Basili V.R., Caldiera G.R., Rombach H.D. (1994) Experience Factory. In: Marciniak
U. (Ed.). Encyclopedia ofsoftware engineering, lohn Wiley and Sons, pp. 469-476

3. Henninger S. (1997) Case-based knowledge management tools for software
development. Automated software engineering 4:319-340

4. King W.R., Marks P.V., McCoy S. (2002) The most important issues in knowledge
management. Communications ofthe ACM 45:93-97

5. Land P.W.L., Aurum A., Handzic M. (2001) Capturing implicit software engineering
knowledge. In: Proceedings of the Australian software engineering conference,
Canberra, Australia, pp. 108-114

Editor Biography

Dr. Aybüke Aurum is a senior lecturer at the School of Information Systems,
Technology and Management, University of New South Wales, Australia. She
received her B.Sc. and M.Sc. in geological engineering, and M.E. and Ph.D. in
computer science. She is the deputy director ofthe Center for Advanced Empirical
Software Engineering Research Group (CAESER). She is also the founder and
group leader of the Requirements Engineering Research Group (ReqEng) at the
University ofNew South Wales. Dr. Aurum is an editorial board member ofthe
Asian Academy 01 Management Journal. She is also a member of IEEE and ACM.
Dr. Aurum has published various papers in books, journals and international
conference proceedings. Her research interests include management of the
software development process, software inspections, requirements engineering,
decision making and knowledge management.

www.manaraa.com

4 Knowledge Management for Software Organizations

Mikae! Lindvall anti [oana Rus

Abstract: This chapter presents an introduction to the topic of knowledge
management (KM) in software engineering. It identifies the need for knowledge,
knowledge items and sources, and discusses the importance of knowledge capture,
organization, retrieval, access, and evolution in software development
organizations. KM activities and supporting tools for software development and
inter- and intra-organization learning are presented. The state of the
implementation of KM in software organizations is examined, together with
benefits, challenges, and lessons learned.

Keywords: Knowledge management, Software engineering, Software
development organizations, Individual and organizationallearning

4.1 Introduction

Software engineering is a fast-paced, changing and knowledge-intensive business,
involving many people working in different phases and activities. Since
individuals are the ones developing software, the ultimate goal is for them to have
access to the right knowledge at the right time. Thus, new knowledge might be
acquired, and existing individual knowledge must be leveraged to the
organizational level and then distributed back to the individuals who need it. This
has to be done in an organized manner because software knowledge is diverse and
its proportions immense and steadily growing. At the same time, knowledge is
crucial for success. From a business perspective, knowledge is needed, for
example, to improve the process and facilitate better decisions. From an
operational perspective, the knowledge is needed to master new technologies and
problem domains, and to understand and apply local procedures and policies.
There is also a need to reuse existing assets and find local expertise.

In this chapter, we identify and analyze knowledge needs in software
organizations, identify knowledge objects and sources, and examine how software
organizations could manage this knowledge to retain and enhance their intellectual
assets, thereby increasing their competitiveness. We also discuss what some
organizations are already doing and present their results and the lessons learned.
This chapter provides an overview of several areas related to knowledge
management (KM) that are covered in more detail in other chapters of this book.

www.manaraa.com

74 Lindvall and Rus

4.2 Business and Knowledge Needs

A software organization has many different needs related to knowledge. These
needs can be viewed from a business and from a skills and practice perspective.
From a business perspective, the main needs are to produce better, faster, and
cheaper software and to make better decisions. Software organizations have and
require vast amounts of knowledge to support the business objectives for which
technology, process, project, product, and domain knowledge are the most critical
areas.

4.2.1 The Need to Decrease Development Time and Cost and Inerease
Quality

Besides the overall needs of acquiring new business, keeping customers satisfied,
and protecting organizational resources in software organizations, there is a
constant need to decrease development time and cost in software projects. At the
same time, product quality must increase. Reusing previous work and avoiding
mistakes would reduce the amount of rework. Repeating successful processes
would increase productivity, quality and the likelihood of further success. In order
to avoid repeating mistakes but to actively repeat successes, knowledge gained in
previous projects could be used to guide and improve future projects. In reality,
development teams do not take full advantage of existing experience, but repeat
mistakes over and over again [8]. Valuable individual experience is acquired with
each project, and much more could be gained if there were a systematic way to
efficiently share this diverse knowledge.

4.2.2 The Need for Making Better Decisions

Software development is a process where every person involved constantly makes
decisions, either technical or managerial. Most of the time, decisions are based on
personal knowledge and experience or on knowledge gained using infonnal
contacts. This is feasible in small and localized organizations, but as organizations
grow larger and/or become distributed, more and more people and information
must be handled, often over a distance. Large organizations are suboptimizing if
they only rely on infonnally shared personal knowledge. Individual knowledge
should be shared and leveraged at project and organization levels, and formal
ways of sharing knowledge must be defmed to complement informal sharing so
that correct decisions can be made throughout the organization.

4.2.2.1 Need for Knowledge about New Teehnologies

Software engineers leam basic software methods and technologies in school, but
new ones are constantly developed. A software engineer who does not keep up

www.manaraa.com

4 Knowledge Management for Software Organizations 75

with the latest technology developments quickly becomes out of date. The
emergence of new technologies makes software more powerful, but at the same
time, new technologies could be ''tbe project manager's worst nightmare" [8]. It
takes time to become proficient with a new technology, understand its impact, and
estimate the cost of applying it. When developers or project managers use a
technology that is new to the project's team members, the engineers frequently
resort to the "learning by doing" approach that often results in serious delays.
There is thus a need to acquire and master knowledge about new technologies.

4.2.2.2 Need for Problem Domain Knowledge

Software development requires knowledge not only about its own domain and
software technologies, but also about the domain for which software is being
developed. "Writing code is not the problem, understanding the problem is the
problem" [10]. When a new project in a new domain is launched, considerable
amounts of time are spent on understanding the problem domain. Thus, there is a
need to manage problem domain knowledge better.

4.2.2.3 Need for Knowledge about Loeal Polieies, Praetiees, and Past
Projects

Every organization has its own specific culture, policies, and practices, not only
technical but also managerial and administrative. In order to perform well at the
workplace, each empIoyee must know and practice Iocal rules and policies. New
developers especially need knowledge concerning the existing software base and
Iocal programming conventions. This type of knowledge might exist only as
folklore and is often disseminated to inexperienced developers through ad hoc
infonnal meetings; consequently, not everyone has access to the knowledge they
need [32]. Passing knowledge informally is an important aspect of a knowledge
sharing culture that must be encouraged. Nonetheless, formal knowledge
capturing and sharing is necessary to ensure its availability to all empIoyees.
There is thus a need to formalize knowledge sharing of local policies and practices
while also supporting informal and ad hoc knowledge sharing.

4.2.2.4 Need to Loeate Sourees of Knowledge

Some of the organizational knowledge is captured on different media (paper,
electronic files, tapes, and so on). Individuals search for such knowledge in order
to leam from it and reuse it, but in order to do so they must know where to search.
There is thus a need to efficiently locate and access captured knowledge. At the
same time, not alI knowledge is captured, and software organizations are heavily
dependent on knowledge that lies within knowledgeable people [33]. These people
are important for the success of projects, but it can be difficult to identify and

www.manaraa.com

76 Lindvall and Rus

access them. One study found that software developers apply just as much effort
and attention to detennining whom to contact in the organization as to getting the
job done [23]. If a person with critical knowledge leaves, severe knowledge gaps
are created [8]. Tbe problem is that often no one in the organization is even aware
ofwhat knowledge was lost. [4]. Knowing what employees know is a necessity in
order to create a strategy for preventing knowledge from disappearing. Knowing
who has what knowledge is a requirement for efficiently staffmg projects,
identifying training needs, and matching employees with training offers.

4.2.2.5 Need to Share Knowledge in a Distributed Manner

Software development is a group activity. Group members are often spread out
geographically and work in different time zones and need to communicate,
collaborate, and coordinate. Communication is often related to the transfer of
knowledge. Collaboration is related to mutual sharing ofknowledge. Coordination
independent of time and space is facilitated if work artifacts are easily accessible.
Tbere is thus a need to collaborate and share knowledge independent of time and
space.

4.3 Knowledge Management in Software Engineering

In software engineering, different approaches have been proposed for achieving
business and knowledge needs. These approaches address factors such as process
improvement, introduction of new technologies, and ·'peopleware." Knowledge
management (KM) mainly addresses peopleware in that it focuses on how to
facilitate individuals' access to the right knowledge at the right time. Software
engineering has actually engaged for years in KM-related activities aimed at
learning, capturing, and reusing experience, although not using the phrase
"knowledge management." Examples of such activities are process improvement,
best practices, and the experience factory [2]. What makes KM unique is its focus
on the individual as a consumer of knowledge and as bearer and provider of
important knowledge that could systematically be shared throughout the
organization. Tbe scope of KM is organization-wide, as the knowledge and the
knowledge needs within an organization can be managed in a more organized way
than knowledge outside the organization. KM does not disagree with the value of
- or the need for - addressing other aspects of software development, such as
process and technology, nor does it seek to replace them. KM is rather an
approach to achieve software process improvement and to facilitate adoption of
new technologies. KM does this by explicitly and systematically addressing the
management of the organizational knowledge from the point of view of its
acquisition, storage, organization, evolution, and accessibility. Software process
improvement approaches, for example CMM [22], often suggest that knowledge
be managed, but do not bring it down to an operational level. KM, on the other

www.manaraa.com

4 Knowledge Management for Software Organizations 77

hand, explicitly states what knowledge needs to be managed, how, when, where,
by whom, and for whom. KM is the "glue" that ties together the daily production
activities to improvement initiatives and business goals, supporting the evolution
of learning organizations.

In software organizations, knowledge is very diverse and exists in multiple
forms. Some of the technical, product and project knowledge is already captured
in the documents produced by projects such as project plans, and requirements,
design, and testing specifications. In addition to the software product itself, the
documents capture some of the knowledge that emerged from solving problems
encountered in the project. This documented knowledge can be leveraged by a
KM initiative that systematically organizes and makes knowledge available to
employees who need it. An optional but highly recommended task the
organization can conduct is ensuring that knowledge gained during the project is
not lost. This task can be conducted during the project and shortly after its
completion. It addresses the acquisition of knowledge that was not documented as
part of the core activities as weIl as the analysis of documents in order to create
new knowledge. Included here are all forms of lessons learned and post mortem
analyses, as presented for example in [6], that identify what went right or wrong in
the project related to both software product and process. Tasks in this category
collect and create knowledge about one particular project and can be performed by
any organization. The results are useful by themselves but also can be the basis for
further learning. They can be stored in repositories and experience bases. Once
captured, the knowledge becomes explidt [21] and can be reused by subsequent
projects, for example, by analyzing solutions to different problems. The benefit of
explicit knowledge and experience is that it can be stored, organized, and
disseminated to a third party without the involvement of the originator. One
drawback, however, is that considerable effort is required to produce explicit
knowledge. Knowledge that was not explicitly captured (that is, tadt knowledge
[21]) is still owned by individuals and can only be accessed and leveraged if the
organization can identifY these individuals, and if they chose to share their
knowledge.

4.4 KM Activities and Tools

As a result of a study of the current KM activities and tools, we identified two
classes: basic KM not specific to software organizations that can support any type
of organization, and KM that specifically support software development. We
grouped the latter in three categories by the scope of their inputs (Le., one or
multiple projects); by the purpose of their outcome (i.e., to support core SE
activities, to support project improvement, or organizational improvement); and
by the level of effort required for processing the inputs in order to serve SE needs.
For more extensive discussions oftools and case studies, we refer to [19,29].

www.manaraa.com

78 Lindvall and Rus

4.4.1 Basic KM

In this category we include KM activities that can be applied to any type of
organization, especially to knowledge-intensive industries (e.g., legal services,
consulting, or advertising). We emphasize, however, how these activities and tools
(asset reuse, document management, competence management, and expert
networks) serve the needs of software organizations.

4.4.1.1 Asset Reuse

One of the approaches in the software engineering community that is related to
KM is software reuse. There are endless stories about programmers who
reimplement the same solutions over and over again and in slightly different ways.
Software reuse aims to reduce this rework by establishing a reuse repository to
which programmers submit software assets they believe would be useful to others.
The software development process is changed so that instead of developing all
software from scratch, the employee first searches the repository for reusable
artifacts. Only if nothing useful were found would the software be written from
scratch. The same concept can be applied to all software engineering artifacts,
such as requirements documents, design, and test specifications. Many of the
activities and tools discussed below support asset reuse in one form or another.

4.4.1.2 Doeument Management

A variety of processes and activities are performed during a software development
project [7], many ofwhich are document-driven. Work is many times focused on
authoring, reviewing, editing, and using these documents. These documents
become the assets of the organization in capturing explicit knowledge. Document
management systems help organimtions manage these invaluable assets, enable
knowledge transferal from experts to novices, and support the location,
organization, and reuse of documented knowledge. Common needs that arise in a
document-sharing environment are related to identifying the la test version of a
document, accessing documents remotely, and sharing the documents in
workgroups. Document management systems offer features that include storing
and uploading of documents and files; version control, organimtion of documents
in different ways, search and retrieval based on indexing techniques and advanced
searching mechanisms, and access from any Intemet-connected workstation.
Most document management systems also provide some kind of search for experts
based on authorship. Document management systems can aid learning software
organimtions that need to capture and share process and product knowledge.

www.manaraa.com

4 Knowledge Management for Software Organizations 79

4.4.1.3 Collaboration

Collaboration is increasingly required by software organizations. Software
projects often have many members that need to collaborate. Because of
globalization, software development working groups are often spread out
geographically and work in different time zones. Collaboration tools help people
communicate, collaborate, and coordinate, often independently of time and place.
Tools in this category connect employees by providing a computer-based
communication channel. This communication can be synchronous or
asynchronous. Collaboration using achat tool or a messenger tool are examples of
synchronous tools, while e-mail, bulletin boards, and newsgroups are examples of
asynchronous tools. Some tools are designed to capture communication and work
results for further use and refinement, for example, a tool that supports electronic
workshops (e-workshops) in on-line moderated meetings between expert
participants [5]. The results of such e-workshops are captured and analyzed in
order to generate new knowledge in a particular area. This illustrates that
technology and process can be used to bring people together and generate new
knowledge. Features for collaboration and communication, both synchronous and
asynchronous, are part ofmany other tools discussed in Sect. 4.5.

4.4.1.4 Competence Management

Far from all the tacit knowledge in an organization can be made explicit, and far
from all explicit knowledge can be documented. In order to utilize undocumented
knowledge, the organization needs to keep track ofwho knows what. A solution to
this problem is competence management, also called skills management, which
can be based on expert identification. While document management deals with
explicit knowledge assets, competence management keeps track of tacit
knowledge. Organizations need to develop knowledge maps and identity sources
of knowledge in terms of know-who and know-where. Once such a knowledge
map is in place it can be used to identity appointed and de facto experts, staff new
projects based on skills and experience required, and identity knowledge gaps that
indicate the need to hire new people or to develop training programs. Tools that
support competence management can be helpful, especially for large
organizations, where people do not know each other. Their necessity also becomes
obvious in any distributed, decentraIized, and mobile organization. A typical
feature of these tools is profiling or expert identification. Profiles of employees,
customers, subcontractors, vendors, partners, projects, and positions can be
generated, which also leads to identification of and searches for experts. Some
tools automatically create competence profiles by mining various sources of
information. Profiling mechanisms extract terms and phrases from e-mail
communications and documents produced or shared by individuals. Each user
profile provides a detailed index of an individual's knowledge, experience, and
work focus. A set of profiles, therefore, represents a composite snapshot of the
expertise within an organization.

www.manaraa.com

80 Lindvall and Rus

4.4.1.5 Expert Networks

Expert networks provide a forum for people who need to establish knowledge
sharing focused on solving a problem. Expert networks are typically based on
peer-to-peer support and can reduce the time spent by software engineers in
looking for specific domain knowledge. They can also be used to efficiently
transfer knowledge regarding local policies and new technologies. These kinds of
systems help geographically distributed organizations communicate and
collaborate. Common features of tools supporting expert networks are expertise
brokerage, expert identification, communication and collaboration between
people, and capture of questions and answers. These tools typically track and rate
expertise, customer satisfaction, and rewards that are given to people who
contribute to the success of the system.

4.4.2 KM in Software Organizations

With each project, software developers and managers acquire invaluable
experience. Learning from experience requires a memory or experience base that
captures process-, product- and project-related events. The environment in which
software engineers conduct their daily work often supports creating such a
memory, which could be leveraged in order to implement KM and leam more
about the organization. Version control, change management, documenting design
decisions, and requirements traceability are software engineering practices that
help build such memories as a direct or side effect of using these tools in software
development. Other tools, such as document management tools, defect tracking
tools, and competence management tools also build memories in similar ways.

4.4.2.1 Configuration Management and Version Control

Configuration management (CM) keeps track of a project documents and relates
them to each other. Version control systems such as the Source Code Control
System (SCCS) [27] represent a class of tools that indirectly create a project
memory. Each version of the documents has arecord attached with information
about who made the change and when it was made, together with a comment
stating why the change was made. This ''memory'' indicates the software
evolution. This information has been used for advanced analysis of software
products and processes, [13, 18]. Software engineers can use the information
stored in these memories, for example, to look at who made a certain change in
order to identify experts for solving the related problem.

www.manaraa.com

4 Knowledge Management for Software Organizations 81

4.4.2.2 Design Rationale

Design rationale [24] is an example of an approach that explicitly captures design
decisions in order to create a product memory. During design, different technical
solutions are tested and decisions are made based on the results of these tests.
Unfortunately, these decisions are rarely captured, making it very hard for
someone else to understand the reasons behind the solutions. Design rationale
captures this information as weIl as information about solutions that were
considered and tested but not implemented. This process can be helpful for
making better decisions and avoiding repetition of mistakes in future maintenance
and evolution of the software system.

4.4.2.3 Traceability

Software requirements drive the development of software systems, but the
connection between the final system and its requirements is often fuzzy [31].
Traceability is an approach that makes the connection between requirements and
the final software system explicit [20, 26]. Traceability indirectly contributes to
''product memory" and helps answer questions such as "What requirements led to
a particular piece of source code?" and "What code was developed in order to
satisfy this particular requirement?" This is crucial information for developers
adding new capabilities to the software.

4.4.2.4 Trouble Reports and Defeet Tracking

Trouble reports and systems for defect tracking are good sources of negative
knowledge that can be turned into positive knowledge. They contain knowledge
about product features and properties with which users have difficulties as weH as
knowledge regarding the organization's management of past complaints. By
analyzing this knowledge, the organization can leam from past experience and
design their products and process better in order to increase both customer
satisfaction as weH as the efficiency of their processes. Common needs that arise
in this environment are registering trouble reports, describing the nature of the
issue and how it occurred so it can be reproduced, and if possible, identifying its
likely cause. Systems in this category offer features that support searching for a
specific trouble report, and report generation for a certain version of a product
during a certain period of time.

4.4.2.5 CASE Tools and Software Development Environments

Computer-aided software engineering (CASE) tools and environments for
software development primarily support the design, generation, implementation,
and debugging of software, but they also support the creation of product and

www.manaraa.com

82 Lindvall and Rus

process knowledge in terms of the artifacts that are created. By explicitly
capturing design, for example, the organization enables knowledge sharing across
time and space. By using a CASE tool, the design is not only documented and
thereby memorized, but also captured in a formal way, ensuring that its semantic
meaning is well defmed. By analyzing the knowledge captured in these systems,
the organization can improve product and process design in order to increase their
quality and efficiency, respectively. Common needs that arise in this environment
are to share design environments among members of a team that might not be
physically co-located. These development environments often offer features that
support: version management of artifacts, design verification based on design
mIes, generation of source code based on design, and debugging.

For more information on these technologies we refer to the following chapters
in this book: Chap. 7 on knowledge for requirements evolution, Chap. 11 on
quality assurance, and Chap. 5 on knowledge creation.

4.4.3 KM to Support Organization and Industry Learning and
Decision Making

Many different technologies create knowledge based on results from previous
projects. Examples are prediction models, lessons learned and best practices, case
based reasoning, and data and knowledge discovery.

4.4.3.1 Prediction Models

Project managers need to make decisions, both at the beginning as weIl as during
projects. Typically, they use their personal experience and their "gut feelings" to
guide decisions. But since software development is such a complex and diverse
process, "gut feelings" may be insufficient, and not all managers have extensive
experience. F or these reasons, prediction models that transform data into
knowledge can guide decision making for future projects based on past projects.
This requires implementing a metrics prograrn, collecting data from multiple
projects with a well-defmed goal, and then analyzing and processing the data to
generate predictive models [3]. The inputs and outputs of these models can be
quantitative or qualitative. Input data are anaIyzed, synthesized, and processed
using different methods, depending on the purpose of the model and the type of
inputs and outputs. For example, analytical models take numerical data (or
qualitative data converted into quantitative levels) from a large number of projects
and try to find formulae to correlate inputs and outputs. By using these formulae
for the data that characterize a new project, one can make estimations for cost,
effort, defects, reliability, and other product and project parameters. Building,
using, and improving these models become a natural part of the KM strategy. The
drawback is that the quality of the predictions offered by these models depends on
the quality of the collected data

www.manaraa.com

4 Knowledge Management for Software Organizations 83

4.4.3.2 Lessons Learned and Best Practices

Information collected from projects can also be in a qualitative form, such as cases
and lessons learned, success and faHure stories, and problems and corresponding
solutions as weil as defect tracking, and decisions histories captured by design
rationale. This infonnation is usually in textua1 format such as rules, indexed
cases, or semantic networks. By applying generalization and abstraction, new
knowledge can be generated (manually, or automatically by applying Artificial
Intelligence (AI) techniques) that can be later applied to similar problems, in
similar contexts. This is how patterns, best-practice guidelines, handbooks, and
standards can be derived.

4.4.3.3 Case-based Systems

For example, in case-based systems, project experiences are captured in the fonn
of"cases" in order to accommodate software development process diversity while
retaining a level of discipline and standard [15]. These experiences are
disseminated to developers to provide knowledge of previous development issues
in the organization. Deviations from the standard process are opportunities to
improve the process itself. Apart from refming the process, the deviations also
work as cases in the experience base. As more and more experience is acquired in
the fonn of cases, the development process becomes iteratively more refined. For
more information on case-based reasoning we refer to Chap. 9 in this book.

4.4.3.4 Data and Knowledge Discovery

To automatically generate new knowledge from existing data, information, and
knowledge bases, there are tools that include visualization and data mining, as
weIl as analysis and synthesis. Data mining tools try to reveal patterns and
relationships between data and generate new knowledge about the data and what it
represents. Such tools can be used to identify patterns related to both the content
and the usage of knowledge. Knowledge discovery also identifies groups of users
and their profiles, as weIl as de facta experts. Thus, more complex knowledge
items are generated, for example, through deriving best practices based on lessons
learned and frequently asked questions. Tools in this category often provide data
visualization. Features for statistical analysis are also common, along with
decision support features. These features are sometimes based on AI techniques
that can help in the discovery process. Another group of tools analyze multimedia
content and transcribe it into text, identify and rank the main concepts within it,
and automatically personalize and deli ver that information to those who need it.

www.manaraa.com

84 Lindvall and Rus

4.4.4 KM at a Corporate Level

In addition to the KM activities directly related to software development presented
above, an organization must also perfonn additional tasks that support
development, such as customer relationship management, inteHectual property
management, and training and education.

4.4.4.1 Customer Relationship Management

Customer support can help keep customers satisfied and help the organi2:ation get
new business. There are mainly two forms of customer support tools: tools that
enable customers to self-help and tools that help customer support personnel
(help-desk). In some cases, vendors set up areas for customers to help each other,
i.e., to share knowledge about products and services (peer-to-peer). There are
many cases where high repeatability in the support process can be leveraged by
reusing answers to the most common questions. Over time, support personnel
acquire a vast amount of knowledge about the products and services the
organization offers, as weH as infonnation about customers and their behavior.
This knowledge is a resource for the organization as a whole and should be
captured and spread. Systems that support help desks typically have features that
direct customer requests to representatives based on customer profiles and the
representatives' expertise. Knowledge bases typically provide an interface to
capture knowledge about products, services, and their use so that new cases, new
incidents, and new lessons learned can be captured and shared.

4.4.4.2 Intellectual Property Management

Software organizations need to protect their intellectual property (IP) in the fonn
of patents, copyrights, trademarks, and service marks. Organizations that own
intellectual property need ways to automate workflow and support the
management and analysis of inventions, patents, and related matters. It often takes
a long time to file and obtain approved rights to intellectua1 property, and
organizations need support to track this process. Intellectual property regulations
require owners of copyrights, trademarks, and service marks to pay legal fees at
specific points in time, otherwise the rights can be lost. For licensing issues, it is
also important to track licensees and royalties. Another aspect of intellectua1
property is the protection of digital content covered by copyright. IP tools can help
software organizations better manage their intellectua1 property. Typical IP tools
inc1ude searching for patents capabilities, support filing for patents, searchable
knowledge bases with mIes and regulations and support for legal help, as weH as
accessing collections of fonns and standard letters. Other related issues that these
tools support are licensing of patents and tracking of licenses, as weIl as
calculation of fees.

www.manaraa.com

4 Knowledge Management for Software Organizations 85

4.4.4.3 Knowledge Portals

A study found that people in software organizations spent 40% of their time
searching for different types of information related to their projects [14].
Employees make decisions every day, but not all ofthem are based on complete
and correct information. When critical data is hard to fmd, or takes too long to
locate, it will not be available when it is needed to make adecision. Making the
best decision requires current and relevant information, which is what portals
deliver. Portals help organizations provide information to employees in a simple,
user-friendly and consistent way, thereby reducing the time spent looking for
information. In the search for knowledge, workers use many different computer
based information sources that need to be integrated and accessed through a
common interface. Portals create a customized single gateway to a wide and
heterogeneous collection of data, information, and knowledge. They also provide
different kinds of personalization so that content is presented in a manner that
suits the individual' s role within the organization and reflects personal
preferences. Both the organization and the user can control what information is
made available and how it is displayed.

4.5 KM in Support of Leaming

New employees must leam about their organization in order to get up to speed in
their new job, and existing employees must leam in order to perform their tasks
better. From an individual's perspective, learning involves acquisition,
assimilation, and application of knowledge. Once an individual has knowledge, it
must be shared with peers within a working group or organization in order to
increase collective knowledge and performance. We examine how individuals
leam and how the knowledge is leveraged at an organizational level. This is
intracompany leaming, but there is also interorganizational learning. We look at
both these processes and also discuss e-Iearning as a means of using available
technology to enable self- and distance learning.

Individuals can acquire knowledge and expertise through organized training or
by learning-by-doing as needed. Each of these approaches has strengths and
weak:nesses. For both, KM helps reduce some drawbacks. For example, organized
training is often both time-consuming and expensive and, if done externaIly to the
organization, does not cover local knowledge. KM, by capturing, storing, and
organizing knowledge, makes it possible to provide the basis for internal training
courses. Learning by doing might be risky due to the fact that mistakes are often
made until people find the right solution, and learning occurs in limited amounts
because only the knowledge needed to solve the current task is being acquired. In
support of this type of learning, KM provides knowledge or pointers to knowledge
sources, when and where they are needed.

www.manaraa.com

86 Lindvall and Rus

4.5.1 Intraorganizational Learning (Internal)

Knowledge transfer between individuals can take various forms. Most models that
support experience reuse and KM make the assumption that all relevant
experience can be collected and recorded, but this does not hold true in practice
[34]. There are a variety of more or less automated solutions to KM, addressing
different aspects and tasks, and they address both tacit and explicit knowledge.

For example, Ericsson Software Technology AB has implemented aversion of
the Experience Factory called the Experience Engine [16]. Instead of relying on
experience stored in experience bases, the Experience Engine relies on tacit
knowledge. Two roles were created in order to make the tacit knowledge
accessible to a larger group of employees. The experience communicator is a
person who has in-depth knowledge on one or more topics. The experience broker
connects the experience communicator with the person owning the problem. The
communicator should not solve the problem, but educate the problem owner in
how to solve it. A similar approach has been implemented at sd&m AG
(Germany) [8]. The idea of relying on tacit rather than explicit knowledge is
appealing because it relaxes the requirement to document knowledge extensively.
Although it utilizes knowledge, this approach still does not solve the problem of
the organization being dependent on its employees. We refer to Chap. 13 in this
book for more information on this topic.

Knowledge sharing occurs informally at cofIee tables, in the lounge, and
around the water cooler. When an employee teIls a colleague how a particular
problem was solved, knowledge is shared. Some development practices, such as
pair programming, facilitate knowledge sharing between peers, while pair rotation
helps its spread throughout the project or organization [35]. Software
organizations should encourage these habits in order to create a knowledge
sharing culture. To reach maximum knowledge sharing, employees should also be
encouraged to document and store their knowledge in a KM repository. They
should be encouraged to deposit information into the knowledge base of the
organimtion whenever they help somebody. By doing so, they ensure that the
information is recorded and will help other employees as weil, since what is a
problem for one can also be a problem for others [32].

4.5.2 Interorganizational Leaming (Extemal)

An important part of learning is learning from sources outside the organization.
Such learning can occur by sharing knowledge with outside peers, by sharing
knowledge with vendors and customers, and by sharing knowledge with the
industry as a whole, through industry-wide communities.

Software organimtions have formed numerous useful communities. Examples
of communities are the Software Program Managers Network1 (SPMN) for project

I http://www.spmn.coml(accessed on 14th April 2003)

www.manaraa.com

4 Knowledge Management for Software Organizations 87

managers, the Software Experience Consortium2 (SEC) for companies seeking to
share experience, Sun's community for Java programmers,3 the Software Process
Improvement Network,4 (SPIN) and the special interest groups ofIEEE or ACM.s

Organizations may leam from external sources, typically vendors of
technology. In support of this, several software vendors provide Web-based
knowledge bases. Examples are Microsoft's Knowledge Base6, Oracle's Support
Center7, and Perl's Frequently Asked Questions8• Such knowledge bases are often
open to the public and enable software engineers to search for knowledge
themselves. These knowledge bases result from capturing product knowledge
owned by representatives at the vendor organizations that is then made available
to the customers.

At the software industry level, committees or groups of experts identify
patterns (e.g., software design patterns) and generate handbooks and standards
(e.g. IEEE, ISO) generally applicable to software development in order to leverage
the experience and knowledge of all software development organizations. This is
not something any individual or organization can perform, as it takes much effort
and requires considerable amounts of knowledge about software engineering as
weIl as access to project data. The Software Engineering Body 0/ Knowledgff
(SWEBOK) defines the knowledge that a practicing software engineer needs to
master on a daily basis. Other examples of comprehensive coIlections of software
engineering (SE) knowledge are ISO 15504 (SPICE), describes "all" processes
related to SE, and the Capability Maturity Model CMM [22]. The Center for
Empirically Based Software Engineering (CeBASE) and ViSEK10 are examples of
projects whose goal is to build software engineering knowledge bases. They
accumulate empirical models in order to provide validated guidelines for selecting
techniques and models, supporting technology transfer, recommending areas for
research, and supporting software engineering education.

4.5.3 E-Learning

KM aims to help people acquire new knowledge, as weIl as package and deliver
existing knowledge through teaching. e-Iearning can help software organizations
organize their knowledge transfer and conduct it more effectively by using
information technology. It is a relatively new area that includes computer-based
and on-line training tools. E-Iearning is appealing because it offers flexibility in

2 http://fc-md.umd.edu/ (accessed on 14th April 2003)
3 http://developer.javasun.comldeveloper/community/ (accessed on 14th April 2003)
4 http://www.sei.cmu.edu/collaboratinglspins/ (accessed on 14th April 2003)
5 http://www.acm.orglsigs/guide98.html (accessed on 14th April 2003)
6 http://search.support.microsoft.comlkb/ (accessed on 14th April 2003)
7 http://www.oracle.comlsupportlindex.html?content.html (accessed on 14th April 2003)
8 http://www.perl.comlpub/q/faqs (accessed on 14th April 2003)
9 http://www.swebok.orgl (accessed on 14th April 2003)
\0 http://www.iese.fhg.de!ProjectsNiSEK/ (accessed on 14th April 2003)

www.manaraa.com

88 Lindvall and Rus

time and space, as weIl as collaboration between students and tutors. Many of the
collaboration and communication tools mentioned before can be used to support
this activity. Common features include reusable learning object libraries; adaptive
Web-based course delivery; component-based authoring, scheduling, and
reporting too1s; student evaluation and progress tracking; and building of skills
inventories. E-1earning systems often inc1ude collaboration too1s and support for
different types of content, i.e., video, audio, documents and so on.

4.6 Challenges and Obstacles

Implementing KM involves many chal1enges and obstac1es. Some of the most
important issues identified by [17] are:

• Technology issues: KM is supported by software techno10gy, but it is not
always possib1e to integrate all the different subsystems and tools to achieve the
desired level ofknowledge access and delivery.

• Organizational issues: It is amistake to focus on1y on technology and not on
methodology. It is easy to fall into the techno10gy trap and devote al1 resources
to technology development, without planning for a KM strategy and
imp1ementation process.

• Individual issues: Employees do not have time to input or search for
knowledge, do not want to give away their know1edge, or do not want to reuse
someone else's knowledge.

We discuss some of these issues in terms of KM as a commitment and
investment that requires a good strategy and appropriate resources. It takes time to
see the benefits from KM activities, and a "champion" is required, who constantly
"guards" the KM initiative. Employees need to be rewarded for contributing to the
KM effort and a general cultural change might be needed.

4.6.1 KM as an Investment

Planning, implementing, and sustaining KM is challenging because resources,
time, and effort are required before benefits become visible. KM is simply an
investment. Often this is considered a burden to project managers, who focus on
completing the current project on time, not on helping the next project succeed. In
KM systems that have been implemented so far, KM activities are often
performed by a different set of people, other than developers, e.g., the chief
knowledge officer (CKO) and his staff, the experience factory (EF) group, the
software engineering process group (SEPG), or the software process improvement
(SPI) group. This is to support the developers in their daily work instead of
requiring additional effort.

www.manaraa.com

4 Knowledge Management for Software Organizations 89

4.6.2 Lightweight Approaches to Knowledge Management

For knowledge bases, it generally takes too long to build a critical mass of
knowledge before users perceive it to be useful. Lightweight approaches to
knowledge capturing and sharing address this issue, allowing for quick and easy
implementation. They have the potential to pay off quickly [30], while at the same
time enabling long-term goals. An example of a lightweight approach is the
Knowledge Dust Collector [19], which that supports peer-to-peer knowledge
sharing. It captures and makes available knowledge that employees exchange and
use every day. The knowledge "dust" evolves over time into well-packaged
experience in the form of knowledge "pearls," a refined form of knowledge. An
example is captured dialogues regarding technical problems (knowledge dust) that
are analyzed and turned into frequently asked questions (FAQ, knowledge pearls).
These F AQs are further analyzed and tumed into best practices (extended
knowledge pearls).

4.6.3 The Importance of a Champion

Earlier KM initiatives recognized that any KM initiative requires an evangelist or
a champion. This person needs to encourage employees to contribute and use the
system, and must always be its proponent. As was noted by the champion of one
of the KM initiatives at Hewlett-Packard, ''the participation numbers are still
creeping up, but this would have failed without an evangelist. Even at this
advanced stage, if I got run over by a beer truck, this [knowledge] database would
be in trouble", [11]. Many companies realized that such a job requires a lot of
effort and they created specialized positions such as KM officer or chief
knowledge officer (CKO).

4.6.4 Creating a Culture of Sharing

Although new technology has made it easier than ever to share knowledge,
organizational cultures might not promote sharing. Some cultures even encourage
individualism and ban cooperative work. Lack of a "knowledge culture" was
frequently cited as a critical obstacle to a successful KM [1]. Cultural obstacle
occurs, for example, when employees feel possessive about their know1edge and
may not be forthcoming in sharing it. Their knowledge is why they are valuable to
the organization; they may fear that they will be considered redundant and
disposable as soon as the employer has captured their knowledge. Employees
might not be willing to share negative experiences and lessons leamed based on
failures because of their negative connotation. So although the purpose is to avoid
similar mi stakes, employees might fear that such information could be used
against them. Another hurdle is the "not invented here" syndrome. There are

www.manaraa.com

90 Lindvall and Rus

beliefs that the SE community has more fun reinventing solutions rather than
reusing existing experience. Although change is hard, such beliefs have to be
revisited and replaced by a positive attitude, oriented toward a sharing culture.

4.6.5 Implicit-to-Explicit Knowledge Conversion

Another obstacle is that most of the knowledge in software organizations is not
explicit. There is little time to make knowledge explicit, there are very few
approaches and tools for turning tacit into explicit knowledge, and most of the
tacit knowledge is tacit in the most extreme way, being even difficult to be
expressed and made explicit. Quick changes in technology often discourage
software engineers from reflecting on the knowledge they gained during a project,
believing that it will not be useful to share this knowledge in the future.

4.6.6 Reward Systems

It is important that the organization not only encourages but also rewards
employees who are willing to share their knowledge, to search for knowledge, and
to reuse their peers' knowledge. To encourage sharing and reusing ofknowledge,
Xerox recommends the creation of a "hall of farne" for those people whose
contributions have solved real business problems. Xerox rewards staff that
regularly share useful information and identifies them as key contributors to the
program. At Hewlett Packard, the main evangelist of the KM initiative gave out
free Lotus Notes licenses to prospective users, as weIl as free airline miles [11].
Infosys rewards contribution and usage of knowledge with "knowledge currency
units," eventually converted into a cash equivalent [25]. Another type of reward
system is the "points system" used by ExpertExchange, 11 where experts are
rewarded with points for answering questions. The experts with the highest
numbers of points have answered the most questions and are often recognized on
the front page ofthe Web site.

4.7 State of tbe Practice

Many organizations have experiences from implementing KM. One of the more
interesting case studies is British Petroleum's story on how they implemented KM
[9]. A limited, but increasing, number of software organizations report from their
KM efforts: Software development companies have realized the importance and
potential of implementing KM systems for years. There are reports published in
the 1990s regarding KM case studies in large companies such as Microsoft [12]

11 www.expertexchange.com

www.manaraa.com

4 Knowledge Management for Software Organizations 91

and Hewlett-Packard [11]. Some ofthe KM activities that they implemented were
document management, expert networks, competence management (linked with
training and education), and product development. More recently, software
organizations from around the world (USA, Europe, and Asia) are actively
reporting on their KM activities, results, and lessons learned [28]. These are
commercial and government organizations, developing software for diverse
domains such as satellites, cars, electronics, telecommunications, and for the
Internet. The growing number of publications and events on this topic indicates an
increasing interest from practitioners, consultants, and researchers in applying KM
at different levels from project-Ievel knowledge to organization-wide initiatives.
Various activities are implemented, from local project analysis and traceability to
expert networks, to complex and highly automated knowledge and experience
repositories. Companies reported that the introduction of KM activities allowed
them to achieve business goals by decreasing the number of defects, increasing
productivity, and decreasing cost (mainly by reducing mistakes and rework), as
weH as reducing the frequency of delayed responses to customer inquiries or
complaints. These improvements were due to increased understanding and
experience sharing, increased knowledge availability, and reduced production
interruptions caused by lack of knowledge, enhanced coHaboration and
communication, new knowledge creation, and knowledge retention. Learning has
become part of daily routine, leading to process improvements, better teamwork,
and increased job satisfaction.

4.8 Conclusions

We have analyzed the need for knowledge in software organizations and how
leveraging existing knowledge as weH as implementing additional KM practices
and tools could accommodate those needs. We have discussed different
approaches to implementing KM and what organizations have experienced from
thatwork.

There are some lessons learned from implementing KM, useful for
organizations that are embarking in such activities. Although technology support
is important and must exist, human and social factors are of utmost importance.
Some key factors for a successful implementation of KM in software development
companies are the acquisition of knowledge performed during projects, not after
their completion; the existence of a good atmosphere for discussing issues within
the project team; the understanding that KM (similarly to process improvement,
for example) implies change and is difficult unless integrated smoothly with the
daily activities; and fmally the recognition that improvement takes time and
results might not be immediately visible, therefore the need for upper management
long-term commitment. KM is not a "one size fits all" approach. KM requires an
implementation strategy that must address local needs, goals, problems, and
specific contexts. KM should start by being focused, evaluate the results of its
implementation in order to see what works in a specific environment, and then

www.manaraa.com

92 Lindvall and Rus

identifY the next steps. KM results must convince developers to use it and prove to
them that it is really supporting their daily work. It also must convince
management and financial decision makers that it is worth the investment and the
effort.

Despite the challenges faced by the introduction of KM initiatives, there are
good reasons to believe that KM for software organizations will succeed if
appropriately focused and implemented. One of the main arguments is that KM
systems must be supported by appropriate information technology [8]. IT might be
intimidating to many people, but not to software engineers [30]. Instead, it can be
expected that they benefit even more from advanced technology. Another
supporting fact is that all software-related artifacts are already in electronic form
and thus Can easily be distributed and shared. Also, knowledge sharing between
software engineers already occurs to a large degree in some environments. A good
example is Google Groups 12 (former Usenet discussion groups), where software
engineers actively share knowledge by answering questions and helping solve
problems that other software engineers post, without any form of compensation.
This instance shows that software engineers are willing to share their knowledge
with other people, even outside their company, and that it is worth the effort to
capture knowledge. Any organization that can adopt and adapt such a knowledge
sharing philosophy should be successful in implementing KM.

Acknowledgements

We would like to thank Jennifer Dix for proofreading.

References

l. Agresti W., (2000) Knowledge management. Advances in computers, 53: 171-283
2. Basili V.R., Caldiera G., Rombach D.H. (1994) The experience factory. Encyclopedia

ofsoftware engineering, John Wiley and Sons, UK, pp. 469-476
3. Basili V.R., Caldiera G., Rombach D.H. (1994) The goal question metric approach.

Encyclopedia of software engineering, John Wiley and Sons, UK, pp. 528-532
4. Basili V.R., Lindvall M., Costa P. (2001) Implementing the experience factory

concepts as a set of experience bases. Knowledge systems institute. In: Proceedings of
the 13th International conference on software engineering and knowledge engineering,
Buenos Aires, Argentina, pp. 102-109

5. Basili V.R., Tesoriero R., Costa P., Lindvall M., Rus 1., Shull F., Zelkowitz M.V.
(2001) Building an experience base for software engineering: areport on the first
CeBASE eWorkshop. In: Bomarius F., Komi-Sirviö S. (Eds.). Proceedings of
PROFES 2001, Kaiserslautern, Germany, pp. 110-125

6. Birk A., Dingsoyr T., Stalhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19:43-45

12 www.google.com

www.manaraa.com

4 Knowledge Management for Software Organizations 93

7. Birk A., Surmann D., Althoff K.-D. (1999) Applications of knowledge acquisition in
experimental software engineering. In: Proceedings ofthe 11th European workshop on
knowledge acquisition, modeling, and management, Dagstuhl, Germany, pp. 67-84

8. Brössler P. (1999) Knowledge management at a software engineering company - an
experience report. In: Proceedings ofthe workshop on learning software organizations,
Kaiserslautern, Germany, pp. 163-170

9. Collison C., Parcell G. (2001) Learning to fly. Capstone publishing, Milford, USA
10. Curtis B., Krasner H., Iscoe N. (1988) A field study ofthe software design process for

large systems. Communications ofthe ACM, 31:1268-1289
11. Davenport T. (1996) Knowledge management at Hewlett-Packard. Knowledge

Management Case Study, http://www.bus.utexas.edu/kman/hpcase.htm (accessed 17th
April, 2003)

12. Davenport T. (1997) Knowledge management at Microsoft. Knowledge management
case study. http://www.bus.utexas.edu/kman/microsoft.htm (accessed 17th April,
2003)

13. Eick S.G., Graves T.L., Karr A.F., Marron J.S., Mockus A. (2000) Does code decay?
Assessing the evidence from change management data. IEEE transactions on software
engineering, 27: 1-12

14. Henninger S. (1997) Case-base knowledge management tools for software
development. Automated software engineering, 4: 319-340

15. Henninger S. (2000) Using software process to support learning software
organizations. In: Proceedings of the 25th Annual NASA Goddard software
engineering workshop, Greenbelt, MD, USA

16. Johansson C., Hall P.C.M. (1999) Talk to Paula and Peter-they are experienced, In: the
Proceedings of the workshop on learning software organizations, Kaiserslautern,
Germany, pp. 171-185

17. Lawton G. (2001) Knowledge management: ready for prime time? IEEE Computer,
34: 12-14

18. Lindvall M. (1998) Are large C++ classes change-prone? An empirical investigation.
Software practice and experience, 28:1551-1558

19. Lindvall M., Rus 1., Jammalamadaka R., Thakker R. (2001) Software tools for
knowledge management. In: Data and analysis center for software (DACS): state-of
the-art-report, Fraunhofer Center for experimental software engineering, University of
Maryland, Maryland, USA. Prepared for Air force research laboratory, Information
directorate, Rome, NY 13441-4505

20. Lindvall M., Sandahl K. (1996): Practical implications of traceability. Software
practice and experience, 26: 1161-1180

21. Nonaka 1., Takeuchi H. (1995) The knowledge creating company, Oxford university
press, USA

22. Paulk M.C. (1993) Key practices of the capability maturity model, Version 1.1. In:
SEI, Carnegie Mellon University, technical report, CMU/SEI-93-TR-25

23. Perry D.E., Staudenmayer N., Votta L. (1994) People, organizations, and process
improvement. IEEE Software, 11: 36-45

24. Potts c., Bruns G. (1988) Recording the reasons for design decisions. In: Proceedings
ofthe 10th International conference on software engineering, pp. 418-427

25. Ramasubramanian S., Jagadeesan G. (2002) Knowledge management at Infosys. IEEE
Software, 19: 53-55

www.manaraa.com

94 Lindvall and Rus

26. Ramesh B. (2002) Process knowledge management with traceability. IEEE Software,
19: 50-52

27. Rochkind M.J. (1975) The source code control system. IEEE transactions on software
engineering, 1:364-370

28. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. IEEE
Software, 19: 26-38

29. Rus I., Lindvall M., Sinha S. (2001) Knowledge management in software engineering.
Data and analysis center for software (DACS) State-of-the-art-report, Fraunhofer
center for experimental software engineering, University ofMaryland, USA. Prepared
for Air Force research laboratory, Information directorate, Rome, NY 13441-4505

30. Schneider K.(2001) Experience magnets - attracting experiences, notjust storing them.
In: Proceedings of the product focused software process improvement, Kaiserslautern,
~any,pp. 126-140

31. Soloway E. (1987) I can't teIl what in the code implements what in the specs. In:
Proceedings of the 2nd international conference on human-computer interaction,
Honolulu, Hawaii, USA, pp. 317-328

32. Terveen L.G., Sefridge P.G., Long M.D. (1993) From "folklore" to "living design
memory". In: Proceedings of the ACM conference on human factors in computing
systems, Amsterdam, The Netherlands, pp. 15-22

33. Tiwana A. (2000) The knowledge management toolkit: practical techniques for
building a knowledge management system, Prentice Hall PTR, Upper Saddle River,
NJ, USA

34. Wieser E., Houdek F., Schneider K. (1999) Systematic experience transfer - three
cases from the cognitive point of view. International conference on product focused
software process improvement, Oulu, Finland, pp. 323-344

35. Williams L., Kessler R.R., Cunningham W., Jeffiies R. (2000) Strengthening the case
for pair programming. IEEE Software, 17: 19-25

Author Biography

Mikael Lindvall is a scientist at the Fraunhofer Center for Experimental Software
Engineering Maryland. Dr. Lindvall specializes in work on experience and
knowledge management in software engineering. He is currently working on ways
of building experience bases to attract users to both contribute and use experience
hases. Dr. Lindvall received bis Ph.D. in computer science from Linköpings
University, Sweden in 1997. Lindvall's Ph.D. work focused on the evolution of
object-oriented systems and was based on a commercial development project at
Ericsson Radio in Sweden.

Ioana Rus is a scientist for the Fraunhofer Center for Experimental Software
Engineering, Maryland. She graduated from Arizona State University with a Ph.D.
in computer science and engineering. Her research interests include software
process improvement, knowledge management, process modeling and simulation,
measurement and experimentation in software engineering, and artificial
intelligence.

www.manaraa.com

5 ADynamie Model of Software Engineering
Knowledge Creation

ToreDyM

Abstract: Software-intensive organizations that intend to excel in the twenty-fIrst
century must leam to manage change in dynamic situations. Rather than seeking
stability, they should focus on creating software engineering knowledge and mind
sets that embrace environmental change. The model developed in this chapter
supports this shift by directing attention to the need for communication,
coordination, and collaboration. The key to successful knowledge creation is
continuous and simultaneous dialectic interplay between the knowledge that the
organization has established over time, and the knowing of the organization's
members in their respective contexts.

Keywords: Software engineering, Knowledge management, Knowledge creation,
Organizationallearning, Software process improvement.

5.1 Introduction

eurrent models of change, which are founded on the old ''unfreeze move refreeze"
paradigm [35], provide insufficient guidance in a constantly changing and
increasingly unpredictable environment. Rather than seeking an unachievable
stability, software organizations should focus on creating software engineering
(SE) knowledge and mind-sets that embrace environmental change.

The model developed in this chapter supports this shift by directing attention to
the needs for communication, coordination, and collaboration within and between
software teams. The model is about how software teams acquire and use
knowledge in an organizational setting in order to improve their software
processes. Verbs like "knowing" or "learning" are used to emphasize action
oriented and dynamic properties, while the noun "knowledge" is used to describe
static properties.

In developing the model, we have emphasized the fUndamental principle o[the
hermeneutic circle [29] in which knowledge is gained dialectically by proceeding
from the whole to its parts and then back again. This is also what happens in
practice; each time incongruence occurs between part and whole, a
reconceptualization takes place. The frequency of such reconceptua1izations
decreases as the match improves between the conceptua1ization of the
organization and that held by the organization's members.

Another important principle behind the model is the focus on context-specijic
needs. The knowledge that the software organization creates, its methods for
creating it, and the criteria by which these methods are considered valid are all
based on the organization's prior experience for dealing with ''problematic

www.manaraa.com

96 Dybä

situations" [16]. As situations that the organization considers problematic, change,
so may its methods for dealing with them and the criteria for judging them as
valid. The uncertainty about situations or what actions to take in them is what
makes them problematic. This is the point from which SE knowledge creation
begins and is very different from current models in which improvement is seen as
starting with the implementation of "best practices" according to a predetermined
scheme, independent ofthe organization's experience ofproblematic situations.

A critical element in our model, therefore, is the integration of knowledge
creating activities with the "real work" of software development. This way, we
consider software teams and their projects as the baseline for knowledge creation
and software process improvement (SPI) and as primarily responsible for keeping
the organization's processes on the leading edge oftechnology.

Figure 5.1 presents an overview ofthe dynamic model ofsoftware engineering
knowledge creation. The model contains the following four major elements:

• Organizational context: This is the general environment that imposes
constraints and opportunities about what the organization can and cannot do.
Furthermore, since we perceive the organization as an open system, the reality
experienced by the various software teams contains elements from outside the
organization as weIl as from the organization itself.

• Learning cycle: The organization's learning cycle is a dialectical process that
integrates local experience and organizational concepts. All members and
groups of members in the organization contribute in the social construction of
the software organization's knowledge. At the same time, the organization's
memory limits the range of the possible actions for its members.

• Organizational performance: This is the performance or results of the
organization's improvement activities. It is the dependent variable that is used
to measure whether gains have in fact been made with respect to organizational
behavior and performance, and not merely at the cognitive level.

• Facilitating lactors: These are the conditions that facilitate or enable
knowledge creation and SPI. They are the key factors for success that the
software organization must put in place in order to facilitate the organization's
learning cycle and improve its development process.

According to this model, SE knowledge creation is defined as a dynamic
interplay between two primary dialectics. The first is that between the local and
organizational level. The other is that between generating and interpreting
organizational knowledge. These dialectics represent the interplay between the
knowing of the organization's members in their respective contexts and the
knowledge that the organization has established over time. This interplay is a
dynamic and simultaneous two-way relationship between the organization and its
members that combines local transformation with the evolution of the
organization. This is similar to Piaget's [43] description ofthe learning process as
a dialectic between assimilating experience into concepts and accommodating
concepts to experience. In our model, knowledge is created from the balanced

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 97

tension between these two processes. Our emphasis is thus on knowledge creation
as a dialectic process that integrates local experience and organizational concepts.

Organlzational
memory

CD

~
U c

.! 111

C E 0 .g 0
ii CD
c q q D.
0 ii

~ c
0

c i
111 ~
e' c
0 111

E!I
0

Local knowing

Fig. 5.1. Adynamie model of software engineering knowledge creation

The model presented in this chapter has several advantages compared with
current best-practice models. First, it should be clear that organizational
knowledge is not being created to rnirror a reality that is independent of human
action, but to deal with it. Second, starting SPI from problematic situations in
software teams reduces the risk that SE knowledge creation will be detached from
action, and undertaken to build knowledge for its own sake. Third, it increases the
likelihood that knowledge intended for application to practical problems will
ultimately serve its purpose, given that knowledge gained from concrete situations
is more likely to remain applicable to future concrete situations.

5.2 Organizational Context

Generally, quality management literature supports the proposition that ideal
quality management should not be affected by contextual variables. Juran and
Godfrey [27], for example, stated that ideal quality management is "universal" and
suggested that the expectations regarding quality management should be the same
regardless of the context ''no matter what is the industry, function, culture, or
whatever" [25, p. 2.5]. Crosby [10, 11], Deming [15], and Feigenbaum [22] also
support this context-free view of quality management. However, empirical studies
have indicated that nevertheless, organizational context influence managers'
perceptions of both ideal and actual quality management, and that contextual
variables are useful for explaining and predicting quality management
practices [5].

www.manaraa.com

98 Dybä

Like most of the quality management approaches, a context-free view of
process improvement is at the heart of the best-practice paradigm and models like
CMM, ISOIIEC 15504, Trillium, and Bootstrap. In contrast to the best-practice or
model-based approach to SPI, the analytic approach [9] is more concerned with
the contingent characteristics of individual organizations. For example, the
importance of context is made explicit in the different steps of quantum
information processing (QIP) [2] and also in the various templates and guidelines
for the use of goals question metrics (GQM) [3, 55].

However, despite important differences, both the model-based and analytical
approach to SPI seem to be most concerned with solving the needs of large
organizations operating in highly stable environments with long-term contracts
(e.g., the US Department of Defense and NASA). This is further confirmed by
famous cases of successful SPI such as Alcatel [14], Hewlett-Packard [24],
Hughes [26], Motorola [13], Philips [44], Raytheon [18], and Siemens [39], which
are veritable giants compared to small and medium-sized enterprises (SMEs).

Most SMEs face two challenges: an ever-changing environment, and few
projects running at any given point in time. As a result, they have few data that
they can analyze and use to build up an experience base. In addition, collected
data soon becomes outdated and left irrelevant or- in the best case- uncertain.
Taken together, this implies that SMEs cannot base their improvement actions on
collecting long time series or amass large amounts of data needed for a tradition
statistical improvement approach.

Thus, two contextual variables are included in the model to capture the most
influential sources of variation in software organizations: environmental
turbulence and organizational size.

5.2.1 Environmental Turbulence

The software organization's environment refers to various characteristics outside
the control of the organization that are important to its performance. These
characteristics include the nature of the market, political climate, economic
conditions, and the kind of technologies on which the organization depends.

The environment 0/ a particular software organization may range /rom stable
to dynamic, that is /rom predictable to unpredictable. In a stable environment the
software organization can predict its future conditions and rely on standardization
for coordination [40]. Certainly, a stahle environment may change over time, but
the variations are still predictable. But when the conditions become dynamic, i.e.,
when the market is unstable, the need for product change is frequent and turnover
is high. Such change is highly unpredictable, and the software organization cannot
rely on standardization. Instead, it must remain flexible through the use of direct
supervision or mutual adjustment for coordination, calling for the use of a more
organic structure. Therefore, the effectiveness of a software organization's
structure depends on the environment ofthe organization.

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 99

5.2.2 Organizational Size

Organizationalliterature suggests that large organizations are less likely to change
in response to environmental changes than small organizations. Tushman and
Romanelli [51], for example, argued that increased size leads to increased
complexity, increased convergence, and thus, increased inertia Likewise,
Mintzberg [40] postulated that the larger an organization, the more formalized its
behavior. So, while small organizations can remain organic, large organizations
develop bureaucracies with job specialization and sharp divisions of labor,
emphasizing stability, order, and control. As a consequence, they often have great
difficulties in adapting to changing circumstances because they are designed to
achieve predetermined goals- they are not designed for innovation.

From a learning perspective, however, inertia develops as a result of the
organization's performance history [33]. Large organizations tend to be successful
since an organization grows larger with repeated success. However, since success
reduces the probability of change in a target-oriented organization [12], large
software organizations less likely to change when the environment changes.

5.3 Learning Cycle

As we have a1ready argued, SE knowledge creation is defined as a dynamic
interplay between two primary dialectics. The first is that between the local and
organizational level. The other is that between generating and interpreting
organizational knowledge. In this section, we make a detailed description of each
of these four elements of the learning cycle.

5.3.1 Local Knowing

The primary context within which meaning is constructed, new knowledge
created, and improved courses of action are taken, is the shared practice within
local software development teams. Software developers do not work in isolation;
they work together to develop products that they could not develop by working as
individuals. This focus on teams and their collaborative processes is important
because no single developer embodies the breadth and depth of knowledge
necessary to comprehend large and complex software systems. Also, it is
important because codified or explicit organizational knowledge is seldom
sufficient to solve a particular problem. Thus, just as a single soccer player cannot
playagame of soccer by himself or herself, only a group of software developers,
working as a team, can develop software of a certain size and complexity.

The software teams' way of grasping the world and forming local rea1ities is by
apprehension, in the present movement of "here-and-now" [30]. They are
concemed with concrete situations as experienced in all their complexity during
software development. They act in a specific context in which reality is constantly

www.manaraa.com

100 Dybä

being created and recreated. Local knowledge is therefore not an explicated and
static model of causal relationships for software development. Rather, it shows up
in the local actions taken by the developers in the team and can, thus, better be
characterized as "knowing."

Therefore, by loeal knowing we refer to the knowledge-in-action associated
with participating in the collective practice of software development in a specific
context. It is important to stress this, since a software organization's primary
concern is the actual praetiee of developing software, and not merely the creation
of knowledge on how to do it. Local knowing is, therefore, about how the
software organization works, or its theories-in-use, as seen from the local teams or
work groups in the organization. Participating in software teams is consequently
not only a matter of developing software, but also of changing the organization's
knowledge about software development and to genera te improvement.

The context in which software developers interact contributes to the
knowledge-creating process in several ways. First, each software team or work
group operates in a particular setting with a particular mix of people, tools, and
techniques to defme and solve a particular software development problem. Also,
the way in which software developers use prior experience and available tools and
techniques varles with the particular, concrete circumstances. That is, software
developers will approach a certain problem depending on the actual setting
because each setting tends to evoke certain kinds of "appropriate" modes of
thought and action [52]. Moreover, software developers often take advantage of
the setting itself to help them define a problem or to discover solutions.

Also, software developers incorporate codified organizational routines into
local informal practices, freely adapting the routines as they work on solving
actual problems in their particular circumstances. Local knowing draws on both
the organizational members' individual understandings of the situation and their
ability to use the relevant parts of organizational memory that is available in a
given context. Therefore, the context in which software development takes place
partly determines what the organization's members can do, what they know, and
what they can leam. Moreover, since different local settings provide different
opportunities for leaming, any SE knowledge creation activity will also be a
situated process.

Therefore, all software development and SE knowledge creation have an ad hoc
adroitness akin to improvisation because they mix together the contingency of the
present situation with lessons learned from prior experience [20]. Ryle described
this mixture as ''paying heed" [45], to be thinking at what one is up against here
and now by adjusting oneself to the present situation, while at the same time
applying the lessons already leamed. In other words, local knowing is affected by
the current setting as weIl as by the organization's memory ofits past experience.

Such an improvisational theory of local knowing has its roots in pragmatists'
notion that knowledge is not absolute, but rather can only be defmed in relation to
a specific situation or context [17]. Questions about what is ''true'' are answered in
relation to what works in a given setting. Consequently, local knowing is
pragmatie and produces actions that are oriented toward established goals,
directed at doing whatever is necessary to reach the objective.

www.manaraa.com

5 A Dynamic Model ofSoftware Engineering Knowledge Creation 101

Thus, SE knowledge creation occurs through people interacting in context or,
more precisely, in multiple contexts. This situated and pragmatic characteristic of
knowledge creation has important implications for how problem framing, problem
solving, and SPI take place in software organizations. Most importantly, this
perspective suggests that traditional decontextualized theories of SPI cannot
completely account for leaming in software organizations. Rather, since leaming
is an interactive social process, contextual factors affect both how and what
organizational members leam.

There are several social groups within a software organization that share
knowledge and that may be identified as having a distinct local reality. Examples
of such groups are formal project teams and informal groups of software
developers and managers. A group's local reality can be seen as a way of acting in
relationship to the rest of the organization. However, shared practice by its very
nature creates boundaries [61].

There are two basic conditions for establishing connections across such
boundaries and making communications between the groups effective. First, each
group must respect the expertise ofthe other and must acknowledge the relevance
of that expertise to their own problems. Second, each group must have sufficient
knowledge and understanding of the other groups' problems to be able to
communicate effectively with them. However, experience shows that these
conditions are unlikely to be satisfied unless a sufficient number of members of
each group have bad actual experience with the activities and responsibilities of
the other groups [50].

Mutual adjustment [40], which largely depends on face-to-face contact, is the
richest communication channel we have and is by far the most effective form of
transferring and exchanging know1edge and experience in local teams. Also, face
to-face experience and interaction are the keys to creating and diffusing tacit
knowledge. Therefore, people working together with frequent, easy contact will
more easily exchange knowledge and experience with each other than people that
are separated by time and space. This has important implications for SE
knowledge creation, since local software deve10pment teams can utilize the
flexibility offace-to-face communication and shed bureaucracy.

However, communication capacity rapidly becomes saturated as the group
grows. Without compromises, it is impossible to extend mutual adjustment in its
pure form to organizations 1arger than the small group. Nevertheless, with the
support ofproper technology, considerab1e extension ofthe coordination ofwork
by mutual adjustment is possible if the adjustment is mediated by indirect
communication through a repository of externalized organizational memory. Such
implicit coordination [25] of software developers working from a common
experience base greatly reduces the need for extra communication and direct
supervising efforts in the organizational leaming process. Contrary to efforts to
provide better tools for handling the increased communication, such as groupware
solutions or efforts at standardizing the work process, the attack point in our
model is to reduce the volume of communication needed for coordination.

www.manaraa.com

102 Dybä

In the next section, we describe the process of generating new explicit
knowledge based on local knowing so that lessons leamed can be incorporated in
organizational memory and shared outside the team.

5.3.2 Generating Knowledge

Generating new explicit knowledge is a collective process where a group of
software developers attempts to externalize their local knowing. This means, for
example, that a software team must take time to express its shared practice in a
form that can meaningfully be understood and exploited by other organizational
members. This process involves the articulation of tacit knowledge into such
explicit knowledge as concepts, models, and routines through the use of words,
metaphors, analogies, narratives, or visuals. The result of this process is new
organizational knowledge and an extended range of explicit organizational
memory.

In practice, dialogue [7] and collective reflection [47], or reflective observation
to use Kolb's terminology [30], triggers the articulation of explicit knowledge.
This process of generating new explicit knowledge brings some of what the
software team apprehends into what the team comprehends.

Dialogue is an important way of collectively grasping experience through
comprehension such that the software team is able to articulate and build models
of their experience and thereby communicate it to others. The team allows others
to predict and recreate knowledge to the extent that such experience models are
accurately constructed from the team's local knowing.

Collective reflection and dialogue facilitate a greater coverage of past
experience, since individual developers can prompt each other to help remember
the past. In this sense, multiple and even conflicting individual experience enables
a more comprehensive recollection of past events. Such diversity in local knowing
between software teams should not be seen as a problem, but rather as a valuable
source for SE knowledge creation. It is the differences, not the agreements that are
the possibilities for leaming and change.

One of the most effective ways of externalizing local knowledge in software
organizations is through the use of models, tools, and techniques. When
constructing models or systems, however, only parts of the local reality will be
externalized since "The program is forever limited to working within the world
determined by the programmer's explicit articulation of possible objects,
properties, and relations among them." [62, p. 97]. Such modeling creates a
blindness that limits it to what can be expressed in the terms that the organization
has adopted. Although this is an unavoidable property of models and technology,
the software organization should, nevertheless, be aware of the limitations that are
imposed.

Wehave used several knowledge-creation techniques to externalize, evaluate,
and organize new knowledge. Among the most widely used have been the GQM
approach [3, 55], the KJ Method [48], and Mind Maps [8]. Common to these
techniques is that they help a group of developers to create ideas and articulate

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 103

their knowledge through two phases. During the divergent thinking phase, the
participants articulate key words, phrases, goals, questions, or metrics that they
think are relevant for the dialogue. In GQM, these concepts are documented in
GQM abstraction sheets, while the KJ method uses less structured Post-it Notes,
and Mind Maps uses a picture of words.

During the convergent thinking phase, groups using GQM combine their
abstraction sheets into one sheet per goal and jointly try to resolve any conflicts
and inconsistencies. With the KJ method, the participants organize their Post-it
Notes into logical groups, which are then related into a diagram of concepts and
ideas as the concIusion. In a similar way, Mind Maps are used to organize
concepts by placing each idea next to the concept to which it is related.

This dialectic of divergent and convergent inquiry facilitates the surfacing of
hidden assumptions. The collaborative nature ofthese processes and the utilization
of figurative language for concept creation are what, in our experience, make these
techniques such powerful tools for collectively extemalizing the tacit knowledge
of a group of software developers and, thus, generating new organizational
knowledge.

Articulating tacit knowledge and creating new explicit concepts is not enough.
For new knowledge to be useful for others outside the team, it must also be
packaged. Knowledge gained locally should be consolidated and globalized in the
form of experience packages and stored in an Organizational Memory Information
System, or Experience Base [4], so it is available for future projects. In principle,
most kinds of experience can be extemalized, packaged, and made available in the
organization's experience base.

Still, each organization must decide for itself what knowledge needs to be
packaged based on its business values and needs. Furthermore, since face-to-faee
interactions need to be high when transferring new eoneepts to a different
loeation, eaeh experienee paekage should be indexed with Ioeal areas of expertise
and references to groups or individuals who ean help the receiving unit. Moreover,
the organization should decide how its experience packages should be stored in
organizational memory.

However useful the teehniques a software organization might use for the
artieulation of explieit knowledge and experienee paekaging, the loeal knowing
ean never be fully represented in organizational memory. Contextual information
is inevitably lost in this proeess, and what is stored in organizational memory is a
deeontextualized subset of loeal knowiedge. Therefore, proper eonsideration of
how memory objeets will be deeontextualized and then reeontextualized in future
use is necessary. In other words, we must be able to eonsider the present through
the lens of future aetivity [1].

In the next seetion, we deseribe the proeess of ineorporating experienee
paekages into organizational memory together with examples of typical memory
eategories.

www.manaraa.com

104 Dybä

5.3.3 Organizational Memory

Organizational memory is a generic concept used to describe an organization's
capability for adoption, representation, and sharing of new beliefs, knowledge, or
patterns for action. It is essential for SE knowledge creation to occur by
embedding organizational members' discoveries, inventions, and evaluations.
Sometimes this may require official action and issuing revised regulations or
operating guidelines. However, since each local group within an organization has
its own culture, it also requires informal acceptance by enough opinion leaders
and rank and file members for it to be disseminated as valid and valued
knowledge.

In other words, that which is accepted in one part of an organization may or
may not be passed on to other units or parts of the organization- one unit's
knowing could be another unit's rubbish or heresy. Thus, lessons learned cannot
easily be transferred from one setting to another. Also, higher levels of the power
structure can destroy the learning of lower levels as a matter of policy, or even as
a matter of neglect or indifference- except sometimes in the case of a strong
counter-culture arising out of long conflict and shared grievance. Thus, memories
are cooperatively created and used throughout the organization. In turn, they
influence the learning and subsequent actions that are taken by the local groups in
the organization.

Bach time a software organization restructures itself, the contents of its memory
are affected. Since much ofthe organization's memory is stored in human heads,
and little is put down on paper or held in computer memories, turnover 01
personnel is a great threat to long-term organizational memory. When experts
leave, the costs to the organization are even greater because it takes years of
education, training, and experience to become an expert [50]. Loss of such
knowledge can undermine the competence and competitiveness of the
organization, and can also have a serious impact on cultura1 norms and values.
However, we should be careful not to assume that the availability of
organizational memory necessarily leads to organizations that are effective; it can
also lead to lower levels of effectiveness and inflexibility [59].

Based on Walsh and Ungson's definition [58], we focus on organizational
memory as the means by which a software organization 's knowledge from the past
is brought to bear on present activities. This definition makes no assumptions
regarding the impact of organizational memory on organizational effectiveness,
since this depends on the ways in which the memory is brought to use. For
example, when organizational knowledge is consistent with the goals of the
organization, organizational memory can be said to contribute to organizational
effectiveness. At the other extreme, organizational memory can be seen as a
structure that objectivates a fixed response to standard problems that constrains
and threatens the viability of organizations operating in turbulent environments.

Therefore, the members of the software organization must themselves
determine what to do with the knowledge they acquire in order to meet the
incompatible demands of change and stability. Organizational memory can be
viewed as a structure that both enables action within the software organization by

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 105

providing a framework for common orientation and, at the same time, limits the
range of action by constraining the possible ways of developing software. Thus,
just as organizational memory provides stability, it can also serve to block change.

To be useful for the software organization as a whole, newly created concepts
have to be communicated and explained to others who have not shared the
concrete experience. This makes justification an essential process since the
organization must decide whether new concepts and beliefs are worthy of further
attention and investment [56]. There is an inherent dialectic here that the
justification process tries to balance. On the one hand, newly generated knowledge
has to be related to existing organizational knowledge in order to be acceptable
and understandable. On the other hand, new knowledge ehallenges the
organization's existing understanding ofthe world through its novelty, provoking
complex processes of argumentation and justification, to be deeided in favor of the
existing or the newly emerging views.

Justification proeesses are therefore important for the software organization's
memory sinee they deeide whether new knowledge is rejected as irrelevant or
uninteresting, returned to the local team for further elaboration, or appropriated as
justified true beliefand therefore integrated into organizational memory.

However, for a software development team to be able to reuse a memory objeet
like an experienee package (see Table 5.1 for typical examples), it must be
recontextualized and made relevant for the new situation. That is, the memory
object must be reunderstood for the developers' eurrent purpose. A proper
understanding of how loeal knowing is first decontextualized and adopted as
organizational memory and then recontextualized into new loeal knowing is of
eritical importanee for the utilization of organizational memory. This problem has
largely been unnotieed in eontemporary debates on experience bases within SPI,
whieh is often limited to the teehnical challenges of implementing a database.
However, if we do not address the problems of reeontextualization, the whole
eoneept of organizational memory and experienee bases will be more or less
useless.

The next section deseribes how the organization's memory can be put back into
use and beeome part of local knowing through a process of eollective
interpretation.

5.3.4 Interpreting Knowledge

The eollective interpretation of knowledge is the proeess of making organizational
memory an integral part of loeal knowing by making sense out of the actions,
systems, structures, plans, models, and routines in the organization. Through this
proeess, the organization's memory is recontextualized and taken up into the
practice of local software development teams. It is a process of "re-experiencing"
[42] other teams' experienees.

www.manaraa.com

106 Dybä

Table 5.1. Memory categories and examples oftypical elements

Memory Category
Worldview

Structure

Plans and models

Systems

Routines
Lessons learned

Typical Elements
Culture, beliefs, assumptions, values, norms, strategies, power
relations, symbols, habits, expectations
Task structure, roles, behavior formalization, coordinating
mechanisms, unit grouping, workplace ecology
Life cycle models, assessment models, project plans, milestone
plans, quality plans, improvement plans, measurement plans,
action plans
Information systems, tools and techniques, quality control
systems, training systems, social systems
Rules, standard operating procedures, development processes
Experience reports, articles, memos, newsletters, stories, feedback
sessions, peer reviews, post mortem reviews

A major confusion in much of the thinking in contemporary knowledge
management and SPI is equating easy access of information with learning.
However, there is an important difference between passively receiving
information and actively interpreting and making sense of it. When an individual
software developer receives information, he or she relates that information to past
moments of experience in order to make sense of it. It is the differences from what
is expected, and not the agreements, that provide the possibilities for SE
knowledge creation. Therefore, we attend to that which is different from OUf

current understandings and from OUf expectations in order to compare it with
already extracted cues. Learning can only be said to have taken place when the
individual has formed new networks of meaning and new reference points for
future sense-making processes from the information encountered.

Collective interpretation processes are still more complex. Not only must each
software developer engage in an individual process of sense-making, he or she
must do so while simultaneously interacting with other developers. By engaging in
collective interpretation, each developer is influenced by the meanings held by
others, and in turn influences the meanings of others. This way, each developer
can better understand the experiences and reasoning the other developers are using
in their interpretations and by comparison understand each other's meanings more
fully. Based on these interactions, the developers are in a position to form a
collective interpretation of the organizational knowledge that is available to them.

Therefore, collectively interpreting organizational knowledge involves active
construction 01 knowledge in the form of active formulation and solution to
problems with the help of explicit models, guiding routines, and feedback. This
highlights an important aspect of SE knowledge creation: collective interpretation
is effective not necessarily as a function of simple intemalization, with modeled
information being transferred across a barrier from the organization to the inside
of a team, or with information being transmitted. Rather, these interpretations are
effective through peripheral and active participation [34], whereby the members of
a team collectively transform their understandings and skills in framing and
solving a problem. According to this view, it is the active construction through

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 107

first-hand experience that is so crucial to SE knowledge creation, not some distant
guidance or universal rule.

Rather than being transmitted or internalized, knowledge becomes jointly
constructed in the sense that it is neither handed down ready-made from the
organization, nor something a team constructs purelyon its own. Knowledge,
understandings, and meanings gradually emerge through interaction and become
distributed among those interacting rather than individually constructed or
possessed. Furthermore, since knowledge is distributed among participants in a
specific activity context it is necessarily situated as weil. That is, intimately
welded to the context and the activity in which and by means of which it is
constructed. Therefore it is important that participation becomes the key concept
here, as contrasted with acquisition, with conceptual change serving as both the
process and the goal of learning.

In the process of forming collective interpretations, it is important that we
distinguish between reducing ambiguity and reducing uncertainty. Ambiguity is
the lack of clarity about the technologies and processes of software development
when the environment is difficult to interpret, and when cause and effect are
disconnected so that the organization is unable to link its actions to their
consequences. It has more to do with the confusion of multiple meanings than
with the absence of sufficient quantities of information. The lack of meaning
drives sense-making, while the lack of certainty drives data collection and
information gathering: "In the case of ambiguity, people engage in sense-making
because they are confused by too many interpretations, whereas in the case of
uncertainty, they do so because they are ignorant of any interpretations" [60, p.
91]. Thus, approaches to measurement-driven SPI can support the reduction of
uncertainty, but they don't necessarily assist the software organization in reducing
the ambiguity that is essential for SE knowledge creation.

The process of "re-experiencing" other teams' experiences involves
experimenting with organizational knowledge in local contexts by "giving it a
try." Based on the concepts of ambiguity and uncertainty, we can distinguish
between two types of such experiments that are crucial for SE knowledge creation:
hypothesis-testing experiments and exploratory experiments. Hypothesis-testing
experiments are field experiments designed to reduce the organization's
uncertainty by discriminating among alternative explanations or solutions from
many possibilities. This is the usual way of conducting process improvement
experiments according to the experimental approach. Of special concern to us
here, therefore, is conducting exploratory experiments to reduce ambiguity.

Exploratory experiments involve learning through discovery, encouraging the
flexibility and resilience needed to cope with the situation at hand. When
ambiguity is high, the knowledge represented by the organization's memory
provides Httle support. So, during this phase of the learning cycle the focus shifts
from justification and exploitation of existing knowledge to skepticism and
exploration of new opportunities.

Such exploration or "learning by doing" is of utmost importance in unfamiliar
and ambiguous situations and only works when a team receives rapid and
unambiguous feedback on its actions. However, in the complex reality

www.manaraa.com

108 Dybä

experienced by most software teams, the consequences of their actions are neither
immediate nor unambiguous. Nevertheless, in these situations, effective learning
can be achieved by the use of simulated environments, what Nonaka and Konno
termed "exercising bei' [41], or "microworlds" to use Senge's terminology [49]. In
such microworlds, it becomes possible for software teams to leam about future
and distant consequences of their actions by experimenting in environments that
"compress time and space" [49].

Prototypes are examples of microworlds that enable the collective interpretation
of knowledge. Developing a prototype is an experimental activity mainly
concerned with reducing the inherent uncertainty and ambiguity of specifications
[38], thus facilitating a shared understanding ofthe system to be developed.

There are two main approaches to exploration in which prototypes serve an
important role: probing and learning, and pilot projects. In probing and learning
the software organization constructs "quick-and-dirty" mock-ups. To be useful for
the learning process, these prototypes still have to be close enough approximations
of the fmal product or development process. Otherwise, such experimentation will
be of little value since generalizations will be virtually impossible. Furthermore,
the probing and leaming process should be designed as an iterative process, since
it is hardly possible to "get it right the first time" in an ambiguous environment.

Pilot projects are projects aimed at on-line experimentation in real software
projects or large-scale simulations in separate demonstration projects (see [21]).
Typically, they are the first projects to embody principles and approaches that the
organization hopes to adopt later on a larger scale. Tbey implicitly establish policy
guidelines and decision rules for later projects. Tbey often encounter severe tests
of commitment from employees who wish to see whether the rules and practices
have, in fact, changed. They are normally developed by strong multifunctional
teams reporting directly to senior management. Finally, they tend to have only
limited impact on the rest of the organization if they are not accompanied
by explicit strategies for the diffusion of knowledge gained from the pilot
projects [23].

The context-dependent inferences of prior experience and memory objects can
only be carried over from one organizational situation to another through "seeing
as" [47]. When a software team makes sense of a situation it perceives to be
unique, it sees it as something already present in the repertoire represented by
organizational memory. Tberefore, "Seeing this situation as that one, one may also
do in this situation as in that one" [47, p. 139, italics in original].

Consequently, in order to leam and improve their software processes, software
teams can sometimes figure out how to solve unique problems or make sense of
puzzling phenomena by modeling the unfamiliar on the familiar. Depending on
the initial proximity or distance ofthe two things perceived as similar, the familiar
may serve as an "exemplar" or as a "generative metaphor" for the unfamiliar [47].
In both cases, the software team arrives at a new interpretation of the phenomena
before it by "reflecting-in-action" on an earlier perception ofsimilarity.

Tbe utility of an experience package lies in its ability to generate explanation
and experimentation in a new situation. When the experience package is carried
over to the new situation, its validity must be established there by a new round of

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 109

experimentation through which it is very likely to be modified. The modified
experience package that results from this new round of experimentation may, in
turn, serve as a basis for transfer and recreation to a new situation.

So, for SE knowledge creation to happen, organizational members must act on
the collective interpretations they have made, starting a new cycle of
organizational learning. Thus, purposeful action at the local level is a means for
the interpretation of organizational knowledge as weH as for the generation of new
knowledge. Consequently, it is essential for organizationallearning and SPI.

5.4 Organizational Performance

Organizational performance is the ultimate criterion for SE knowledge creation.
Performance is a complex construct, however, reflecting the criteria and standards
used by decision-makers to assess the functioning of a software organization. That
is, performance is a value judgment on the results desired from an organization
[53].

Traditionally, the assessment of organizational performance has focused on
long-term profitability and fmancial measures. However, in today's
technologically and customer-driven global competition, financial measures often
provide incomplete guides to performance, i.e., they are insufficient to predict
future competitiveness in the software business.

As a fundamental part of our model, therefore, we need a dynarnic concept of
success that represents a software organization's competitiveness. Performance,
which is something an organization does (process) or achieves (outcome), is a
concept that can better serve as an operational tool for improvement of
competitiveness than pure financial measures.

Furthermore, having satisfied customers is an important asset for a software
organization, it is the cornerstone of any TQM program. and it is the most
important principle in the recent revision of ISO 9000:2000. Therefore, the
customer perspective should be a central part in any model of a software
organization's performance.

Lynch and Cross [36] defined customer satisfaction as the difference between
the customers' perceived performance and their needs and expectations:

Customer satisfaction = Perceived performance - Expectations

A c1assic problem, however, is that both performance and expectations are
subjective terms, and that performance as seen from the software organization can
be viewed differently than performance as seen from the customer. Typically, the
customer focuses on e:xternal performance measures such as price and delivery
time, while the software organization focuses on internal performance measures
such as cost and lead time. Therefore, the relationships between such external and
internal performance measures are critical for the integration of customer
satisfaction in any model that purports to measure success. However, improved

www.manaraa.com

110 Dybä

profitability is not an automatic outcome of organizational programs to improve
customer satisfaction.

All software processes are expected to deliver a quality product on schedule
and on budget in order to achieve customer satisfaction and thereby to ensure
long-term profitability for the software organization. Moreover, these fundamental
characteristics have importance to both customers and the software organization.
Therefore, they are important for the understanding and definition of
organizational performance. In other words, SE knowledge creation should lead to
"better, faster, [and] cheaper software development" [46]. This is also clear in
Krasner's [32] model of the challenges in software deve10pment projects, which
focuses on the dynamic relationships between software processes and the three
outcome factors: cost, schedule, and quality (Fig. 5.2).

eost

Time

" /1\ ,
,1" / '-"\\,\

~---------------------------------------~
Quallty

Fig. 5.2. The organizational perfonnance dimension ofSPI success [32]

From the preceding discussion we have identified organizational performance
as an important dimension in the measurement of successful SE knowledge
creation. Furthermore, we have identified the following three elements as central
constituents of organizational performance as seen from a customer satisfaction
perspective:

• Time: Time to market has become a critical measure for software organizations
in today's turbulent markets. Being able to respond rapidly and reliably to
customer requests and changing market conditions is often critical for a
software organization's competitiveness. Including time-based metrics as part
of the organizational performance measure, therefore, signals the importance of
achieving and continually reducing lead times for meeting targeted customers'
expectations. Yet, other customers may be more concemed with the reliability
of lead times than with just obtaining the shortest possible lead-time. In
addition to lead-time or cycle-time reductions, therefore, measures of on-time
delivery rate improvements and schedule slippage rate reductions can also be
useful time-based indicators of customer satisfaction and retention.

www.manaraa.com

5 A Dynamic Model of Software Engineering Knowledge Creation 111

• Cost: Customers will always be concerned with the price they pay for products
and services. Long-term profitability, therefore, requires that there is a healthy
relationship between price and cost and, consequently, that we include process
cost metrics as part of the organizational performance measure. Process cost
includes the cost of primary activities (marketing and sales, inbound logistics,
operations, outbound logistics, and service) and support activities
(infrastructure, human resource management, technology development, and
procurement) in the software development value chain [6]. Although the major
source of software costs is the operations component, virtually all components
are still highly labor-intensive. Thus, effort is frequently the predominant cost
driver for most software processes. Examples of potentially useful cost metrics
are: ratio of actual versus planned cost of work effort, development hours
saved, productivity increases, rework cost reduction, and reuse increases.

• Quality: Using the Kano model as the frame of reference [28], we have
witnessed a tendency among large customer groups that quality is not always
expressed as an explicit requirement- it is so obvious that it is often not even
mentioned. Nevertheless, the customers' expectations consist of both the
explicitly stated fimctional and nonfunctional, requirements and the obvious
implicit, or tacit, requirements. However, in certain parts of the software
industry, the situation is such that excellent quality may still offer opportunities
for companies to distinguish themselves from their competitors. In any case,
customer-perceived quality is always relevant for inclusion as an organizational
performance measure. Examples of such quality metrics are defect density
reductions and customer satisfaction increases. An important part of this
picture, however, is that the software organization may not even be aware of
the unsatisfied customers; they simply cease to use the organization's products
or services. Interestingly, an American study revealed that 96% of unhappy
customers never tell the company [31].

To summarize, if our goal is to assess the improvement of software
development processes, the ability to answer the following three questions should
be regarded as a central concern for the measurement of organizational
performance:

1. Are software projects delivered on time?
2. Are software projects delivered on budget?
3. Are customers satisfied with the delivered software?

Using organizational performance as the only dimension of success can entail
some adverse complications. These complications include the instabilities of
performance advantages, the causal complexity surrounding performance, and the
limitations of using data based on retrospective recall of informants [37].
Furthermore, the extent to which organizational members' perceptions of SPI
success reflect organizational performance is unclear, as is the extent to which
perceptions are influenced by the software organizations' standards. Besides,
research on both individual and organizational learning indicates that items that

www.manaraa.com

112 Dybä

are perceived to be important by the persons concerned will be paid more attention
to than items perceived as tangential to these persons [54].

If organizational members' perceptions do not reflect organizational
performance, then increases (or decreases) in performance will not necessarily be
translated into increased (or decreased) levels of perceived success. A decrease in
the perceived level of success, for example, may occur either because the software
organization's performance has decreased, or because the organization has not
adequately managed the perceptions of its members. Assessment of success is a
question of both organizational performance and the perceptions of the
organization's members in the absence of data about the relationships between
actual performance, perceived performance, and customer satisfaction.

5.5 Facilitating Factors

SE knowledge creation cannot simply be managed like any other project. This is
due to the simple fact that the term "manage" typically implies control, while the
nature of the learning process is typically uncontrollable or, at the least, stifled by
heavy-handed direction [57]. From our perspective, therefore, software
organizations need to acknowledge that SE knowledge creation needs to be
enabled rather than controlled. We have identitied six facilitating factors during
our investigations [19].

• Business orientation: The extent to which SE knowledge creation goals and
actions are aligned with explicit and implicit business goals and strategies

• Involved leadership: The extent to which leaders at all levels in the
organization are genuinely committed to and actively participate in SE
knowledge creation

• Employee participation: The extent to which employees use their knowledge
and experience to decide, act, and take responsibility for SE knowledge
creation

• Concern for measurement: The extent to which the software organization
collects and utilizes quality data to guide and assess the effects of SE
knowledge creation

• Exploitation: The extent to which the software organization is engaged in the
exploitation of existing knowledge

• Exploration: The extent to which the software organization is engaged in the
exploration of new knowledge

The links between the knowledge creating processes and the facilitating factors
that, according to our experience, are the most important are revealed by the 6*4
grid in Table 5.2.

A clear business orientation legitimizes the knowledge-creating initiative
throughout the software organization. It has a relatively low impact on local
knowing but may, nevertheless, help software teams articulate the knowledge
created in local groups. Business orientation is especially important in justifying

www.manaraa.com

5 A Dynamic Model ofSoftware Engineering Knowledge Creation 113

concepts for inclusion in the organization's memory, since concepts must be
selected that help the organization achieve its business goals. Therefore, a clear
business orientation also encourages better utilization of organizational knowledge
and facilitate the collective interpretation ofknowledge.

Involved leadership is important for any organizational leaming initiative. By
involving themselves in the challenges of software development and allowing
software teams to act autonomously, the organization's leadership facilitates local
knowing. Furthermore, they have an important role in facilitating the generation of
new knowledge by creating a context that prioritizes and encourages dialogue and
collective reflection. Also, the degree ofleadership involvement influences what is
considered important for inclusion in organizational memory.

Employee participation is the cornerstone of our model. It is important for all
the knowledge-creating activities in the leaming cycle. It is the basis for local
knowing, since it is only through participation that collective action can be taken
and tacit knowledge can be shared. Dialogue and collective reflection are
meaningless concepts without participation, and it is therefore an important
facilitator for the generation of valid organizational knowledge. Likewise, it is
through collective processes of sense-making and active participation through,
e.g., personnel rotation prograrns, that organizational knowledge is diffused and
brought to use in new situations.

In addition to personal and collective experience, a concern lor measurement is
important in order to validate the newly created knowledge and to ensure that
gains have in fact been triade. Most important, a concern for measurement
facilitates local knowing by acting as a foundation for the collection, analysis, and
feedback of data. Ongoing feedback as a group process is particularly important,
since it can be an effective tool for bringing about changes in the way work is
done as weIl as in establishing causal relationships and generating new
knowledge.

The exploitation 01 existing knowledge is closely tied to all the knowledge
creating activities in the learning cycle. It facilitates local knowing by presenting a
set of previously leamed lessons that can be used in exploring the contingencies of
the current setting. It is particularly important in facilitating the generation of new
organizational knowledge, since this involves the articulation and packaging of
local knowledge and experience. Furthermore, before locally created knowledge is
appropriated as part of the organization's memory, it must be related to the
existing knowledge. Also, the interpretation of knowledge necessarily involves a
relation between new and existing knowledge.

Exploration 01 new knowledge is particularly important in facilitating the
collective interpretation of knowledge through exploratory experiments and
prototyping. It is also the basis for local knowing by mixing together the
contingency of the present situation with the lessons leamed from prior
experience [20].

www.manaraa.com

114 Dybä

Table 5.2. Links between knowledge creating processes and facilitating factors l

Local Generating Organizational Interpreting
Facilitating factors knowing knowledge memory knowledge
Business orientation ./ ././ ./

Involved leadership ./ ././ ./

Employee participation ././ ././ ./ ././

Concern for measurement ././ ./

Exploitation of existing ./ ././ ./ ./

knowledge
Explomtion of new ././ ././

knowledge

1./ denotes an important link, ././ denotes a very important link

5.6 Summary

In this chapter, we have developed a dynamic model of SE knowledge creation. A
critical element for developing the model was the integration of SPI activities with
the real, situated nature of software development, and focusing on the role of
certain facilitating factors in the diffusion ofknowledge and experience within and
between groups of software developers.

First, organizational context was described as an important element that
imposes constraints and opportunities about what and how the organization can
leam. Two contextual variables were included in the model to eapture the most
influential sourees of variation: environmental turbulenee and organizational size.
Then, we emphasized the importance of acknowledging that the learning process
is a dynamic interplay between two primary dialectics: one between the loeal and
organizational level, the other between generating and interpreting knowledge.
Next, the suceess of an organization's knowledge creation was deseribed in terms
of organizational performance and the software organization's perceived level of
success. Finally, we described the key factors of success in SE knowledge creation
and their links with the leaming processes in the model.

References

1. Ackerman M.S., Halverson C.A. (2000) Reexamining organizational memory
Communications ofthe ACM, 43:58-64

2. Basili V.R., Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sioan management review, 37: 55-64

3. Basili V.R., Weiss D. (1984) A methodology for collecting valid software engineering
data. IEEE transactions on software engineering, 10: 728-738

4. Basili V.R., Caldiera G., Rombach H.D. (1994) Experience factory. In: Marciniak J.J.
(Ed.), Encyclopedia ofSoftware Engineering, John Wiley and Sons, UK, pp. 469-476

www.manaraa.com

5 ADynamie Model of Software Engineering Knowledge Creation 115

5. Benson P.G., Saraph J. V., Schroeder R.G. (1991) The efIects of organizational
context on quality management: an empirical investigation. Management science, 37:
1107-1124

6. Boehm B.W., Papaccio P.N. (1988) Understanding and controlling software costs.
IEEE transactions on software engineering, 4: 1462-1477

7. Bohm, D., Peat, F.D. (2000) Science, order, and creativity. RoutIedge London, UK
8. Buzan T., Buzan B. (2000) The mind map book. Millenium edition, BBC books,

London,UK
9. Card D. (1991) Understanding process improvement. IEEE Software, 8: 102-103
10. Crosby P.B. (1979) Quality is free: the art of making quality certain. McGraw-Hill

NewYork
11. Crosby P.B. (1996) Quality is still free: making quality certain in uncertain times.

McGraw-Hill New York
12. Cyert R.M., March J.G. (1992) A behavioral theory of the firm. Blackwell,

Oxford, UK
13. Daskalantonakis M.K. (1992) A practical view of software measurement and

implementation experiences within Motorola. IEEE transactions on software
engineering, 18: 998-1010.

14. Debou c., Courtel D., Lambert H.-B., Fuchs N., Haux M. (1999) Alcatel's experience
with process improvement. In: Messnarz R., Tully C. (Eds.), Better software practice
for business benefit: principles and experience, IEEE computer society press, Los
Alamitos, California, US, pp. 281-301

15. Deming W.E. (1986) Out of the crisis. MIT center for advanced engineering study,
Cambridge, MA

16. Dewey J. (1929) The quest for certainty. Lame Duck books, New York, Balch, Minton
17. Dewey J. (1938) Logic: the theory of inquiry. Holt and Company New Y ork
18. Dion R. (1993) Process improvement and the corporate balance sheet. IEEE Software,

10: 28-35
19. Dybä T. (2000a) An instrument for measuring the key factors of success in software

process improvement. Empirical software engineering, 5: 357-390
20. Dybä T. (2000b) Improvisation in small software organizations. IEEE Software,

17:82-87
21. Dybä T. (Ed.) (2000c) SPIQ - Software process improvement for better quality.

Methodology handbook (in Norwegian), IDI report 2/2000, Norwegian University of
Science and Technology Trondheim, Norway

22. Feigenbaum A.V. (1991) Total quality control. McGraw-Hill, New York, USA
23. Garvin D.A. (2000) Learning in action: A guide to putting the learning organization to

work. Harvard business school press, Boston, MA
24. Grady R.B. (1997) Successful software process improvement. Prentice-Hall New

Jersey, USA
25. Groth L. (1999) Future organizational design: the scope for the IT-based enterprise,

John Wiley and Sons, Chichester, UK
26. Humphrey W.S., Snyder T., Willis R. (1991) Software process improvement at

Hughes Aircraft. IEEE Software, 8: 11-23
27. Juran J..M., Godfrey A.B. (Eds.) (1999) Juran's quality handbook. McGraw-Hill, New

York, USA
28. Kano N., Nobuhiro S., Takahashi F., Tsuji S. (1984) Attractive quality and must be

quality. Quality magazine, 14: 39-48

www.manaraa.com

116 Dybä

29. Klein H.K., Myers M.D. (1999) A set of principles for conducting and evaluating:
interpretive field studies in infonnation systems. MIS quarterly, 23: 67-93

30. Kolb D.A. (1984) Experiential learning: experience as the source of learning and
development. Prentice-Hall, Englewood Cliffs, New Jersey USA

31. Kotler P. (1988) Marketing management: analysis, planning, implementation, and
control. Prentice-Hall, Englewood Cliffs, New Jersey, USA

32. Krasner H. (1999) The payofffor software process improvement: what it is and how to
get it. In: EI Emam, K., Madhavji, N.H. (Eds.), Elements of software process
assessment and improvement, IEEE computer society press, Los Alamitos, CA, USA,
pp. 151-176

33. Lant T.K., Mezias S.J. (1992) An organizationallearning model of convergence and
reorientation. Organization science, 3: 47-71

34. Lave J ., Wenger E. (1991) Situated learning: legitimate peripheral participation.
Cambridge University Press, Cambridge, UK

35. Lewin K. (1951) Field theory in social sciences. Harper and Row, New York, USA
36. Lynch R.L., Cross K.C. (1991) Measure up! Yardstick for continuous improvement.

Blackwell Business, Cambridge, MA, USA
37. March 1.G., Sutton R.I. (1997) Organizational perfonnance as adependent variable.

Organization science, 8: 698-706
38. Mathiassen L., Stage J. (1992) The principle of limited reduction in software design.

Infonnation technology and people, 6: 171-185
39. Mehner T. (1999) Siemens process assessment approach In: Messnarz R., Tully C.

(Eds.), Better software practice for business benefit: principles and experience, IEEE
Computer society press, Los Alamitos, CA, USA, pp. 199-212

40. Mintzberg H. (1989) Mintzberg on management: inside our strange world of
organizations. The free press, New York, USA

41. Nonaka 1., Konno N. (1998) The concept of"Ba": building a foundation for knowledge
creation. Califomia management review, 40: 40-54

42. Nonaka I., Takeuchi H. (1995) The knowledge-creating company: how Japanese
companies create the dynamics of innovation. Oxford university press, New York,
USA

43. Piaget 1. (1970) Genetic epistemology. Columbia university press New York, USA
44. Rooijmans J., Aerts H., van Genuchten M. (1996) Software quality in consumer

electronics products. IEEE Software, 13: 55-64
45. Ryle G. (1979) Improvisation. In: Ryle G. (Ed.), On thinking, Blackwell, London, UK,

pp. 121-130
46. Sanders M. (Ed.) (1998) The SPIRE handbook: better, faster, cheaper software

development in small organizations. Centre for Software Engineering Ltd., Dublin,
Ireland

47. Schön D.A. (1983) The reflective practitioner: how professionals. Think in action,
Basic Books, New York, USA

48. Scupin R. (1997) The KJ method: a technique for analyzing data derived from
Japanese ethnology. Human organization, 56: 233-237

49. Senge P.M. (1990) The fifth discipline: the art and practice of the learning
organization, Doubleday, New York, USA

50. Simon H.A. (1991) Bounded rationality and organizational learning. Organization
science, 2: 125-134

www.manaraa.com

5 ADynamie Model of Software Engineering Knowledge Creation 117

51. Tushman M.L., Romanelli E. (1985) Organizational evolution: a metamorphosis
model of convergence and reorientation. In: Cummings L.L., Staw B.M. (Eds.),
Research in organizational behavior, JAI Press, Greenwich, Connecticut, 7: 171-222

52. Tyre MJ., von Hippel E. (1997) The situated nature of adaptive learning in
organizations. Organization science, 8: 71-83

53. van de Yen A.H., Ferry D.L. (1980) Measuring and assessing organization, lohn Wiley
and Sons, New York, USA

54. van der Bent 1., Paauwe 1., Williams R. (1999) Organizationallearning: an exploration
of organizational memory and its role in organizational change processes. Journal of
organizational change management, 12: 377-404

55. van Solingen R., Berghout E. (1999) The Goal/Question/Metric method: a practica1
guide for quality improvement ofsoftware development. McGraw-Hill, London, UK

56. von Krogh G., Grand S. (2000) lustification in knowledge creation: dominant logic in
management discourses. In von Krogh G., Nonaka 1., Nishiguchi, T. (Eds.),
Knowledge creation: a source of value, MacMillan, London, UK, pp. 13-35

57. von Krogh G., Ichijo K., Nonaka I. (2000) Enabling knowledge creation: how to
unlock the mystery of tacit knowledge and release the power of innovation. Oxford
university press, New Y ork, USA

58. Walsh J.P., Ungson G.D. (1991) Organizational memory. Academy of management
review, 16: 57-91

59. Weick K.E. (1979) The social psychology of organizing. Addison-Wesley, Reading,
MA,USA

60. Weick K.E. (1995) Sense-making in organizations. Sage Publications, Califomia, USA
61. Wenger E. (1998) Communities of practice: leaming, meaning, and identity.

Cambridge university press, Cambridge, UK
62. Winograd T.A., Flores F. (1986) Understanding computers and cognition: a new

foundation for design, reading. Addison-Wesley, MA, USA

Author Biography

Dr. Tore Dybä is a senior scientist at Department ofComputer Science at SINTEF
and a visiting research scientist at the SIMULA Research Laboratory. He received
his M.Sc. degree in computer science and telematics flom the Norwegian Institute
of Technology in 1986 and his Ph.D. in computer science flom the Norwegian
University of Science and Technology in 2001. Dr. Dybä worked as a consultant
for eight years both in Norway and in Saudi Arabia before he joined SINTEF in
1994. He has been responsible for and worked in several large national and
international projects concerning software and business process improvement,
organizational learning and knowledge management, software quality assurance
and measurement, and empirical software engineering. Dr. Dybä is the author of
several publications appearing in international journals and conference
proceedings in the field of software engineering.

www.manaraa.com

6 Evaluating an Approach to Sharing Software
Engineering Knowledge to Facilitate Learning

Gary R Oliver, John D 'Ambra and Christine Van Toorn

Abstract: This chapter explores learning from repositories of software
engineering knowledge-- stores of practice created through knowledge sharing
over time. Knowledge sharing is acknowledged as one of the most important
processes to enhance organizational knowledge. A general model describing how
the unique aspects of a software engineering environment shape knowledge
sharing is introduced; this framework is known as software engineering
knowledge sharing. In addition, CORONET, a system that provides functionality
for knowledge sharing and for lifelong learning of software engineers in an
organizational context, is briefly addressed. CQRONET is a Web-based
environment and incorporates knowledge management as an integral component.
This chapter seeks to associate the two by fitting CORONET into the software
engineering knowledge-sharing framework. We believe that the proposed model is
useful for small projects, even those with different characteristics, and has the
potential to be extended and refined by other researchers and practitioners.

Keywords: CORONET system, Intellectual capital, Knowledge sharing,
Organizationallearning, SEKS, Software engineering

6.1 Introduction

The Corporate Software Engineering Knowledge Network for Improved Training
of the Workforce (CORONET), is designed to support life long learning of
software engineers in an organizational context via the World Wide Web. The
European research projeet is the foeus in this paper for learning in software
engineering (SE). Learning oeeurs through sharing and utilization of knowledge
aceessed from software engineering repositories. Readers seeking details of the
CORONET approach to knowledge management (KM) are direeted to Part 3 of
this volume, where a full deseription is provided.

In this chapter we demonstrate that a knowledge-sharing perspeetive highlights
important relationships between individuals and team members coneerning
software engineering and organizational learning, which has many overlooked
dimensions. We diseuss the general relationship between software engineering and
KM with referenee to the knowledge eeonomy in this seetion, thereby establishing
the importance of knowledge sharing. In Seet. 6.2, a model is proposed with the
dual capability for knowledge sharing and organizational learning. This model is
then tested against the CORONET system in Sect. 6.3. The paper conc1udes with a
discussion ofthe fit between the software engineering knowledge sharing (SEKS)

www.manaraa.com

120 Oliver, D' Ambra and Toorn

model and CORONET. Finally, some limitations of the paper and opportunities
for further research in KM are presented.

6.1.1 Theoretical Foundations of Knowledge Management in Software
Engineering

In order to maximize organizational perfonnance, KM embraces activities aimed
at capturing and reusing experience. In a knowledge economy [17] ''the only thing
that increasingly will matter in national as well as international economies is
management's perfonnance in making knowledge productive" [13]. Software
engineering and KM are related [27] through their common recognition that
competencies to enable organizational capabilities are "scarce resources" [29]. In
an environment where strategy is likely to amalgamate intentions and eventualities
[21], KM has the capability of contributing to organizational success. This will be
attained via maximizing learning opportunities by individuals and within teams
through a sharing perspective. Thus KM is the catalyst allowing connections to be
made between the experiences and perspectives of software engineers with events
requiring an innovative or creative response.

6.1.2 Knowledge and the Potential of Knowledge Management in Software
Engineering Processes

From the theoretical foundations of KM, applications supporting organizations
and the individuals within them are now emerging. Typically these applications
serve to store and retrieve knowledge, codify knowledge and encourage and
ensure knowledge sharing in an organizational context. It is through the use of
such applications that organizations compete to ensure their position and success
in the marketplace. SE has long recognized such initiatives, the Software
Experience Factory [4] heing one example ofmaking experience available to other
individuals in an organizational context [16]. Recent initiatives include project
post mortems [5] to assist experience sharing for improvement. Traditional KM
activities supporting SE include document management, identification of expertise
and reuse of software or components [28]. Both organizational and external
standards form an important element of the SE knowledge repository. Thus KM
provides an iniplicit guide for determining whether or not software needs to be
developed from scratch and how available technology can be harnessed.

6.1.3 Knowledge Management Applications in Software Engineering

The need for evaluation of knowledge management systems is more salient on
considering the expected roles and outcomes of knowledge management
applications within organizational contexts. All new information technologies
change human behavior within both the organizational and individual domains [7].

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 121

These changes in behavior should realize outcomes that justify investment in new
information technologies. Therefore the measurement and evaluation of these
changes and the match between these changes and expected outcomes must be
undertaken. Evaluation of knowledge management systems should be undertaken
on two levels: the efficacy of technologies implementing knowledge management
theories and principles, and the evaluation of technologies in the implementation
context.

6.1.4 Software Engineering, Knowledge Assets and People

Among the most important knowledge assets are the stored repositories of
experience and knowledge available to an organization, usually after capture and
codification. According to Wiig, the components include "experience, expertise,
proficiency, competency, skills, capabilities and embedded knowledge of all
kinds" [35]. People are an essential component of the software engineering
discipline, making a significant contribution to the organization. This is the
intellectual capital view advocated by Edvinsson [15] and Sveiby [31]. Through
emphasis on competence and knowledge, distinctive capabilities emerge from
learning since it creates value from the intangible assets of an organization. Thus
learning and knowledge sharing are often closely intertwined.

6.1.5 Reframing Knowledge Sbaring

Many discussions concerning knowledge sharing depend upon definitional
distinctions between knowledge and information. A distinction must therefore be
drawn between KM and information management. Information management is
characterized by the use of preplanned responses or techniques to generate new
insights. Knowledge creation and flow are factors in codification and abstraction.
The two reinforce each other with both functional and dynamic relationships. This
view is an elaboration of the distinction between explicit and tacit knowledge as
drawn by Polanyi [26]. Influential thinkers in KM, notably Nonaka [22], argue for
knowledge conversion (socialization, externalization, combination and
internalization) overlaid with the knowledge spiral to emphasize that knowledge
creation may begin at any of the four modes. However, it is purported that
"organizationaI knowledge creation usually starts with sharing tacit knowledge,
which roughly corresponds to socialization [so] the key is to develop methods for
sharing it and amplifying it" [23]. Challenges are offered by the resource view and
the organizationaI learning view. Knowledge possessed by individuals may be
transformed into routine practices through initiatives of individuals themselves.
Forrns of organization leaming (single-Ioop, double-loop and deutero-loop) [2] are
associated with cognitive and behavioral change. While imperfect performance
mayoccur, leaming still takes place and thus an asset evolves [10, 11]. In turn,
this asset is capable ofbeing shared and is ofvalue to the organization.

www.manaraa.com

122 Oliver, D' Ambra and Toom

6.2 Knowledge-Sharing Models

While there is no generic agreement on the form of the knowledge cycle, the
essential components comprise capture, dissemination and use, with the common
underlying aspect being the sharing of knowledge. The direct impact is upon
processes by which knowledge is mobilized, conserved, leveraged and embraced
within organizations. More research is required in the areas of knowledge
creation, diffusion and use within and across organizations and cultures, and in
identifying the nature of relationships with customers, suppliers and other
stakeholders. In this section the visual model is first presented, then the constructs
within the model are discussed and the operation ofthe overall model is examined.

6.2.1 Software Engineering Knowledge Sharing Model

The SEKS model of knowledge sharing demonstrates how the unique aspects of a
software engineering environment shape knowledge sharing. In essence, the
model recognizes the interaction between individuals and within teams. It is the
product ofthree factors: motivation to discover knowledge, supportive culture and
prior experience. Associated with these factors is the desire and opportunity to
leam. The model depicted in Fig. 6.1 can be read as aseries of processes with
inputs and outputs, which are discussed in the following subsections.

6.2.1.1 Desire and Opportunity to Learn

Desire and opportunity to leam is an overarching factor in SEKS; generally,
individuals leam by themselves or together. A number of recent initiatives in
software development (pair programming and extreme programming) affirm the
value of situating leaming between solo effort and large teams. Traditional
organizational leaming theory [2] confmns the benefit of cognitive change,
combined with behavioral change. Disseminating knowledge is insufficient for
ensuring that it can be used productively. Much knowledge is fragmented [9],
therefore integration or contextualization contributes to understanding. Traditional
organizational methods for providing opportunities to leam, such as job rotation
and frequent meetings, are potentially disruptive to both the organization and the
individual. KM approaches include knowledge sponsors and pinpointing
knowledge advisors.

In the knowledge economy it is inevitable that the tacit knowledge possessed
by employees can be lost through career-based shifts in employment. While
controls may be introduced to protect the loss of strategic knowledge to
competitors, a KM approach seeks active sharing. Employees conscious of their
value may be assisted by cultural support, perhaps together with emphasis on
personal transfer rather than computer-mediated [19, 32] transfer.

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 123

Opportunity to learn

Desire to leam

Supportive culture
(Organization level

and Peer level)

Motivation to
discover kowledge f---------,

Fig. 6.1. Software engineering knowledge-sharing (SEKS) model

6.2.1.2 Supportive Culture

Software
Engineering

Knowledge sharing

A supportive culture may emanate from a number of sourees, the organizational
culture, peer culture and the recipient's environment. Within an organizational
context, the first two factors are crucial and may vary even in different geographie
locations. There is considerable theoretical and empirical research that places
culture ahead of structures and systems [33]. By viewing culture as the context, a
connection is made with the informal, fluid aspects of interpersonal relationships.
Some studies [3, 30, 33] identify the benefit of using a community to structure
knowledge and thus introduce a vertical dimension to the organizational levels.
Information-seeking behavior [8], together with affective responses, is one
characteristic of a community of practice. There is an expectation that while some
information will be redundant, it may still have value in building confidence [23].
The use of best practices is regarded as a related fonn of learning [1, 20]. Thls
may unfortunately be inhibited through the ignorance of better practices and the
difficulty in transferring perceived best practices to a new operating environment
[30]. For this reason, the infonnal grouping of people into networks where
practice can be shared is an important facilitator of learning and is less likely to

www.manaraa.com

124 Oliver, D' Ambra and Toom

encounter disruptive influenc.es [19]. In addition, there is a connection with
competencies, that is, in "learning how to learn" one accepts uncertainty in the
organizational environment. This view of culture is significantly different from the
culture-as-tools view since it avoids privileging technology as a knowledge
discovery motivator.

6.2.1.3 Motivation to Discover Knowledge

Motivation to discover knowledge is an impetus to selectively form cooperative
arrangements. Individuals make decisions about knowledge sharing based on their
view of their own motives and those around them. One form of motivation is that
of organizationalleaming, although reward is also significant. Knowledge transfer
has several rewards for the recipient when it can be leveraged [18]. Social
psychology indicates that the motivations themselves are manifold, including:
enhanced personal reputation, direct task benefit and recognition of the
contribution as a performance factor. Managing knowledge strategically can
enhance organizational capabilities and genera te new processes. Organizational
recognition and reward systems provide positive support for knowledge sharing.
Paradoxically, sharing knowledge may create the situation where the employee is
both recognized for the worth of their tacit knowledge, while being targeted by
competitors. Organizations in partnership or alliance may be able to overcome this
effect through moving toward similar structures and processes. On the other hand,
wholly technological solutions may be perceived as disembodied asset repositories
and left impoverished. Of course, it must be remembered that there is a close
relationship with culture and prior experience.

Table 6.1. Examples of artifacts demonstrating prior relationships

Source Category Example

Organization documentation
Explicit Guidelines, handbooks,

(Formal or informal) procedure manuals

Results of empirical work Explicit Metrics for estimation

Published evaluations of experience Explicit Lessons learned

Publicly available information Explicit IEEE standards

Specialist information Explicit Software engineering
textbooks

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 125

6.2.1.4 Prior Experience

Prior experienee in SEKS eoneerns the extent to whieh the prior relationship in
knowledge sharing facilitates eooperation by redueing uncertainty and
aceelerating produetivity. The lessons leamt from knowledge sharing may weH
affect future knowledge sharing. In such eireumstanees, the experienee itself is
transformed into useful knowledge, the existenee of prior artifacts and
demonstrates the existenee of prior relationships. Examples of these artifacts are
ineluded in Table 6.1.

6.2.2 Sharing Software Engineering Knowledge

The result of this software engineering knowledge-sharing process is the ability to
share knowledge without being totally eonseious of the existenee of the process.
By internalizing the prineiples associated with the activity or event, it reinforces
awareness of knowledge and ean contribute to the desire to leam, thus reopening
the eyele [6]. Our diseussion now moves from the theoretieal foundations ofthe
knowledge-sharing model to assessing its usefulness in the eontext of the
CORONET software engineering system.

6.3 Applying SEKS to CORONET

In this seetion, the eharacteristies of CORONET are outlined and an evaluation of
the effieacy of CORONET is presented. CORONET eomponents are analyzed and
mapped to the SEKS model as presented in Sect. 6.2. In addition, some
propositions for the evaluation of CORONET in an implementation eontext are
provided. The impetus for applying SEKS to CORONET originated from its
relianee on learning through knowledge, which has been eontributed to and
distributed in a eomputer-mediated environment.

6.3.1 An Overview of CORONET

CORONET is a eollaboration between a consortium of member nations of the EC
and one non-European partner [12, 24, 25]. It was funded under the European
Community's Fifth Framework Program (FFP), a structure to implement the EC's
research and development poliey.

One approach to understanding the development and implementation of
CORONET-Train, is to view it as a strategie too1. Using the framework of
knowledge with strategie value suggested by Earl [14], it fulfils all four aspects of
strategie knowledge:

www.manaraa.com

126 Oliver, D' Ambra and Toom

• Knowledge system: A hypermedia leaming environment incorporating
knowledge sharing to support the training/leaming needs of software engineers
in an organizational context.

• Knowledge network: A corporate knowledge network, provides multiple
leaming environments and utilizes an infrastructure connecting experts and
novices to support on-demand, career-Iong training in the domain of software
engineering with group interaction.

• Learning organizations: A common reference model is developed, including
the process of courseware development, coUaborative training with group
interaction and knowledge sharing via corporate knowledge networks. Different
industrial environments validate the new training approach, and organizational
and individual leaming are integrated in the one platform. The benefits are
demonstrated based on empirical data gathered during industrial validation.

• Knowledge workers: The target group is software engineers. Addressing
training and leaming needs as they occur in the workplace- learning on
demand - across all organizationallevel~.

These four dimensions support the main objective ofthe CORONET system, to
improve the efficiency of Web-based training of employees in the area of software
engineering, and to ensure knowledge sharing.

Fig. 6.2.lnterrelationship ofkey components ofCORONET [24]

CORONET-Train encourages knowledge sharing in two main capabilities.
First, by hamessing the expertise on software quality within corporate networks.
This is achieved by integrating all the hard and soft knowledge stored within the
corporate knowledge network within an integrated learning environment. Second,
CORONET allows users to contribute to the corporate knowledge base. Not only

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 127

does CORONET retrieve knowledge from the corporate knowledge base, it also
maintains this knowledge base. The components of this integrated learning
environment are illustrated in Fig. 6.2.

These components of CORONET can be mapped to Earl's four components
[14]:

• Methodology supports the learning organization: The approach reHes on
identifying roles within the organization's software engineering domain. Based
on these roles, scenarios of learning have been developed. These range from
highly structured learning tasks to highlyunstructured learning tasks. These
scenarios represent learning needs that participants will encounter within their
work-based context. CORONET will then support each one of these scenarios
(learning needs/tasks) by connecting users to corpora te knowledge networks via
pedagogically sound learning processes.

• Infrastructure connects users to the system: The infrastructure will provide the
multi-media learning environment to support on-the-job learning needs. This
environment will support the integration of human networks and tacit
knowledge in the corporate knowledge networks and will support knowledge
usage by new forms of individual knowledge visualization. Fig. 6.3 provides an
overview of the CORONET infrastructure, showing the relationship between
the knowledge base and the courseware from which training is selected.

CORONET
Infrastructure

Fig. 6.3. Infrastructure ofCORONET [24]

• Hypermedia courseware /acilitates involvement 0/ knowledge employees:
Collaboration is one-to-one, one-to-many and many-to-many didactics through
communication media.

www.manaraa.com

128 Oliver, D' Ambra and Toorn

• Evaluation is on-going to assess learning within a corporate environment: In
order to measure the outcome of this objective, on-going evaluation is required.
This evaluation will take place within the context of the learning scenarios and
the processes used. The generic processes are resource retrieval, the value of
the resource in the learning context, facilitating communication and
contributing to corporate knowledge.

In summary, knowledge sharing within CORONET is facilitated by features ofthe
system and reinforced by the learning gains of the participants.

6.3.2 Evaluation ofCORONET

This section evaluates the CORONET approach to KM outlined in Sect. 6.3.1,
with the SEKS model outlined in Sect. 6.2. Previously illustrated in Fig. 6.1, the
SEKS model recognizes the unique processes of a software engineering
environment and the requirements for knowledge sharing. In essence, the model
recognizes that the interaction between individuals and within teams is the product
of three factors: motivation to discover knowledge, a supportive culture and prior
experience. Associated with these factors is the desire and opportunity to learn.
We will now explore how weIl these requirements are reflected in CORONET.
The methodology for this exploration considers the level-of-fit of each of the
components of CORONET to the SEKS model. This is achieved by considering
the components of KM within the implementation platform of CORONET -Train
(and associated software, including WBT-Master), and the efficacy of each of
these components to the referential model, SEKS. For consistency, the material on
CORONET is sourced from Part 3 in this book.

6.3.2.1 Desire to Learn

Desire to learn is very much an intrinsic motivation of the individual, although
there is no clear view on the role of external inducements and whether they will
return a positive or negative value. However, as software engineering undergoes
continuous change in terms of tools and application domains, there is a need to
provide opportunities for learning and relearning in many different contexts.
CORONET will not only connect individuals with formal learning resources, but
will also support mentoring of individuals by experts with given domains of
knowledge. The innovative characteristics of CORONET -Train can be
summarized as folIows:

• Offers a long-term approach to learning by providing a career-path to subject
matter expertise (systematic development of competencies)

• Focuses on Web-based collaboration between learners on different competence
levels, and uses corporate knowledge

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 129

In terms of the model, the greatest strength of CORONET is that the des ire to
learn is itself encouraged by having a system that is capable of satisfying and
further igniting the desire (provided there is access to the Web-based learning
environment).

6.3.2.2 Opportunities to Learn

Learning is provided on-demand as software engineers become aware of their own
learning needs, recognizing the different contexts in which learning should take
place and the modes of interaction that can take place to satisfy that learning need.
These include:

• Interaction with formal resources (self-Iearning)
• Interaction with a learning process supported by a tutor (dyadie learning)
• A supported network approach to learning in which individuals can contact

content experts with specific domain expertise (collaborative learning)

A comprehensive suite of methods is available:

• Five learning methods (case-based learning, theme-based learning, knowledge
sharing, Web-based learning and Web-based tutoring)

• Three knowledge transfer methods (training, tutoring and mentoring)
• Two knowledge-based engineering methods (authoring courseware and

structuring knowledge)

It is important to note that these opportunities exist across all organizationallevels
(from operational staffto senior management).

6.3.2.3 Prior Experience in Knowledge Sharing

Prior experience in using CORONET is captured, stored and made available as
required. Individuals with prior experience are also made available to learners
through the infrastructure supporting dyadic and collaborative learning. The
knowledge card is used to track this information.

The knowledge card is more than a means of indexing knowledge for storage
and retrieval in the repository. It does more than just serve to provide an
algorithm for the codification of knowledge its primary and major role is to
facilitate the sharing of knowledge. This is achieved by the provision of "learning
maps" to link a wide variety of learning resources, tutors and experts. For
example, a "Relational Data Model" learning course may be associated with the
"Relational Data Model" knowledge card. In turn, this knowledge card could also
be associated with other learning units, learning goals, discussion forums,
documents, and so on, thereby establishing a learning map. In addition, WBT
Master regards users as learning resources or peer helpers - which may also be
associated with a knowledge card, thus adding a further dimension and value to
the learning map.

www.manaraa.com

130 Oliver, D' Ambra and Toorn

The ereation of the learning map and the aeeumulation and addition of
resourees of value enables the use of knowledge eards to support the three modes
oflearning: self-learning, dyadie and eollaborative learning.

Research has shown that eapturing prior experienee is integral to knowledge
sharing, sinee all relevant resourees ean be made available to the learner. By
providing road maps of knowledge domains, eonneeting learners with peers and
experts, and eonsolidating all related resourees through the one entity, knowledge
eards are an integral eomponent in the sharing ofknowledge.

6.3.2.4 Supportive Culture

Being supported in learning and being provided with adequate and quality
resourees are fundamental to learning outcomes. The CORONET infrastrueture
aims to support the "networked organization", eonneeting al1 software engineers
without regard to their role or level of expertise.

The learning methodology CORONET-Train promotes the integration ofWeb
based training with eollaborative learning in the workplaee (work-based learning),
and provides a link to KM. It introduces the idea of reeiproeal learning into
software organizations, sinee both of these events having implieations for
organizational eulture. They signal the value p1aeed on learning through software
engineering knowledge sharing by management.

6.3.3 Software Engineering Knowledge Sharing

Knowledge sharing is faeilitated via the learning methodology supported by
CORONET. On eonsidering the artifaets used in Seet. 6.3 to demonstrate prior
experienee, (organizational doeumentation, results of empirieal work, published
evaluation of experienee, publiely available information and specialist
information), it may be argued that CORONET goes beyond these boundaries.
Not only does it seek to link these artifaets, but also to link the tacit knowledge of
domain experts within its seope of funetionality. CORONET reeognizes the many
artifaets that eontain and represent knowledge from previous relationships.
Essential1y, these artifaets are managed through a hierarehieal strueture of
definition, and relationships. These are defmed by the eontent-strueturing model,
and superirnposed by the 10gical and semantie struetures of the WBT-Master.
Aeeess to these artifaets ean be via a variety of tools. These may be either system
too1s, for logical and semantie aeeess, or eontent management too1s, to allow
browsing local1y or by means of an FTP c1ient.

In summary, the SEKS model ofknowledge sharing presented in Seet. 6.2, can
be seen as usefu1 in its own right. It can also be applied to an independently
developed knowledge-sharing too1.

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 131

6.4 Conclusion and Implications for Further Research

This chapter has established a relationship between KM and knowledge sharing,
using the SEKS model as the framework to evaluate CORONET. This system is
both innovative and extensive in meeting the learning needs of professionals
working in the software engineering domain. From the analysis presented here, the
KM components map weIl to the constructs of the SEKS model, knowledge
representing a good fit. Through a comparison and analysis of the CORONET
components to the SEKS model, it appears that CORONET more than adequately
implements the theoretical foundations ofKM.

The introduction of any new technology in the work place causes changes in
human behavior. According to the SEKS model, software engineering knowledge
sharing occurs in the context of individual and organizational learning. Although
tbis is a complex user task, the twin factors of a supportive culture and motivation
will produce a learning behavior. The detailed discussion of CORONET
demonstrates that in this case, learning and knowledge sharing occurred. This
ranged from short-term problem solving to long-term competency improvement.
Collaborative problem solving was also encouraged. Since CORONET is a
relatively small project, this suggests that SEKS is useful for small projects and
can be used, extended and refined by other researchers and practitioners in
projects with different characteristics.

In order to determine how weIl the CORONET system supports knowledge
sharing and learning in the workplace, it needs to be further evaluated in its
implementation environment. From a research perspective, it is important to know
how weIl the SEKS model fits CORONET, so that specific improvement areas can
be identified in the model or changes in the scope of the system can be suggested.
From a utility point of view, it is important to know how effective the SEKS
model is in supporting organizationallearning. However, this evaluation goal can
only be realized by observing and evaluating the learning process in the
implementation environment. This falls outside the scope of this paper and is an
avenue of future investigation.

Software engineering knowledge sharing can be judged against the two
prerequisites:

• The learners accept and use CORONET-Train
• The competence level ofthe learners increases through the use ofCORONET

Adult learning is a process that is embedded in individuals ' behavior within
their various life contexts. As a tool, CORONET aims to support the learning of
software professionals within their work environments. Sufficient time must be
allowed for users to integrate the CORONET tool within their learning and
information seeking behavior. The SEKS model is unbounded by time and thus
lacks an empirical base. On the other hand, as a training course, the duration and
sequence is integral to its own learning programme. This has been demonstrated in
the detailed discussion ofCORONET in Part 30fthis book.

www.manaraa.com

132 Oliver, D' Ambra and Toom

The approach to KM taken in this chapter requires direct connection be made
between people and the benefits to be gained from the organizationalleaming that
occurs. From the detailed discussion in Sect. 6.3 it can be concluded that:

• Leamers apply the knowledge they acquired through CORONET usage in their
work.

• CORONET supports Web-based collaborative leaming.
• Web-based training with CORONET is at least as effective as classroom

training.

A knowledge-sharing approach to CORONET using the SEKS model should be
useful to practitioners who are concemed with the efficacy of KM approaches as
implemented in software systems. In addition, it should also provide some insight
on how these software systems may be evaluated post-implementation.

Acknowledgements

The participation of The University of New South Wales in the CORONET
project (EU-Project CORONET/Grant IST -1999-11634) was made possible by a
grant from the Australian Federal Govemment Department of Industry, Science
and Resources. We also wish to thank the three referees for their comments and
suggestions, which guided the reformulation ofthe paper in its current version.

References

1. Ahmed P.K, Kok L.K., Loh A.Y.E. (2002) Leaming through knowledge management.
Butterworth-Heinemann Boston, USA

2. Argyris C., Schon D. (1978) Organizationalleaming: a theory of action perspective.
Addison-Wesley, MA, USA

3. Baird L., Henderson J.c. (2001) The knowledge engine: how to create fast cycles of
knowledge-to-performance and performance-to-knowledge. Berret-Koehler, San
Francisco, CA, USA

4. Basili V.R., Caldiera G. (1995) Improve software quality by reusing knowledge and
experience. Sloan management review, 37: 56-64

5. Birk A; Torgeir D., Stalhane T. (2002) Postmortem: never leave a project without it.
IEEE Software, 19: 43-45

6. Boisot M. (1998) Knowledge assets. Oxford university press, New York, USA
7. Buckland M. (1994) Information as thing. In: Buckland M., (Ed.) Information and

information systems. Praeger Westport, Connecticut, USA, pp. 43-54
8. Choo C.W. (1998) The knowing organization: how organizations use information to

construct meaning, create knowledge and make decisions. Oxford university press,
New York, USA

9. Crossan M.M., Inkpen A.C. (1992) Believing is seeing: an explanation of the
organizational leaming concept and evidence from the case of joint venture leaming.
Working paper, Western Business School, University ofWestem Ontario, Canada

www.manaraa.com

6 Evaluating an Approach to Sharing Software Engineering 133

10. DiBella AJ., Nevis E.C. (1998) How organizations leam: an integrated strategy for
building learning capability. Jossey-Bass, San Francisco, USA

11. Dixon N. (1994) The organizational learning cycle: how we can leam collectively.
McGraw-Hill, London, UK

12. D'Ambra J., JefIery R. (2001) CORONET: An Australian software engineering
experience in collaborative research with the European community. In: Proceedings of
the Australian software engineering conference, Canberra, Australia, pp. 255-261

13. Drucker P. (1998) From capitalism to knowledge society. In: Neef D. (Ed.) The
knowledge economy. Butterworth-Heinemann, Boston, pp. 15-34

14. Earl M. (1994) Knowledge as strategy: reflections on Skandia International and
Shorko films. In: Ciborra C., Jelassi T. (Eds.), Strategic information systems: A
European perspective. John Wiley and Sons, UK

15. Edvinsson L., Malone M.S (1997) Intellectual capital: the proven way to establish your
company's real value by measuring its hidden brainpower. Piatkus, London, UK

16. Feldmann R.L., Tautz C. (1998) Improving best practices through explicit
documentation of experience about software engineering technologies. In: Proceedings
of the international software process improvement conference in education and
research, UK, pp. 10-11

17. Grant R. M (2000) Shifts in the world economy: the drivers of knowledge
management. In: Despres C., Chauvel D. (Eds.), Knowledge horizons: the present and
promise ofknowledge management. Butterworth-Heinemann, London, UK, pp. 27-53

18. Hamel G. (1991) Competition for competence and interpartner learning within
international alliances. Strategie managementjournaI, 12: 83-103

19. Kollock P., Smith M. (1996) Managing the virtual commons: cooperation and conflict
in computer communities. In: Herring S. (Ed.), Computer-mediated communication:
linguistic, social and cross-cultural perspectives. John Benjamins Publishing
Company, Amsterdam, The Netherlands, pp. 109-128

20. Marquardt MJ (1996) Building the learning organization. McGraw-Hill, New York
21. Mintzberg H. 1994) The rise and fall ofstrategic planning. Prentice Hall, London, UK
22. Nonaka 1., Takeuchi H. (1995) The knowledge creating company: how Japanese

companies create the dynamies of innovation. Oxford university press, UK
23. Nonaka I. (1998) The knowledge-creating company. Harvard business review:

Knowledge management. Harvard business school press, Boston, MA, USA, pp 25-40.
24. Pfahl D., Ankasaputra N., DifIerding C., Ruhe G. (2001) CORONET-Train: a

methodology for Web-based collaborative learning in software organizations. In:
Lecture notes in computer science, Springer, Berlin Heidelberg London, 2176: 37-51

25. Pfahl D., Trapp S., de Teresa J., Stupperich M., Rathert N., Molu R., Sherbakov N.,
D'Ambra J., (2002) CORONET Final report. Fraunhofer lESE, technical report no.
045.02lE.

26. Polanyi K. (1958) Personal knowledge. University ofChicago press, Chicago, USA
27. Robillard P.N. (1999) The role of knowledge in software development

Communications ofthe ACM, 42: 87-92
28. Rus I. Lindvall M. (2002) Knowledge management in software engineering. IEEE

Software, 19: 26-38
29. Schneider K.; Hunnis J-Pe von, Basili V. R (2002) Experience in implementing a

learning software organization. IEEE Software: 19: 46-49
30. Szulanski G. (1996) Exploring internal stickiness: impediments to the transfer of best

practice within the firm. Strategie management journal, 17: 27-43

www.manaraa.com

134 Oliver, D'Ambra and Toom

31. Sveiby K.-E. (1997) The new organizational wealth: Managing and measuring
knowledge-based assets. Berrett-Koehler publishers, San Francisco, CA, USA

32. Weiek K. (1997) Cosmos versus Chaos: sense and nonsense in electronie contexts. In:
Prusak, L. (Ed) Knowledge in organizations. Butterworth-Heinemann, Boston, USA,
pp. 213-226.

33. Wenger E (1996) Communities ofpractice: the social fabrie ofa learning organization.
Healthcare forum journal, 39: 20-26

34. Wiig K. (1993) Knowledge management: foundations. Sehema press, Arlington,
Texas, USA

Author Biography

Gary R. Oliver is the Chief Information Officer at the Australian Graduate School
of Management, which is a school of both The University of New South Wales
and the University of Sydney. Prior to joining the school in 2002, he completed
over 20 years managing all aspects of computing, in private enterprise and
govemment, at state and international levels, including as a chief information
officer. Mr. Oliver's current research focus concerns both practice and theory: the
behavior of people when faced with situations where knowledge sharing is
opportune and neeessary for efIective performance, and the part played by
knowledge frameworks in understanding and quantifying all the dimensions of
knowledge sharing.

Dr. John D' Ambra is a senior lecturer in the School of Information Systems,
Technology and Management at UNSW, Australia. Dr. D' Ambra has considerable
commercial experienee in the area of information teehnology. His research
interests include the study of computer-mediated communication within
organizations and evaluation of the World Wide Web as an information resouree.
Dr. D'Ambra is also a member ofthe Centre for Advanced Software Engineering
Research (CAESER) where he has worked on several projects, including the
CORONET project.

Christine Van Toom is a lecturer at the School of Information Systems,
Technology and Management, University ofNew South Wales, Australia. She has
extensive industry experience in the fields of information systems and information
technology. Her research interests lie in the areas ofknowledge management and
decision support, with particular emphasis in relation to human computer
interaction. Ms. Van Toom's commercial background is diverse, and she has
considerable experience across a wide variety of industries. She is the Director of
the Business Information Technology and Information Systems and Management
Co-op Scholarship Programs at UNSW.

www.manaraa.com

7 Eliciting and Maintaining Knowledge for
Requirements Evolution

Allen H. Dutoit and Barbara Paech

Abstract: Two of the biggest challenges in knowledge management are making
tacit knowledge explicit and keeping explicit knowledge up-to-date. In this
chapter, we focus on how to manage knowledge about a software system with
respect to change, so that changes can be evaluated and realized with less effort
and without reducing quality. We use a rationale-based approach for making
explicit change knowledge and the knowledge activities that need to occur during
requirements specification and evolution. The knowledge activities keep the
requirements and the change knowledge up-to-date. While these issues have been
examined to some extent independently in the requirements, change, and
knowledge management communities, we focus on the integration of methods
from all three communities. The goal of the chapter is to illustrate the synergy
effects and resulting benefits that occur when interleaving knowledge and
requirements activities.

Keywords: Requirements evolution, Knowledge management, Rationale,
Traceability, QOC, Use case

7.1 Introduction

Knowledge management (KM) in software engineering aims at decreasing time
and cost and increasing quality by supporting decision making [25]. There are
many different kinds of knowledge and many different knowledge activities that
could be useful for this purpose. All of them face two major challenges, one weIl
known from knowledge management, the other from software development:

• Making tacit knowledge explicit: KM "focuses on the individual as a customer
ofknowledge and as the bearer and provider ofimportant knowledge that could
systematically be shared throughout an organization" [25]. Some of this
knowledge is made explicit during every day development activities, for
example, in the form of process and system models, templates, and documents.
Some ofthis knowledge, however, remains tacit, as it is difficult to express and
often depends much on beliefs, perspectives, and values. Examples of tacit
knowledge include crafts and skills, which can take years of apprenticeship to
transmit, knowledge about an organizations culture and procedures, necessary
for individuals to effectively collaborate with their colleagues, and knowledge
distributed among many individuals and geographicallocations and not owned

www.manaraa.com

136 Dutoit and Paech

by any specific individual. Tacit knowledge that is not made explicit is lost
when individuals leave the organization.

• Keeping explicit knowledge up-to-date: Over 50% ofthe software developers'
effort is dedicated to maintenance [34, 2]. As exemplified by the European
Space Agency's Ariane 5 flight 501 incident (1996) poor change management
lead to the reuse of an older software component without sufficient validation
against new requirements, resulting in the loss of alauncher with its payload
and severe economic losses [26]. Thus, any activity during development must
be assessed against two important criteria: how to cope with changes of the
created artifacts and how much additional effort is necessary to keep the
artifacts up-to-date.

Requirements engineering is a specific area of software engineering in which
these two challenges are especially difficult. First, requirements engineering
features the collaboration of a variety of individuals with different technical
backgrounds and in different locations. Second, requirements engineering occurs
over the entire life cycle of the system, as requirements are updated and changed.
Examples oftacit knowledge in requirements engineering include:

• Application domain knowledge not accessible to developers: For example, this
knowledge is required to understand why specific requirements are included or
excluded from the system specification.

• Solution domain knowledge not accessible to the client: For example, this
knowledge is required to estimate the trade-offs in cost and functionality when
considering a new requirement.

• Relationships between the requirements and the design 0/ existing system: For
example, this knowledge is required to understand the impact of a requirements
change on the performance of the system.

In practice, however, making the above knowledge explicit and up-to-date is
costly and difficult. Not an knowledge about the application domain or the
solution domain is required to understand the system. Making all of it explicit
would be wasteful. Identifying the relevant parts that are critical to requirements
decisions, however, is not trivial. Also, generating and maintaining more
documentation represents an overhead for clients and developers, who may not see
a short tenn incentive for accurately capturing this knowledge [16]. Fina1ly,
capturing relationships among the requirements and the design may be difficult in
the absence of sufficient application- and solution-domain knowledge.

Developers and clients deal with tacit knowledge through close collaboration.
Informal communication among developers, through hallway conversations,
apprenticeships, or peer exchanges, ensures that at least some of this knowledge is
transmitted to the right developers. However, projects increase in duration and in
the number of locations where they are conducted. Thus, such informal exchange
ofknowledge is not sufficient. To enSure a coherent and cost-effective approach, a
formal framework is needed, allowing developers to classify different pieces of
knowledge, make them explicit, relate them to the requirements and the system,

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 137

and fmaIly, trace dependencies as changes are considered, and keep the
knowledge up-to-date.

In this chapter, we focus on such a knowledge framework for requirements
evolution. We first sketch the different change activities that occur in the context
of requirements evolution (Sect. 7.2). We then identify the types of knowledge
required to support requirements changes and emphasize the central role of
rationale for making this knowledge explicit and coherent (Sect. 7.3). Next,
describe an example for capturing, using, and preserving change knowledge in the
context ofuse-case based requirements specification (Sect. 7.4). We conclude this
chapter with a summary and a discussion of the open issues in dea1ing with
requirements change knowledge (Sect. 7.5).

7.2 Requirements Change

Software systems typically have an extended life cycle. The US air route traffic
control system includes hardware and software components that are more than 30
years old [14]. Operating systems such as Unix or Windows XP include code that
is several decades old. Even application software and custom software developed
for a single client see many years of operation before being replaced. Such an
extended life time results in the incorporation of many changes into the system.
Some changes result from changes in the environment or in the way clients
accomplish their work. Other changes repair requirements errors and improve the
system for the client. Yet other changes increase the scale or the quality of the
system as a result of increased workload or reliability requirements. In order to
discuss the types of knowledge and knowledge activities needed to support
requirements change, we first need to characterize the system knowledge gathered
during development that is relevant for requirements change, as weIl as the
activities for changing this knowledge.

Figure 7.1 gives an overview ofthe activities involved in requirements change.
Fig. 7.2 illustrates a meta model of system and change knowledge in which the
system knowledge consists of requirements and design elements. We do not
distinguish between different levels of requirements, e.g., user and developer
requirements. For the purpose ofthis paper it is sufficient to distinguishjunctional
requirements (FR) (i.e., tasks that the clients accomplish and the system functions
for supporting them) and non-functional requirements (NFR) (i.e., properties of
the application domain and quality criteria that the system must meet). Design
models describe the system from the developers' perspective. Design models
consist of design elements, each representing decisions about how to realize the
functional and nonfunctional requirements. In this paper, we use the phrase system
model elements to generally refer to both requirements and design elements.
System elements constitute the system knowledge necessary to understand and
describe the system.

www.manaraa.com

138 Outoit and Paech

For the purpose of this chapter we d~ not go into detail of the requirements
activities. We just stipulateanactivity for the creation of the requirements from
some problem statement, where the latter may just be in the client's head.

Protlem
statement

Change
plan

Change
request

Fig. 7.1. Change process overview (UML activity diagram, additional knowledge
management activities shown in gray)

A change is initiated by a change request. The change request represents a
formal step in which the c1ient asks the development organization to amend the
requirements specification and, as a result, to modify the system. The change
request may include examples or alternatives of how the requirements
specification could be changed, but remains a high-level description. As a result of
a change request, the development organization needs accomplish the following
activities (see elements in white in Fig. 7.1):

• Assess change: Ouring this activity, the developers try to understand the change
request. They generate a list of change impacts, i.e., the system model elements
that would need to change. This is used to estimate the cost of the change.
Oevelopers identify possible conflicts with other requirements that this change
would introduce. The c1ient may also provide additional information with the
change request to denote how critical the realization of this change is with
respect to other changes or requirements .

• Decide on change: Ouring this activity, the c1ient and developers decide
whether to proceed with the change or not, based on the assessment knowledge.
Ifthey decide to realize the change, they proceed to the next two activities.

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 139

• Plan change: During this activity, the developers refine the change assessment
so that the work related to the change realization can be divided and assigned to
individual developers. In particular, any remaining conflicts are resolved, and a
detailed description ofhow the change impacts need to be revised is written.

• Execute change: During this activity, the change plan is executed and the
changes are validated.

As described in IEEE Standard 1219-1998 [16, 17], a full maintenance process
is more complex than the activities sketched above. The above activities are
sufficient, however, to study the knowledge involved in requirements changes. In
particular, we do not go into details of changing design elements or other artifacts.
We only study how relationships between requirements and design elements
influence requirements change.

In practice, the main issue during the assessment, planning, and execution of
the change is to ensure that only the intended FR and NFR of the system change
and no more. Changes are difficult to localize, assess, and realize, as the system
under consideration has usually been developed by different sets of individuals
whose assumptions are not captured in the requirements specification or the
design documentation. Hence, changes are expensive and constitute the main
source of software defects [24], degrade the architecture of the system [13], and
eventually lead to the retirement of the current system and its replacement by a
completely reengineered system. Mäkäräinen [28] describes further change
management problems having to do with the effectiveness, communication,
analysis and location, traceability, decision processes, and tools for change
management.

In the following section, we discuss how additional knowledge can be captured
before the change request to support the change activities. These additional
knowledge management products and their related activities are depicted in gray
in Fig. 7.1.

7.3 Knowledge for Requirements Evolution

There are five main types of knowledge that usually remain tacit in a development
project and that can be used for supporting a change (see Fig. 7.2):

• Sensitivity characterization [32]: This knowledge includes a list of changes that
are most likely in the future. Such knowledge can be extracted with sensitivity
analysis by studying the history of similar systems, identifying worst case
scenarios, and market research. Sensitivity analysis enables developers to focus
their resources, for example, when capturing additional knowledge (rationale,
traces).

• Rationale [11]: This knowledge consists of the reasons why developers have
made the decisions they have. Rationale (represented as Questions, Options,
Arguments, and Decisions in Fig. 7.2) helps to retain the original concept as
much as possible and reduces the effort needed by developers to re-assess

www.manaraa.com

140 Dutoit and Paech

different options using a new set of requirements. Often, errors can be avoided
by not re-evaluating an option that has already been discarded. In other cases, a
change can be realized by selecting a previously discarded option that has
become more relevant.

• Pre-traceability [18]: This knowledge consists of Contributor Links between
system model elements and the stakeholders that originated them. Such
dependencies make it easier to trace the human source of each requirement, the
reasons for including (or excluding) the requirement from the specification, and
to identify conflicts among stakeholders.

• Post traceability [18]: This knowledge consists of Trace Links among
requirementc; elements, and design elements. Such dependencies make it easier
to identify the elements impacted by the change.

• Change impacts [4]: This knowledge includes, for a given change, its impact
and cost. Impact analysis is often only performed as a result of a change
request. Here, however, we stipulate this activity during the initial development
of the system for a set of likely future changes to assess the modifiability of the
system.

Sirnilar knowledge types and their related activities are described in [22] and
[6]. The latter focuses more on code changes and thus also includes program
understanding and truth maintenance. The former discusses the activities in the
context ofthe knowledge framework that helps to gather experiences from and for
change processes.

As depicted in Fig. 7.2, options are a central element of change knowledge.
Options briefly describe alternative requirements that can answer a change request
or a question raised by the client. Options, hence, can also be treated as potential
changes generated by the sensitivity analysis and can have attached change
impacts and argumentation knowledge. Options are usually left tacit in most
development processes. They are discussed, refined, and evaluated in the scope of
meetings and face-to-face negotiations, but are not documented or systernatically
captured. By making options explicit and maintaining their dependencies to the
rest ofthe change and system knowledge, allother change activities become much
simpler as they leverage off existing knowledge and minimize the additional effort
needed to keep this knowledge up to date.

In the following, we examine in detail these five types of knowledge:
sensitivity characterization (Sect. 7.3.1), requirements rationale (Sect. 7.3.2),
pretraceability (Sect. 7.3.3), post-traceability (Sect. 7.3.4), and impact analysis
(Sect. 7.3.5). In particular, we discuss the obstacles in making this knowledge
explicit.

7.3.1 Sensitivity Characterization

Minimally, sensitivity characterization, the result of sensitivity analysis, is a list of
high-level requirements that are unstable or likely to change [35]. In most cases,
however, sensitivity analysis not only captures which requirements are likely to

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 141

change, but also how they are anticipated to change. We can represent this type of
knowledge the same way as we represent requirements: Future changes are
represented as different options. As options are high-level descriptions, it costs
minimal effort from the part of the developers to document this knowledge.
Sensitivity analysis can be viewed as a silnpler form of product line scoping [33].
The latter not only captures variabilities, but also commonalities.

/ Chang e KnONledge \. / System KnoNledge \.

I Sensitivity I Trace Link
,

characterization

I Contribulor Link :

, 2
anticipates n Change 11 System model 1

Impact element

~
,

'-I Option
assessed against Non-functional I , 'I requirement

.~
, ,

~ 11 Decision I Argument I Funclional
1

0 .. 14 requirement

considers
, ,

resolves 1 Question . justifies .
justifl8s reallzed bI ·1

Design Element .
Fig. 7.2. Change knowledge and its relationship to system knowledge

As the goal of sensitivity analysis is to focus resources on the most likely
changes, a detailed sensitivity characterization also captures the likelihood and the
time frame of each possible change. For example, developers focus first on
changes that are very likely or changes that are likely to occur in the short term, as
opposed to changes that äre unlikely or changes that will occur in the long term.

The main obstacle today for making sensitivity characterization explicit is that
there are no standard methods for this. Recently, risk management methods [20]
have become more popular which give some guidance on how to systematically
deal with expectations on system evolution. Even if developers and clients only
use personal heuristics, it is important to make this explicit so that the heuristics
can be improved.

7.3.2 Requirements Rationale

Rationale captures the options that were considered, the criteria used to evaluate
them, and the reasons for preferrlng the current options to the discarded options.
This can be represented in several different ways [36], including naturallanguage,
rules in a knowledge-based system, or arguments structured in rhetorical steps.

www.manaraa.com

142 Dutoit and Paech

The latter case, called argumentation-based rationale, represents rationale as a
graph of nodes and edges, each node representing a decision-making element or
rhetorical step and each edge representing a relationship between two elements.
For example, the questions, options, criteria (QOC) notation [27] uses the
following rhetorical steps:

• Questions represent problems to be solved, such as a requirements issue, a need
for clarification, or a disagreement.

• Options represent considered alternatives for answering a question. Options
include requirements, changes to a document, or clarifications. If a question is
closed, the chosen option is called decision.

• Criteria represent qualities that are used to evaluate options in a certain context.
Criteria are NFRs (e.g., reliabiIity, cheapness, performance). The assessment of
an option against a set of criteria is represented with assessment links between
the option and the criteria nodes.

• Arguments represent the opinions of the participants. Arguments can support or
oppose another rhetorical node.

Developers first capture bits and pieces of rationale during review and
negotiation. These can take the form of Iists of defects, change requests, proposed
alternatives, and argumentation that takes place electronically via e-mail or within
a tool-supporting rationale. Developers then consoIidate these bits and pieces into
weII-structured QOC models during revisions to the specification. The output of
rationale capture is a QOC model that can be used to organize the rest of the
change knowledge.

Argumentation-based representations are widely used in rationale management
[21, 27, 29]. One of the early drivers to capture rationale has been traceability,
e.g., in the REMAP approach [31].

Major problems for rationale capture involve cost (in particular, since the
rationale providers are often different from the rationale users), completeness
(because it is lost, if not captured early), and complexity (since rationale models
are larger than system models). In [11] we discuss process and tool integration as
a means to overcome these obstacles.

7.3.3 Pretraceability

Pretraceability enables adeveloper to foIIow a requirement back to its human
source and the context in which it was captured. Pretraceability is needed during
change assessment to identify conflicts between proposed requirements and
original stakeholder criteria, especially when some of the stakeholders are not
available for comment.

Capturing and representing pretraceability is a particularly difficult problem, as
requirements elicitation is a process driven by negotiation, brainstorming,
informal contacts, and creativity. Given any specific requirements, there may be
many invisible individuals that contributed to it to various degrees. There are
several approaches to this problem.

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 143

Using WinWin [3], stakeholders initiate the elicitation process by posting win
conditions, which represent the stakeholders' success criteria. Win conditions are
high-level NFR or FR, which, if not met, result in a system that fails to support the
stakeholder. During the elicitation, win conditions are refmed into actual
requirements that are then organized in the requirements specification document.
Conflicting win conditions are detected and resolved through negotiation. The
options and their assessment are captured with an issue model similar to QOC,
discussed in Sect. 7.3.2. As a groupware tool supports the complete process, the
traceability from a specific requirement to a win condition is also captured. This
approach, however, assumes that the client that posts win conditions in the tool is
the stakeholder. In many situations, this is not the case, as stakeholder
requirements are elicited during face-to-face meetings or during task observation,
after which the analyst documents these requirements.

Using contribution structures [15], stakeholders indicate the different types of
contributions for different artifacts. The contribution structures framework
distinguishes three capacities:

• The principal motivates the requirement and is responsible for its effects and
consequences.

• The author develops the requirements structure and content and is responsible
for its form and semantics.

• The documentor records or transcribes the requirements content and is
responsible for its appearance.

Recording the role of a contributor with respect to a requirement provides a
simple way to document the commitment and responsibility of the contributor.
This enables change requests to be directed to the right contributor, based on the
nature of the change and the requirements being changed. Contribution structures
can also take advantage of relations between requirements. For example, if one
requirement is a specialization of another, more general, requirement, the
contributor for the general requirement retains some responsibility for the
specializations.

Recording traceability to human sources remains a difficult task because of
acceptance issues. Such knowledge reveals more detail about the social network in
the organization and the rate and quality of contribution of each participant. This
can only be alleviated through organizational measures as discussed in [25].

7.3.4 Post-traceability

Post-traceability enables adeveloper to follow a requirement to its corresponding
architecture, design, source code, and test elements. Given a requirement, a
developer can deduce which design elements realize the requirement and which
test cases check its realization. Similarly, given a test case, adeveloper can deduce
which set requirements are checked and which are not. Post-traceability is needed
during impact analysis to identify the change impacts.

www.manaraa.com

144 Dutoit and Paech

Capturing and representing post-traceability is a better-understood problem, as
the ability to explain and document the results of development activities has been
forced on industries in life-critical businesses, such as aerospace, pharmaceutical,
and medical application domains, for addressing liability and accountability
issues. However, the challenges of post-traceability are also not technical (Le.,
post-traceability is essentially a link between two elements), but rather, related to
social and methodological factors. That is capturing all traceability links
introduces a large bureaucratic overhead on developers, traceability links need to
be related with other knowledge, such as rationale, to provide sufficient
information. This results in proposed methods that generate traceability links as a
side effect of developer activity or rationale [30, 31]. In [19], von Knethen
describes in detail a traceability approach for embedded systems and its empirical
evaluation.

7.3.5 Impact Analysis

Given a possible change, impact analysis results in the list of system elements that
could be affected by the change and an estimation of the cost required to revise
these elements. The input to impact analysis is typically a list of likely changes
from the sensitivity analysis, rationale, and post-traceability links generated during
development. For each change, developers follow traceability links from the
impacted requilrement to other elements and use rationale and their experience to
'assess how the target element is likely to be impacted. If the developer assesses
the target element as likely to change, the impact analysis is repeated recursively
[35]. Impact analysis provides initial cost estimates for changes. Since the impact
analysis knowledge was generated during development, the cost estimates are
more accurate than if performed during change assessment.

In the last few years, a number of approaches for impact analysis have been
developed; for an early overview see [4]. One major problem is that impact
analysis is an activity that requires much judgment from the developer. Simply
following all post-traceability links only yields all the elements that are potentially
impacted, henc:e, yielding cost estimates that overestimate the actual cost of
change. Moreover, in the event some post-traceability links have not been
captured, an automated approach could also yield an underestimate of the actual
cost. Similar to sensitivity analysis, it is important to make the personal heuristics
of experts explicit in order to improve them.

7.3.6 Summary

Table 7.1 summarizes the activities capturing the five types of knowledge
discussed in this seetion. Typically, capturing rationale and traceability occurs
during development. Sensitivity analysis occurs after a first stable version of the
requirements is completed, while impact analysis occurs once the software
architecture is defined. To ensure that the change knowledge remains up-to-date,

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 145

all five types of knowledge need to be revisited during requirements and design
change.

Table 7.1. Knowledge activities for supporting change

Sensitivity Capturing Capturing Capturing Impact
analysis rationale pre- post- analysis

traceabili!l: traceabili!l:
Specialist Requirements Requirements Developers Specialist

engineers, engineers
.8 reviewers,
~ knowledge

consolidator
After first During During During After first
stable version requirements requirements design stable

5 of reviewand elicitation versionof

~ requirements requirements architecture
changes

Domain NFRs Stakeholders FRsand Sensitivity
model, NFRs, characteriz

~ history of architecture ation
rt similar rationale - systems

Unstable or Questions, Contributor Trace links Cost

'"
likely to options, links to between estimate,

;:; change criteria, human requirements list of
% requirements arguments, sources anddesign impacted
0 and decisions elements elements

To reduce the cost of capturing this knowledge and make it easier to keep it up
to date, we organize these five types ofknowledge around options (Fig. 7.2):

• Likely changes in sensitivity characterization are represented as options.
• Pretraceability is represented as a contributor link between each option and the

corresponding system model, including the contributing stakeholder. The
contributor link also includes the role the stakeholder had in the contribution.

• The links between the rationale elements and the system elements represent
dependencies between the change knowledge and the system knowledge. If a
system model element is changed, the corresponding change knowledge that
needs to be updated can be found by identifying the corresponding option.

• Traceability is not directly interconnected to options. Instead, trace links
connect two related system model elements. Note, however, that trace links can
be used to fmd indirect relationships between two options responding to
different questions.

• The result of impact analysis is represented as a change impact object linking
the option with the impacted elements.

www.manaraa.com

146 Dutoit Imd Paech

In the next section, we describe an example for capturing and maintaining
requirements change knowledge in the context of use case-based requirements
specification.

7.4 Using Options for Dealing with Evolving Requirements

This section illustrates the change knowledge and the change activities identified
in the previous sections with a specific approach for capturing and evolving
change knowledge and requirements. The method and the REQuest tool used to
create the requirements documents and the options are described in detail in [12].
In the following, we first describe the representation and use of FR and NFR in
REQuest. Then, we sketch the process for changing the options and the
requirements. The latter is illustrated with the meeting scheduler example [23].

7.4.1 Rationale-based Use ease Speeifi~ation with REQuest

In REQuest, we describe the functional aspects of a requirements specification
with user taslcs, use cases, and system services. This is similar to other use case
based approaches. User tasks are similar to Cockburn's Summary Goal Use Cases
[8]. We use the term user task because we rely on techniques from task analysis
for their identification [10]. Only by knowing the user tasks in detail can a system
with maximal support to the c1ient be designed. The use cases correspond to
Cockburn's user goal use case, and the system services to Cockburn's subfonction
goal use cases [8]. Table 7.2 depicts as an example the user task ''manage
interaction among participants".

Table 7.'1.. Usertask: manage interactions among participants

User task name
Initiating actor
Participating actors
Task description

Realized in use cases
Referenced NFR

Manage interaction among participants
Meeting facilitator (MF)
Meeting participant (MP)
Tbe MF is responsible for getting replies from MPs who have
not reacted promptly, for notifying MPs of changes of date or
location, and for keeping MPs aware of current unresolved
conflicts or delays in the scheduling process
Handle replies, remind participant, react to replan request
None

Table 7.3 shows as an example the "handle replies" use case. We use the
essential use case style of [9], where each use case step has a number, and actor
and system steps are explicitly distinguished.

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 147

Table 7.3. Use case: handle replies

Name
Realized user task
Initiating actor
Participating actors
Flow of events

Exceptions

Precondition

Postcondition
Includes use cases
Used services

Referenced NFRs

Handle replies
Manage interaction among participants
Meeting facilitator (MF)
Meeting participant (MP)
Actors System
1. The MP selects
"Handle Replies" for a
meeting and a question

2. The system checks if all MP
replied (Exception: slow
participant)
3. The system starts the "elose
question service" and notifies
the MF accordingly

(Slow participant) Tbe MF decides whether to remind the
MPs or to elose the question and possibly disqualify the
MP. In the first case they remind the MP. In the second
case they disqualify the MP. Then they enter the
disqualification into the system through the "disqualify
participant" service and then selects the "elose question
service"
The meeting initiator has initiated the meeting and asked
some question
The MPs have been reminded or the question is elosed
None
Check participant replies, remind participant, close
question, disqualify participant
Response time, minimize amount of messages, tlexibility

In contrast to goal-oriented approaches to requirements engineering (e.g.,
GBRAM [1] or KAOS [23]), where NFRs are used to drive the requirements
elicitation, we use user tasks to drive the elicitation. NFRs are only used as criteria
for the evaluation of the adequacy of use case or service design with respect to
user tasks and use cases, respectively.

In REQuest, we use the QOC model to represent the rationale for a specific
requirements element [12]. As criteria we use NFRs. In addition, we use a special
kind of question type, ca1led justifications. These are used to surnmarize the
arguments as to why a specific use case or system service is preferred against its
alternatives. F or example, Table 7.4 depicts the justification of the handle replies
use case ofTable 7.3.

Typically, REQuest specifications are created in two ways:

• Either different options are first created and assessed, and then one of these
options is chosen and refined into a full-fledged use case. During refinement
new insights might be gained that lead to changes on the options.

www.manaraa.com

148 Dutoit Imd Paech

• Alternatively, a use case is ftrst created and then justifted. During the
justiftcation other options are made explicit and evaluated. This might lead to
an adaptation ofthe use case.

Table 7.4. QOC model: justification for the handle replies use case

Justification What is the best option for the system boundary within in the "handle
replies use case" satisfying the NFRs?

Criteria: Response Minimize Flexibility
time amount of

messages
Option 1 (fully automatie): Tbe system +
collects' replies and reminds slow MPs
automatically during a given time within a
given intervaI. Tbe system then closes the
question, disqualifies aIl MPs who did not
respond from the meeting, and informs the
MF
Decision (fully manual): Tbe MF chooses -
when to handle replies, checks status
accordingly, and decides whether to remind
MPs personaIly, or to elose the question and
disqualiry MPs personaIly
Legend: + Option complies with criterion,

- Option fails to meet criterion

7.4.2 Change Management in REQuest

+ +

In REQuest, rationale and trace links are captured to support change. This is
facilitated through the tool. For example, glossary terms are identifted in the text
and linked automatically. When creating or editing an element a template is
provided that includes references to the other elements. As soon as a link in one
direction is created (e.g., between user task and a use case), the other direction is
automatically also created.

These links can then be used for impact analysis. REQuest recommends
carrying this out early for likely changes. This information can then be used as
arguments in the evaluation of different design options. REQuest does not give
particular support for sensitivity analysis.

To reduce the effort for creating the change knowledge for the developers, we
introduce the role of a change knowledge consolidator. The task of this role is to
identify missing knowledge (such as missing decisions or missing links) and to
consolidate the knowledge (e.g., unifying similar options).

This role can also carry out the impact analysis for likely changes identifted
during sensitivity analysis. However, typically requirements engineers or
developers carry out impact analysis, since it not only provides input necessary to
plan and execute changes. Its main contribution is to the design activity, because it

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 149

enables design for change. In the following we give an example how a change
request is handled in REQuest, in particular how options support this step.

Table 7.5. Change request

Change request: new quality constraint minimize facilitator effort
Objective Improve use cases from the viewpoint ofthe meeting facilitator
Originator Meeting facilitator
Current system In the current system the meeting facilitator has to spend too much
behavior time on interaction with the meeting participants
Desired system New quality constraint on the user task and therefore on all use
behavior cases: minimize the time the meeting facilitator has to be spend on

interacting with meeting participants
Needed change Find a new solution so that the new quality constraint and all

existing constraints are satisfied

Table 7.5 shows an example change request to the use cases of the meeting
scheduler. It mainly impacts the existing use case handle replies (see Table 7.3).
This use case realizes the fully manual (FM) option, since the fully automatie (FA)
option severely restriets the user flexibility criterion. The reason is that it is not
tolerable for the users to be disqualified by the system. The change request
basically consists of adding a new quality constraint. In the following we explain
how this change request is processed.

The requirements engineer proposes different options to implement a change
request. One possibility that is always available is the status quo, that is, not to
change the specification. Other possibilities arise from reevaluating existing
options in the context of the change. If neither of these is satisfying, then new
options have to be devised. In the example, a new option for the handle replies use
case has to be created, because neither of the given ones satisfies all constraints.
The FA option invalidates the user flexibility, and the FM option invalidates the
new constraint minimal facilitator effort. Therefore new options have to be
generated. Table 7.6 shows the option informed and manual (IM) that satisfies all
the constraints. For each option proposed, the requirements engineers need to
evaluate it and refine it to satisfy the NFRs. The evaluation of the new option is
also shown in Table 7.6.

In addition, requirements engineers create arguments supporting and opposing
options. This helps to validate the evaluations and to prioritize criteria. Once
requirements engineers have evaluated and refined (most or) an options, they
create adecision by selecting an option. This can result in minor or substantial
change in the requirements specification. The decision to realize the change with a
given option is not only based on the rationale (that makes explicit which option
best satisfies all the criteria), but is also based on effort and cost considerations
(which bave to be validated later with the change plans). In particular, an impact
analysis for the options is carried out. The impacts are documented as a list of
elements to be changed according to the chosen option. In particular, this includes
elements arising from trace links indicating dependencies that have to be assured

www.manaraa.com

150 Dutoit and Paech

in spite of the change. The cost and effort considerations are recorded elsewhere,
e.g., in a system or project planning document.

Table 7.6. New justification for use case handle replies

Justification: I What is the best option for the system boundary within in the
"handle replies use case" satisfYine; the NFRs?

Criteria

Option 1 (fully automatie): The system collects replies
and reminds slow participants automatically within a
given interval. The system then closes the question,
disqualifies all participants who did not respond from the
meeting and informs the meeting facilitator
Option 2 (informed and manual): The system collects
replies and automatically reminds the participants. After
a given interval it informs the meeting facilitator about
the status. The meeting facilitator closes the question
and decides whether to disqualif)' the participants who
did not respond
Decision (fully manual): The Meeting Facilitator
chooses when to handle replies and accordingly checks
the status and decides whether to remind participants
personally, close the question, or disqualif)' participants
personally

Legend: + Option complies with criterion,
- Option fails to meet criterion

u ~'El g '" I::

:~ ~ ~u .. P-
~.~ ~~ ~ ~

:;Jt;:;

+ - -

+ - +

- + +

.~
:~ ?
~<l

+

+

-

Based on this, detailed change plans are created that list the change steps
necessary to implement the options. Table 7.7 shows the change plan ofthe new
option (IM). It requires only few changes to the handle replies use case and the
corresponding rationale. In addition to the direct impact, the impact on related use
cases also has to be treated. In the example, the handle replies is included in the
schedule meeting use case. Thus, the latter has to be reconsidered. In this case the
use case itself need not be changed, but the evaluation ofthe new constraint has to
be added to its rationale. Note that not all use cases are evaluated against all
criteria, because not all criteria are relevant. The traces capture the knowledge
necessary to propagate the relevance of criteria. Based on the change plans, the
cost and effort estimates are also reconsidered. Finally, the change plans are
executed. In addition, the changes have to be validated, e.g., through inspections.

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 151

Table 7.7. Change plan for option IM

Change Facet Type Description
Impact
UChandle I DeI The meeting facilitator does not need to
replies initiate the check
UC handle 2 Mod The system checks according to a given
replies interval
UChandle 2 Mod If a participant did not reply, they are
replies reminded by the system
UC handle 3 Add After another given interval the system
repIies checks again. It informs the meeting

facilitator about the status
UC handle 3 Add The meeting facilitator c10ses the question
replies and decides whether to disqualify

participants who did not respond
UChandle Exception Mod The meeting facilitator does not remind the
repIies participant again
UChandle Post- Mod The question is closed
repIies condition
lustification Optionand Add New option: informed and manual,
handle evaluation Evaluation for the new option +,-,+,+
replies Evaluation for the new criteria -, +, +
lustification Evaluation Add Evaluation for the new criteria :
schedule
meeting
Legend: DeI = delete, Mod = modify, Add = add

7.4.3 Discussions ofthe REQuest Process

As discussed in [12], we have developed and refined the REQuest process and tool
for capturing change knowledge and requirements in aseries of students'
experiments durlng projects, lectures, and seminars. These experiments have
enabled us to develop detailed guidance. This guidance improved the quality of
the use cases and the rationale written by the students. We have started
experiments with guidance for using change knowledge to process change
requests as described in the process above. Again, the feedback of the students is
positive in that they were able to define new options, assess and plan them, and
execute the change. They feIt very positive about having detailed guidance for
change processing as they had not had such guidelines available to them before.
Of course, they also indicated many possibilities for improvement such as a
graphical representation oftraceability links (similar to requirements management
tools like DOORS or RequistePro). Another idea is to standardize and improve the
structure of options. This would help to compare options and to identify the
detailed changes necessary to implement the option.

Several processes for changing requirements have been proposed, e.g., the NFR
Framework [7] or REMAP [31] or COMANCHE [5]. The main features of the
REQuest process are:

www.manaraa.com

152 Dutoit and Paech

• NFR are used as criteria to compare different options for functionality.
Typically, NFR are on1y used to assess architectural decisions. We take the
view of the NFR framework that NFR should be refined in parallel with the
refinement of functional requirements.

• High-level options for use cases are created and maintained as change
knowledge. In contrast to the NFR-framework we do not focus on the
decomposition, but on the compact description of options and their evaluations.
Thus, we use the notion of user task and use case to cluster user-relevant
functionality. In the goal-graphs ofthe NFR framework several issues relevant
for one use ,ease may be scattered around. The drawback of our approach is that
changing the use case structure impacts on many places. However, in our
experience the use case structure is typically quite stable (at least in cases
where the system has to support existing user tasks).

• In case of change the rationale is updated, but the old versions are not kept. The
reason is that the change knowledge always includes all options identified at a
specific point in time and the evaluations of these options. If the evaluations
change, then the old evaluations are outdated (or incorrect). If the options
change, then similarly, previous versions are outdated. Again this is a
difference from the NFR framework, which makes the changes explicit in the
goal graphs" This supports the detailed comparison of the impacts of different
changes, but after several changes the graphs will be overwhelmed with details.

7.5 Open Issues and Future Directions

In this chapter we discussed different kinds of knowledge necessary to support
change. We argued for the central role of options in making this knowledge
explicit. We also sketched a process for creating and using this knowledge during
use case based requirements engineering. First experiences indicate that this
process is feasible and supports making tacit knowledge explicit. Furthermore, this
explicit knowledge helps to keep the requirements up-to-date in that it provides a
basis for systematically assessing and planning change. With the role of the
change knowledge consolidator we propose to keep the effort for the requirements
engineers as small as possible. We see three challenges that require further
studies:
• Reliably predicting changes: An important factor in minimizing cost and effort

is to concentrate the change knowledge activities only on these parts of the
system that are most likely to change. The solution to drive the complete
change knowledge process by the sensitivity analysis is conceptually simple,
however, reliable methods for sensitivity analysis are still an issue for further
research.

• Presenting (;hange knowledge: An open question, in our opinion, is how to
structure and present the change knowledge so that it is of the highest benefit in
different ch~mge activities. This requires a detailed analysis of further change
types, like changes ofuser tasks, ofuse cases, and ofsystem services as well as

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 153

changes of different kinds of quality criteria. Only after detailed guidance for
carrying out these different changes has been developed, the cost of the change
knowledge can be evaluated against its benefits. In particular, this is °a
prerequisite for further studies in an industrial setting.

• Recording invalid decisions: Capturing change knowledge makes explicit the
organization's leaming processes. Options that were prematurely discarded can
be revisited, actual costs can be compared with inaccurate change impact
estimates, overly cautious arguments can be contradicted, and invalid decisions
reopened. As the changes and rationale behind such improvements are
captured, the organization can leam and make better decisions in the future.
However, an individual's view of this process can be that mistakes are
documented and never forgotten, hence reducing the individual's incentive for
making tacit knowledge explicit.
Similar to [25], we are convinced that in spite ofthese challenges, the benefit of

making software engineering knowledge explicit exceeds its cost. Since change is
a particularly prevalent problem during software development, it seems especially
important to further explore the benefits and costs of change knowledge
management.

References

1. Anton A., Potts C. (1998) Tbe use of goals to surface requirements for evolving
systems. In: Proceedings of international conference on software engineering, Kyoto,
Japan, pp. 157-166

2. Bennett K.H., Rajlich V.T. (2000) Software maintenance and evolution: a roadmap.
In: Proceedings of international conference on software engineering, Limerick, Ireland
pp. 75-87

3. Boehm B., Egyed A., Kwan J., Port D., Shah A., Madachy R. (1998) Using the
winwin spiral model: acase study. IEEE Computer, 31: 33-44

4. Bohner S.A., Arnold R.S. (1996) Software change impact analysis. IEEE computer
science press, Los Alamitos, CA, USA

5. Canfora G., Casazza G., de Lucia A. (2000) A design rationale based environment for
cooperative maintenance. International journal of software engineering and knowledge
engineering, 10:627-245

6. Chandra C., Ramamoorthy C.V. (1996) An evaluation of knowledge engineering
approaches to the maintenance of evolutionary software. In: Proceedings of the
international comerence on software engineering and knowledge engineering, Lake
Tahoe, Nevada, USA, pp. 181-188

7. Chung L., Nix.on B.A., Yu E. (1996) Dealing with change: an approach using non
functional requirements. Requirements engineeringjoumal, 1: 238-260

8. Cockbum A. (2001) Writing effective use cases. Addison Wesley, Reading, MA, USA
9. Constantine L.L., Lockwood L.A.D. (2001) Structure and style in use cases for user

interface design. In: van Harmelen (Ed.) Object-oriented user interface design,
Addison Wesley, Reading, MA, USA

10. Diaper D. (1989) Task analysis for human-computer interaction. Ellies, Horwood.

www.manaraa.com

154 Dutoit and Paech

11. Dutoit A.H., Paech B. (2001) Rationale management in software engineering. In
Chang S.K. (Ed.) Handbook of software engineering and knowledge engineering,
Vol. I, World scientific publishing, Singapore

12. Dutoit A.H., Paech B. (2002) Rationale-based use case specification. Requirements
engineering journal, 7: 3-19

13. Eick S.G., Graves T.L., Karr A.F., Marron 1.S., Mockus A. (2001) Does code decay?
Assessing the evidence from change management data. IEEE transactions on software
engineering 27: 1-12

14. FAA (1999) NAS architecture version 4.0, Blueprint for NAS modernization
15. Gotel 0., Finkelstein A. (1995) Contribution structures. In: Proceedings ofIEEE, 2nd

international symposium on requirements engineering, Y ork, UK, pp. 100-107
16. Grudin 1. (1996) Evaluating opportunities for design capture. In: [29]
17. IEEE (1998) IEEE Standard for software maintenance, 1219-1998, IEEE
18. Jarke M. (1998) Requirements tracing. Communication ofthe ACM, 41: 32-36
19. von Knethen A. (2001) Change-oriented requirements traceability. Support for

evolution of embedded system. PhD thesis in experimental software engineering,
Fraunhofer IRB Verlag, Germany

20. Kontio 1. (1997) The riskit method for software risk management. Version 1.00, CS
TR-3782, Computer science technical reports, University ofMaryland, USA

21. Kunz W., Rittel H. (1970) Issues as elements of information systems. In: working
paper No. 131, Institut rur Grundlagen der Planung, Universität Stuttgart, Germany

22. Lam W., Shankararaman V. (1998) Managing change during software development:
an incremental, knowledge-based approach. In: Proceedings of the international
conference on software engineering and knowledge engineering, pp. 124-127

23. van Lamsweerde A., Darimont R., Massonet P. (1998) Goal-directed elaboration of
requirements for a meeting scheduler: problems and lessons learned. In: Proceedings
ofthe international symposium on requirements engineering, pp. 194-203

24. Lindvall M., Sandahl K. (1998) How weil do experienced software deve\opers predict
software change? Journal ofsystems and software 43: 19-27

25. Lindvall M., Rus I. (2003) Knowledge management in software organizations. Chap. 4
in this book

26. Lions J.-L. (1996) ARIANE 5 Flight 501 Failure: Report by the Inquiry Board,"
http://ravel.esrin.esa.itldocslesa-x-1819eng.pdf (accessed 5th May 2002)

27. MacLean A., Young R.M., Bellotti V., Moran T. (1991) Questions, options, and
criteria: elements of design space analysis. Human-computer interaction, 6: 201-250

28. Mäkäräinen M. (2000) Software change management processes in the development of
embedded software. Espoo 2000, Technical research center of Finland, VIT
Publications, Turku, Finland

29. Moran T.P., Carroll J.M. (1996): Design rationale: concepts, techniques, and use.
Lawrence Erlbaum Associates, Mahwah, NJ, USA

30. Pohl, K. (1996): Process-centered requirements engineering. John Wiley and Sons,
NewYork, NY

31. Ramesh B." Dhar V. (1994) Representing and maintaining process: knowledge for
large scale system development. IEEE Expert 9: 54-59

32. Savolainen J., Kuuse\a J. (2001) Volatility analysis framework for product lines. In:
Proceedings ofsymposium on software reusability, Toronto, Canada

www.manaraa.com

7 Eliciting and Maintaining Knowledge for Requirements Evolution 155

33. Schmid K. (2002) A comprehensive product line scoping approach and its validation.
In: Proceedings of international conference on software engineering, Orlando, FL,
USA, pp. 593-603

34. Sharon D. (1996) Meeting the challenge ofsoftware maintenance. IEEE Software, 13:
122-125

35. Strens M.R., Sugden R.C. (1996) Change analysis: a step towards meeting the
challenge of changing requirements. In: IEEE symposium and workshop on
engineering of computer based systems, Friedrichshafen, Germany, pp. 278-283

36. Shipman III F.M., McCall RJ. (1997) Integrating different perspectives on design
rationale: supporting the emergence of design rationale from design communication.
Artificial intelligence in engineering design, analysis, and manufacturing, 11: 141-154

Author Biography

Allen H. Dutoit is a research scientist in the Informatics Department of
Technische Universitaet Muenchen. His research interests include rationale
management, requirements engineering, tool support for distributed projects, and
empirical software engineering. He has been involved since 1993 with Prof.
Bruegge in teaching software engineering project courses in Carnegie Mellon
University and Technische Universitaet Muenchen. Allen Dutoit was previously
affiliated with the software engineering institute, where he investigated natural
language techniques for risk management. In the institute for complex engineered
systems at Carnegie Mellon University, he researched the use of communication
metrics as a diagnostic tool for software projects. During his stay at Carnegie
Mellon University, he also contributed to the development of several complex
information systems in collaboration with industry. Allen Dutoit received an
Engineering Diploma in Computer Science from the Swiss Federal Institute of
Technology and an M.S. and a Ph.D. in computer engineering at Carnegie Mellon
University.

Dr. habil Barbara Paech heads the Quality Software Development department at
the Fraunhofer Institute for Experimental Software Engineering (Fh lESE). Her
research interests include requirements engineering and management, rationale
and knowledge management, component-based software development, and
validation and verification through inspection and testing. She has studied
computer science at the TU München, University of Edinburgh (GB), and
University of Pennsylvania (OS). She received her Ph.D. from the LMU
München. In 1998 she received the Habilitation in Computer Science from the TU
München. She heads research and transfer projects in cooperation with industry
and regularly holds seminars and lectures in both academic and industrial settings.

www.manaraa.com

8 Emergent Knowledge in Web Development

DavidLowe

Abstract: Although Web development can be considered a derivative of software
engineering, it exemplifies a class of development projects with some unique
characteristics that lead to changes in the development approach. Among other
factors, there is substantial volatility in clients' articulation oftheir requirements,
particularly as their understanding evolves of the way in which the systems under
development might affect their client and stakeholder interactions, business
processes, and ultimately their business model. We discuss these differences and
the impact that they have on the development ·processes that are adopted for
commercial Web systems. Specifically, we look at the ways in which client
knowledge (and understanding) emerges progressively during the development
process, often as a consequence of the design process, and the ways in which this
results in a design-driven requirements process.

Keywords: Web development, Process, Design, Requirements

8.1 Introduction

Web systems were originally (i.e. in the early to mid 1990s) characterized by a
strong emphasis on content and information provision. As such, they were often
viewed not as software systems but as information systems. This characterization
was evidenced in the focus of most of the early Web design methods, such as
relationship management methodology (RMM) [24] and object-oriented
hypermedia design model (OOHDM) [41] that emerged out of the hypertext
community and emphasized content modeling and information structuring.

As Web technologies matured and became more sophisticated, the systems
being developed exhibited increasingly complex functionality and consequently
more complex underlying software. Again, this was typified by the emergence of
Web design methods that aligned more closely with mainstream software design
approaches (such as a piethora of approaches based on unified modeling language
(UML)- see [2, 8, 22, 25, 30] for examples) and an increasing debate over
whether "Web engineering" can be viewed as a particular class of software
engineering (see [38, Chap. 29] for a discussion ofthis issue).

Whilst it is true to a limited extent that Web system development is primarily
the creation of software systems, there is a growing recognition that Web systems
- or rather that category of applications for which Web systems are an exemplar
- have various unique characteristics that are only poorly addressed by
conventional development practices [31]. Among other factors, there is substantial
uncertainty in clients' understanding of the ways in which the systems under
development might affect their client and stakeholder interactions, business

www.manaraa.com

158 Lowe

processes, and ultimately their business model. This, in turn, has some major
implications fc)r the ways in which, and particularly when, clients' are able to
articulate their requirements during the development process.

Development practices from related domains (software engineering, graphic
design, marketing, etc.) do not typically address these differences particularly
weIl. Despite this, there has been little consideration within the research literature
of the implications of these characteristics on the development process. This is in
spite ofthe obvious growth in importance ofthese systems to business success.

In this chapter we begin by investigating some of main differences between
Web systems and other software systems. We then move on to explore the
implications of the key differences for the ways in which client's knowledge
evolves during the development process and how this should be addressed. We
will, in particular, look at the role that the design process plays in this evolving
understanding.

Before starting to look at Web systems in more detail, one point of clarification
is worth raising. Whilst we use the term Web system in this paper for simplicity,
we see these systems (Le. those that have an architecture based on the utilization
of Web technologies and protocols) as being exemplars of a much broader
category of applications. This broader category can be understood by looking at
the characteristics discussed in the next section, but can probably be best defined
by one key characteristic-that the system under development changes the nature
of the interaction with extemal stakeholders (such as clients, customers, and
business partners). Hence, it potentially triggers changes in business processes and
ultimately business models. In other words, the solution under development
inherently changes the nature of the problem that it was addressing. This can be
described as the problem domain and the solution domain being mutually
constituted-a concept that is weil understood in the social informatics literature!
We will discuss this is much more in Sect. 8.3, but at this point it is simply worth
noting that where we refer to Web systems, this broader interpretation will often be
applicable.

8.2 Web System Characteristics and Implications

There is a growing body of research [5, 13, 35] that is attempting to understand
the differences between Web systems and more conventional software systems.
That is given the above comments at the end of the introduction, we describe as
conventional systems those that have minimal impact on the fundamental nature
of the interactions with extemal stakeholders and/or the nature of the problem
being addressed. In general, we can draw a distinction between the unique
characteristics of Web systems that are technical (that is, related to the specific
technologies that are used and how these impact on the structure of the
application) and those that are organizational (that is, related to the ways in which
organizations make use ofthese systems).

www.manaraa.com

8 Emergent Knowledge in Web Development 159

It is also worth noting that although Web systems can be viewed as software
systems, this does not automatically imply that existing representations of various
aspects of these systems will be able to be directly applied. Indeed, to blindly
apply existing models to the representation of Web systems would encourage
developers to overlook the peculiarities of these Web systems, and hence not
address these peculiarities, leading to inappropriate solutions. This is not to say
that existing models should not be utilized - simply that we need to do so with an
awareness of their limitations with respect to the aspects of Web systems that we
wish to understand and document. We also need to understand how these
limitations may be circumvented by appropriately supplementing (or replacing,
where necessary) the models.

Further, improving the modeling support for the unique characteristics of Web
systems is a useful first step, but on its own, it is not sufficient. We also need to
consider how we actually carry out the development. This includes both the
specific activities and tasks that are desirable, as weH as broader process issues
related to how we organize this work. We shall look at the various unique
characteristics of Web systems and investigate the impacts on both what we may
wish to represent and potential changes to the development process.

8.2.1 Technical DitTerences

There are obvious technical differences between Web systems and more
conventional software and IT systems. The most significant of these are as
foHows:

8.2.1.1 Link Between Business Model and Technical Architecture

Possibly the most obvious difference between Web and traditional software
development is seen in regard to the specific technologies that are used and the
ways in which these are interconnected. For example, the technical structure of
Web systems merges a sophisticated business architecture (which usually implies
significant changes to the business model of the client) with both a complex
information architecture and a highly component-based technical architecture
[39]. The linkage between the business architecture and the technical design ofthe
system is much tighter than for conventional software systems (i.e. the technology
is more visible to users and influences an organizations interaction with its
stakeholders very significantly). Similarly, the information architecture (which
covers aspects such as the content viewpoints, interface metaphors and
navigational structures) is substantially more sophisticated than conventional
software systems.

The impact that Web systems have on business models implies that there is a
need to be able to understand (and document) the link between business models
and system architectures. This has typically been only implicitly addressed in
traditional development as the business models are well established and

www.manaraa.com

160 Lowe

understood. This is less true for Web projects and, as a result we see a growing
body of work - largely emerging from large technology vendors such as IBM,
Sun and Microsoft - that considers how to represent supported business
functions and the technical architectures required to support these. The most
mature of these approaches is the patterns for e-Business work being developed by
IBM (see http://www.ibm.comlframework/patterns/).This work provides a
framework for identifying common patterns ofbusiness models. As stated in [28]:

The paths to creating e-businesses are repeatable. Many companies assume that
they are unique and that therefore every creation of an e-business has to be learned
as you go. In fact, there are lessons and architectural paths or patterns that can be
discerned from all these engagements.
For each business pattern, a number oflogical architectures (or topologies) are

defined. These topologies provide a mechanism for fulfilling a particular business
need. In effec1t, these models provide a direct link between the business models
that underpin the systems being developed and the technical architecture that
supports these business models. One problem with these current approaches is that
the architectural models tend to emphasize functionality, with little consideration
of how to represent the information architecture. In particular, aspects such as
content modeling, information viewpoints and so on are not addressed.

Although the relationship between the business model and the system
architecture is beginning to be addressed at a notational level, there is little work
in this area in terms of processes that support the interpretation of business
requirements and the relationship that these have to the architecture. Even more
significantly, there is little understanding of the impact of a given architecture on
the business pI'Ocesses and models. The work that does exist tends to focus on the
design of architectures (see Sect. 8.2.1.2). One ofthe few exceptions is the IBM
work on patterns mentioned above. Although it does not provide a formal process,
it does suggest an implicit process whereby the broad business needs are used to
select a suitable business pattern, which is then used to guide the selection of
suitable architectures.

8.2.1.2 Open Modularized Architectures

Related to the above point is the emphasis that is typically placed on open and
modularized architectures for Web systems. Although this is not unique to Web
systems, it is often more pronounced. Web systems are often constructed from
multiple commercial off-the-shelf (COTS) components that are adapted and
integrated together, particularly for the system back-end middleware layers. This
implies that strong integration skills become much more critical in most Web
projects.

Although there is significant attention on modeling of open and component
based systems, little attention has yet been applied to considering the modeling of
these systems or the associated development processes in the context ofthe Web.

Given this component-based development, strong integration skills become
much more critical in most Web projects. The importance of a strong architectural

www.manaraa.com

8 Emergent Knowledge in Web Development 161

design is also increased. Indeed, many see creating asolid architecture as the most
crucial component of a successful Web systems development. One aspect that is
yet to be effectively addressed is appropriate support (either as tasks or suitable
techniques) for the linking of the various disparate elements of the architecture
(Le. informational and technical to the business architecture) [19].

8.2.1.3 Rapidly Changing Technologies

The technology that underpins most Web systems is changing very rapidly. This
has several consequences. First, it increases the importance of creating flexible
solutions that can be updated and migrated to new technologies with minimal
effort. For example, the need for reusable data formats (such as XML) increases
substantially. A second consequence is that developers' understanding of these
technologies is often restricted, thus increasing project risks.

The work on detailed design notations for representing certain aspects of Web
systems may actually create problems in terms of the portability of designs into
new technologies. Alternatively, work on architectures and, more broadly, on
information models tends to create designs that are less dependent on specific
technologies, and hence more likely to be able to be adapted to changes.

8.2.1.4 Content is King

Of notable significance is the importance of content. Irrespective of the
sophistication of the functionality and the creativity of the interface, a site is likely
to fail without appropriate, substantial, and up-to-date content. This implies both
an effective information design as weIl as suitable content management. This
importance of content within Web sites also implies a need to at least consider
how we understand and represent the informational elements of a Web system. It
is not surprising therefore that that much ofthe earliest work on Web development
models focused on information modeling and structuring.

Early approaches in this area evolved out of work on data modeling (such as
entity-re1ationship models) and applied this to modeling the information domain
associated with applications. Indeed, much of this work predate the Web and
focused on hypermedia design. For example, RMM [24] claims to provide a
structured design model for hypermedia applications. In reality, the focus is very
much on modeling the underlying content, the user viewpoints onto this content
and the navigational structures that interlink the content. OOHDM [42] is a similar
approach, though somewhat richer in terms of the information representations and
based on object-oriented software modeling approaches. Other similar examples
include EORM [26] and work by Lee [27]. WSDM [11] attempts to model slightly
different characteristics beginning more explicitly from user requirements, but
these are only addressed in a very rudimentary fashion. In general, these notations
were either developed explicitly for modeling information in the context of the
Web, or have been adapted to this domain.

www.manaraa.com

162 Lowe

More recently, work on both Web modeling Language (WebML) [6] and the
adaptation of UML [34], an emerging industry standard for modeling object
oriented systems, (see for example [3]) has begun to amalgamate these concepts
into arieher modeling language for describing Web applications. However,
despite aims to support comprehensive descriptions, the focus (as with the above
techniques) is very much on content modeling rather than describing the
functionality that is a key element of most current commercial Web systems. This
leads on to the next point.

Even less consideration has been given to process related issues in terms of
dealing with content. Approaches such as usage-centered design [9] provide some
indications of suitable activities-though typically not as part of a broader
framework. The actual authoring of the content itself is also a significant
development issue that is often overlooked. With conventional software
development Ithe population of the system with data is largely viewed as an
operational issue (or at best, part of deployment). With Web development, the
generation of "data" (Le. content authoring) is fundamentally part of the
development process [18] which involves significant editing and layout of text,
preparation of images and other media, obtaining copyright clearances and so on.
The development processes that underpin some of the information management
approaches discussed earlier recognize this explicitly.

8.2.1.5 Increased Empbasis on User Interface '

With conventional software systems, users must make an often considerable
investment in time and effort to install and leam to use an application. With Web
applications, however, users can very quickly switch from one Web site to another
with minimal effort. As such, it becomes much more critical to engage users and
provide much more evident satisfaction ofusers' needs and achievement oftheir
objectives. The result is an increased emphasis on the user interface and its
associated functionality. This is even more significant when it is recognized that
many direct users ofthe systems are external rather than internal stakeholders.

A little more subtly, the emergence of authoring tools has focused on
supporting rapid development and on visual design rather than functionality. This
in turn has promoted a greater use of designs as a part of a specification, which
allows a more interactive process between gathering requirements and building
solutions.

A key element of user interfaces is the functionality that they provide. A few
attempts have been made to integrate information modeling concepts with system
functionality [8, 45], though in general these approaches are still rather simplistic,
lack scalability, and focus on low-level design representations. Conallen's [8]
work in particular is interesting insofar as it attempt to link a user's view of the
system (as seen through the interaction with Web pages) to the back-end processes
that support this interaction.

Other researchers have looked at modeling the way in which systems are
utilized. For example, Guell et al. [20] extend OOHDM to include tools such as

www.manaraa.com

8 Emergent Knowledge in Web Development 163

user scenarios and use cases. Vilain et al. [47] adapted UML to represent user
interactions. Other researchers have investigated the use of fonnal methods for
representing navigational requirements [17] or timing constraints [36], though
these tend to focus on ensuring consistency rather than directly addressing the
quality of the user interface. Possibly the most fruitful work in this area is usage
centered design [9], although a rigorous analysis of the application of these
techniques to Web development has yet to be carried out.

The development process for user interface also raises numerous issues.
Effectively this brings together content authoring and software development or,
more precisely, creative design and technical development. It is worth noting that
this highlights the difficulties that occur when combining two different cultures
together within the same project.

8.2.1.6. Increased Importance ofQuality Attributes

Web systems represent an increase in mission-critical applications that are often,
as mentioned above, directly accessible to external users and customers. Flaws in
applications (be they usability, performance, or robustness) are therefore typically
more visible and hence are more problematic.

As with some other aspects, this has not been directly addressed at a modeling
level, except insofar as developing effective architectures that support
characteristics such as robustness, scalability, and reliability. These elements have
not been effectively woven into the detailed Web requirements or design models.

In tenns of development processes, there is a need to address quality assurance
(QA) issues. Some work has been carried out looking explicitly at quality
assurance issues in Web development, though in general this has been restricted to
specific domains such as educational applications [12]. One key element of
effective QA is evaluation. Indeed, it has been claimed that the quality of
multimedia projects is direct1y determined by the effort put into evaluation [37].
For effective evaluation we need to establish suitable quality criteria -
particularly in terms of how the Web system will be actua1ly tested against c1ient
requirements. This also implies the need to actually understand c1ient
requirements, an issue that we discuss further shortly.

Another important issue is the establishment of suitable standards in order to
ensure consistency, both from ausability perspective and from a development
perspective. It is worth noting that considerable attention is beginning to focus on
usability standards and, in particular, accessibility standards such as the World
Wide Web Consortium's (W3C) Accessibility Initiative [7].

8.2.2 Organizational DitTerences

In addition to the technical differences, and possibly more important than thern,
are a number of organizational characteristics that are either unique or heightened
in Web systems [5]. One ofthe key ones is the issue of cHent uncertainty. This,

www.manaraa.com

164 Lowe

however, relates strongly to how client and developer knowledge emerges during
the project, and so will be discussed in the following section. Various other issues
are worth briefly considering.

8.2.2.1 Short Time Frames for Initial Delivery

Web development projects often have delivery schedules that are much shorter
than for conventional IT projects - often in the range of 1- 3 months. This is
partly a consequence of the rapid pace of technological development and partly
related to the rapid uptake of Web systems. This is an issue that has yet to be
considered in any substantive way in terms of how it impacts on Web design
models and notations.

In terms of processes, the shorter development timeframes increase the
importance of incrementaI development approaches and consequently also
increase (as discussed above) the reliance on flexible system architectures,
particularly with respect to the user interface and the way in which information is
managed within the site.

8.2.2.2 Highly Competitive

Web projects tend to be highly competitive. This is, of course, not new; in fact it is
typical of the IT industry in general. The nature of the competitiveness is,
however, somewhat different. There is regularly a perception that with simple
Web authoring tools anyone can create an effective site. This creates inappropriate
expectations from clients, coupled with numerous smaIl start-up companies
claiming to be doing effective Web design, but in reality offering little more than
HTML skills and rudimentary graphic design. The result is a highly uninformed
competitiveness.

8.2.2.3 Fine-Grained Evolution and Maintenanee

Web sites typically evolve in a much finer-grained manner than conventional IT
applications. The ability to make changes that are immediately accessible to all
users without their intervention means that, the nature of the maintenance process
changes. Rather than a conventional product maintenance/release cycle, we
typically have an ongoing process of content updating, editorial changes, interface
tuning, and so on. The result is a much more organic evolution. It is also useful to
note that a consequence of the emphasis on rapid development and fine-grained
development is that there can tend to be less thought given to formal evaluation as
this is often perceived as interrupting the build process.

As with many other aspects, this has yet to be considered in any substantial
detail. It is worth pointing out, however, that one aspect ofmodeling that actively
inhibits effective Web system maintenance is the lack of a cohesive architecturaI

www.manaraa.com

8 Emergent Knowledge in Web Development 165

modeling language that actively links the information architecture with the
technical architecture [19]. Conversely, the information models, such as OOHDM
[42] and WebML [6], actively support a much clearer understanding of the
impacts of changes to various aspects of the underlying content, viewpoints, or
navigational structures.

One interesting avenue of work is that related to configuration management
(CM). Dart [10] argues that, because ofthe incremental nature ofWeb projects,
and the fine-grained way in which they change, CM is even more important than
for conventional projects. Only very rudimentary consideration is, however, given
to the way in which CM is integrated into the broader development process.

One unusual area that has been used as an analogy for Web development and
may provide some useful insights into maintenance processes is landscape
gardening [30]. Web site development is often about creating an infrastructure
(laying out the garden) and then ''tending'' the information that grows and blooms
within this garden. Over time the garden (i.e. the Web site) will continue to
evolve, change, and grow. A good initial architecture should allow this growth to
occur in a controlled and consistent manner. This analogy has been discussed in
terms of providing insights into how a site might be maintained.

8.3 Evolving Project Knowledge

The above discussion highlighted various aspects that characterize Web
development. Few, if any of these characteristics, are unique to Web projects.
When taken as a whole they tend, however, to characterize these projects.

There is a characteristic that was skimmed over, but is much more significant in
the overall impact that it is likely to have on the development process. This
characteristic is the impact that a developed system has on the nature of the
problem being addressed and how this relates to cHent uncertainty and emerging
knowledge. As we stated in Sect. 8.1, the solution being developed inherently
changes the nature of the problem that it addresses-i.e. the problem domain and
the solution domain are mutually constituted and interdependent! This will affect
not only the way in which the solution is developed, but more fundamentally the
way in which the problem itself is understood (and indeed, how this understanding
changes over time).

Whilst there has been substantial work on using the Web to manage knowledge
whilst carrying out development projects, there has been very little consideration
given to how knowledge about Web systems emerges and is managed during
development. To understand this a little better, we begin by considering the issue
of client uncertainty and requirements volatility.

www.manaraa.com

166 Lowe

8.3.1 Client Uncertainty

It is often argued that with Internet and Web-based systems, the technology,
development skills, business models, and competing systems are changing so
rapidly that the domain is often not only poorly understood, but also constantly
evolving [43]. This can lead to a client not understanding their needs. Specifically,
clients often have difficulty not only articulating their needs, but also in
understanding whether a particular design will satisfy their needs. This is typically
a result of a poor understanding of the consequences of the given solution. It is
also worth noting that many Web projects are vision-driven rather than needs
driven, leading to an initial lack of clarity.

This interpretation is, however, a little simplistic. More commonly, clients will
have sound knowledge about their own (current) business models, contexts,
processes, and hence the problem to which they are seeking a solution. Whilst it is
true that they may have difficulties in articulating this knowledge, there is a
pIethora ofwork in the requirements engineering domain about how tbis particular
challenge can be addressed. A greater challenge arises in the situation where a
client does not initially comprehend that a given problem definition will result in a
solution that has impacts beyond the confines of the problem as defined, Le. a
possible solution that adequately addresses the problem as defined by the client
will change or impact on other elements of the clients business model, processes,
or context. In this situation, the client's knowledge ofthe solution impacts only
emerges progrc~ssively as possible designs are created by the developer and jointly
explored [44].

An alternative way of conceptualizing this is that the underpinning technology
that enables the solution implies certain linkages between different aspects of the
solution, and so when one of these aspects is addressed by a solution, the other
elements are also affected. This can possibly be clarified with a simple example.
Consider an existing company that does event promotion by regularly collecting
information from event venues and using this to construct promotional posters for
distribution, with advertising space available to generate an income stream.
Developing a Web-based system to support distribution of the event information
may seem like a relatively straightforward extension of existing business models
and processes, but the interaction with the customer base (Le. event patrons) and
advertisers is c:hanged by the nature ofthe Web. Specifically, it is likely that the
patrons will have new expectations regarding the ability to dynamically provide
feedback on events, which in turn will change the value of this information.
Advertisers will perceive differing value in a transient online presence as
compared to more permanent hardcopy advertising material. In other words, the
solution that is constructed will change the value chains that exist in the business
and possibly even ultimately the business model itself. The client's knowledge
regarding thest: changes will only develop once the system itself takes form and
can be used to gain feedback.

www.manaraa.com

8 Emergent Knowledge in Web Development 167

8.3.2 Addressing Client Uncertainty and Understanding Requirements

So, c1ient uncertainty largely arises from a lack of understanding of the likely
broader impact on business problems of addressing a given set of business needs,
and c1ient knowledge about their evolving needs emerges progressively during the
development. How is this issue addressed by current approaches? A useful place
to start in understanding this issue is to look at how requirements are handled in
Web projects. Stated rather simplistically, conventional development tends to
assume that requirements are known to clients, and they simply need to be elicited
and analyzed. Requirements processes usually differentiate (at least conceptually,
if not in the way they are represented) between user requirements that capture the
user understanding of their needs and the system specification that represents the
system that will meet these needs. The user requirements are often elicited and
formalized in a user requirements defmition (URD) and then analyzed to construct
the system requirements which are formalized in a system requirements
specification (SRS). In effect, the two documents are different representations of
the same concepts.

One significant difficulty with this paradigm is that it presumes that clients
either understand their requirements, or at the very least understand the problem
that is being addressed and can be led through a process of articulating their needs.
Even when clients are not able to articulate their requirements precisely, they are
at least able to understand whether a given design will address their needs. In
cases such as these, the design may commence prior to full resolution of
requirements. The design will then be used to ascertain (from c1ient feedback)
whether the proposed solution addresses the identified need.

Given the characteristics of Web projects that have been outlined, this will
problematic. A fundamental problem arises out of the evolving c1ient knowledge
about the changes to the problem domain and the fact that this evolving
knowledge is actually triggered by the system designs, prototypes and
implementations.

Tuming this around, we can see that it becomes impractical to resolve the
requirements (which in essence are an articulation of what needs to be done to
address the problem domain) without an understanding of the proposed solution
domain. In our research work we refer to this as a design-driven requirements
process [32]. An interesting analogy is found in the area of social informatics [40],
which encompasses the concept that technology and the use of that technology are
mutuaUy constituted, Le. the desired use defines the desired technological
solution, but the actual solution changes the usage. Web systems could be
described as an exemplar of that c1ass of systems where the system and the
problem domain are mutually constituted.

Whilst there has been little work addressing this specific issue, some of the
techniques mentioned above that focus on modeling the way in which systems are
utilized [20, 47] may help reduce c1ient uncertainty and allow clients to obtain a
clearer view of potential changes to their businesses. One avenue being pursued
by the authors is the investigation of a characterization model that represents the
key aspects that need to be woven into an evolving specification of a Web system

www.manaraa.com

168 Lowe

[29] (see Table 8.1 for an example). The eomplete form of the model highlights
the links between the various eharaeteristies, especially incIuding the link between
the business arehiteeture and the teehnical and information arehiteetures. The
intention is that it be used to guide the formulation and evaluation of projeet
aceeptanee eriteria, user requirements, and detailed eontractual speeifieations.

Table 8.1. Acceptance criteria framework

Dimension Possible Representations Example Elements
Client/User
Client problem (Naturallanguage)
statement
Produet vision (N aturallanguage) Client needs and business

objeetives
Users (Natural language) User deseriptions and

models
Application
Content modeling Struetured language, Existing eontent strueture,

hypermedia/information information views,
modeling languages navigational struetures,
(OOHDM, HDM, entity required eontent
modeling, ete.)

User interaetion Modified TAM Usability and usefulness
metries

Structured language, Access mechanisms, user
hypermedia modeling, contro} behavior, user
HCI models, etc orientation, search

requirements, security
control

Development Naturallanguage, Adherence to corporate
constraints standards policies, resource

availability
NonfunctionaI Naturallanguage, quality Reliability of content,
requirements metrics, adherence to copyright constraints

standards
Application evolution
Evolution directions (N aturallanguage) Expected content changes
Client adoption! Business process Information dissemination
integration ofWeb reengineering paths, workflow changes
Maintenance Natural language, process Content maintenance
processes models responsibility, Web

management cycIes

www.manaraa.com

8 Emergent Knowledge in Web Development 169

8.3.3 Development Processes

So what development approach can be used to address this "design-driven
requirements" process and assist clients in constructing knowledge about the
impacts of the solutions being developed? We can begin by considering the
increasing use oflightweight development processes for software projects [I, 15].
One of the approaches receiving the most attention is the use of eXtreme
Programming (XP) [4]. XP is based on the incremental development of partial
solutions that address component requirements. These partial solutions are then
integrated into the evolving system through refactoring of the current solution to
incorporate these components. When used in conventional software development
XP has (arguably) proven to be effective for projects that are initially ill-defined
- a characteristic of many Web projects. This is possibly because it allows a
client to see the emerging solution early in the development when further
clarification of the requirements is still possible. As a result, many of the
proponents of XP and similar approaches see them as ideal to be adopted for Web
development [46]. In effect, the emerging solution will facilitate the development
of c1ient knowledge about the impacts of the solutions, and allow the refmement
of the system defmition early in the development.

It can be argued, however, that there are certain problems that restrict the
applicability of approaches such as these to Web projects (see, for example [33]).
The first is that a number of studies have shown that approaches such as XP only
work effectively for projects that have cohesive development teams. This is often
not the case with Web projects, which often lack cohesiveness between the
technical development and the creative design as a result of the disparate
disciplinary backgrounds of the development team members. XP can also result in
a brittle architecture and poor documentation, which makes ongoing evolution of
the system difficult - something that is important for Web systems. Finally, and
perhaps most fundamentally, XP utilizes partial solutions to resolve uncertainty in
requirements, but does not inherently handle subsequent changes in these
requirements (i.e. requirements volatility) as the system evolves. In other words,
the incremental development implicit in XP can be viewed as a form of
prototyping that aims to either consider the applicability of a given design to a
known problem, or to assist the developers in ensuring that they have understood
the clients' problem. The prototyping in Web development however aims to help a
c1ient develop an understanding of how different solutions may impact on the
nature of the problem being addressed.

A useful divergence at this point is to consider a comparison with the approach
that is often referred to as "Ready - Fire - Aim" [23]. This essentially is referring
to approaches where the design is commenced prior to a full understanding of the
requirements (or coding commenced prior to a fuH design, depending on the
interpretation) as a way of informing clients in the presence of uncertainty. In
contrast, commercial Web development is typically about developing prototype
solutions as a way not of resolving initial uncertainty, but rather to understand the
impact of a given solution. This is a little bit like saying "WeH, if we fIre there,

www.manaraa.com

170 Lowe

then it will have this impact, but ifwe fire there it will have that impact". Possible
solutions are jointly investigated by the developer and c1ient (typically, through a
design prototyping approach, but prior to committing to a specific solution) in
terms of their impact on the problem domain and hence the requirements, with the
ultimate result that a solution is identified that matches a problem that has been
changed by that solution.

In effect, conventional software engineering processes see requirements as
preceding and driving the design process. Even where an incrementaI approach
(such as XP) or an iterative approach (involving multiple feedback loops) is
adopted, the design is viewed as a way of assisting in the identification and
validation of requirements; yet rarely does it help the cllent to actua1ly formulate
their needs. In Web development, the situation is fundamentaIly different. The
design process not only helps developers and clients articulate their needs, but also
helps clients understand the system domain and therefore their needs.

In effect, the design drives the requirements process. We begin with a client's
poor understanding oftheir needs (as weIl as system capabilities), and during the
course of the project this understanding evolves and matures. This has severa1
consequences. First, it increases the importance of creating flexible solutions that
can be updated and migrated to new technologies with minimal effort. For
example, the need for reusable data formats (such as XML) increases
substantially. A second consequence is that developers' understanding of these
technologies is often restricted, increasing project risks.

* * Clont -,

o -0-0 - 0-0--0--0-0-0
__ I - _, - _, - /. , / _

T -\-or- -0+ tr. - D o -- --~-
~ ~ c:.

o
CIont_

Fig. 8.1 Typical web development process

Figure 8.1 shows a depiction of a development process for Web systems that
incorporates this understanding. In this figure, the first cyc1e iterates around a
series of exploratory design prototypes, including elements such as white sites and

www.manaraa.com

8 Emergent Knowledge in Web Development 171

story-boards. The aim is to move from an initial set of acceptance criteria to a
clear specification of the system - but to a specification that includes not only
requirements but also the broad architectural design elements ofthe site [16,21].
The second cycle covers usually fme-grained, incremental design and build
process. In effect, the process (specifically the first ofthe two key cycles shown in
Fig. 8.1) is aimed at developing (or rather evolving) a joint understanding of the
combined problem/solution domain.

Finally, it is worth noting that anecdotal evidence indicates that these issues are
well understood and accepted within industry. Research has been limited to
empirical work using scenario-based redesign of partially developed sites, though
this work has at least recognized the importance of designs in assisting
clarification of client needs [14].

We practice a revised method of scenario-based design inferred from a
theoretical perspective which treats design as inquiry, inquiry as dialogue and
dialogue as the source of all tools, inc1uding mental constructs. The result is a set of
techniques for using structured dialogue between users and designers to increase
designers' understanding ofspecific domains ofusers' work.

In commercial Web projects, these concepts, particularly the mutual
interdependence of requirements and design are typically reflected in the absence
of separate requirements and design documents. Rather, developers tend to create
a hybrid specijication that blends design and requirements (something that is
usually viewed as anathema in conventional software engineering).

In other words, system design allows stakeholders to understand technical
possibilities and limitations, and hence improve their understanding of the
development context. The result is a vehicle for reducing the underlying
uncertainty. For this to be effective, however, we need to develop a suitable
model of the relationship between system design, client requirements, and
uncertainty within these requirements. This uncertainty model can then be used to
adapt the requirements engineering process, resulting in a design-driven
requirements process. This is the focus of our ongoing research.

8.4 Future Trends and Conclusions

So what conclusions can we draw from the above discussions regarding how
knowledge is managed in Web projects? The key insight is that the nature ofWeb
projects implies that since the solution changes the nature of the problem we
therefore need to acknowledge that a client will be inherently unable to define
their problem in the absence of a possible solution. Different solutions (i.e. the
Web systems to be developed) will fundamentally lead to differing impacts on the
stakeholder interactions and business processes and hence to different problem
domains. This in turn means that we need to recognize the importance of
exploring a range of possible solutions, and to do so not only to determine the
optimal design, but possibly to determine the optimal problem!

www.manaraa.com

172 Lowe

Further, it also indicates that client involvement in the design process becomes
crucial (something that is often viewed as very dangerous). Without an
understanding of the possible system designs, the client is unlikely to develop a
clear understanding of the implications of a proposed solution. Thus design
knowledge becomes a crucial enabling tool within Web projects.

Ongoing work of the author and others has begun to explore exactly what level
and form of design knowledge will best assist clients in developing a clear
conceptualization of the impact of possible designs. This work is, however, still
too early to have provided concrete outcomes.

Another project that is only just commencing is looking at process modeling
and project management tools that track the evolving process that accompanies the
evolving product understanding. By monitoring the relationships between these
models (often expressed as project plans) and the initial templates from which
they were derived it is possible to identify the points at which the process
deviated. Once this is identified, the developer can be interrogated as to the cause
of the deviation, and this information can then be fed back into the underlying
project templates to support future project planning. This approach becomes much
more crucial in Web projects where the nature of the process is difficult to
determine apriori because of the evolving system.

Ultimately, the insights explored in this paper are not only about Web projects,
but rather about those systems where, as we mentioned, the solution and the
problem are mutually constituted. That is neither can exist without the other, and
they need to be joindy understood, developed, and evolved.

Acknowledgements

The author wishes to acknowledge the assistance and insights of numerous people
in developing the concepts described in this chapter. In particular the author is
grateful to John Eklund, Brian Henderson-Sellers, Ross Jeffery, Didar Zowghi,
Aybüke Aurum, Nick Carr, Marcus Carr, Vassiliki Elliott, Norazlin Yusop, Louise
Scott, Lucila Carvalho, and John D' Ambra, for their contributions to this research.

The author also wishes to acknowledge the collaborative funding support from
the Australian Research Council, Access Online Pty Ltd., and Allette Systems Ltd.
under Grant No. C4991-7612.

References

1. Angelique E. (1999) A lightweight development process for implementing business
functions on the Web. In: WebNet'99. Honolulu, Hawaii, USA, pp. 262-269

2. Baresi L., Garzotto F., Paolini P. (2001) Extending UML for modeling Web
publications. In: Proceedings of 34th Hawaii international conference on system
sciences, Hawaii, USA, pp. 1285-1294

www.manaraa.com

8 Emergent Knowledge in Web Development 173

3. Baumeister H., Koch N., Mandel L. (1999) Towards a UML extension for hypermedia
design. In: «UML» 1999: IEEE, the second international conference on the unified
modeling language, Fort Collins, Colorado, USA, pp. 614-629

4. Beck K. (1999) Extreme programming explained. Addison-Wesley, Reading, MA
5. Burdman J. (1999) Collaborative Web development. Addison-Wesley, Reading, MA
6. Ceri S., Fraternali P., Bongio A. (2000) Web modeling language (WebML): a

mode1ing language for designing Web sites. In: Proceedings of WWW9 conference.
Amsterdam, The Netherlands, pp. 137-157

7. Chisholm W., Vanderheiden G. Jacobs I. (1999) Web content accessibility guidelines
1.0. World Wide Web Consortium, http://www.w3.org.TR/WCAGlO (accessed 16th
April)

8. Conallen J. (1999) Building Web applications with UML. Addison Wesley Object
technology series: Addison-Wesley, Reading, MA

9. Constantine L.L., Lockwood L.A.D. (1999) Software for use: Addison-Wesley, MA
10. Dart S. (2000) Configuration management: the missing link in Web engineering:

Artech House, Norwood, MA
11. De Troyer 0., Leune C. (1997) WSDM: A user-centered design method for Web sites.

In: 7th International World Wide Web conference. Brisbane, Australia, pp. 85-94
12. Eklund J., Lowe D. (2000) A quality assurance methodology for technology-delivered

education and training. In: WebNet 2000: World Conference on the WWW and
Internet. San Antonio, Texas, USA, Association for advancement of computing in
education.

13. England E., Finney A. (1999) Managing multimedia: project management for
interactive media. Addison Wesley, Reading, MA

14. Erskine L., Carter-Tod D., J., Burton J. (1997) Dialogical techniques for the design of
web sites. International Journal ofHuman-computer studies, 47: 169-195

15. Foumier R. (1999) Methodology for clientlserver and Web application development.
Yourdon Press, Englewood Cliffs, NJ

16. Gates L. (2001) Analysis and design: critical yet complicated. In: Application
development trends, 101 Communications, Framingham, MA, pp. 40-42

17. Gennan D.M., Cowan D.D. (1999) Fonnalizing the specification ofWeb applications.
Lecture Notes in computer science, Springer, Berlin Heidelberg London,
1727:281-292

18. Ginige A., Lowe D., Robertson J. (1995) Hypermedia authoring. IEEE Multimedia,
pp. 24-35

19. Gu A., Lowe D., Henderson-Sellers B. (2002) Linking modeling capabilities and
abstraction levels: the key to Web system architectural integrity. In Proceedings ofthe
eleventh international World Wide Web conference, Hawaii, USA: ACM Press,
published on CD ROM

20. Guell N., Schwabe D., Vilain P. (2000) Modeling interactions and navigation in Web
Applications. In: World Wild Web and conceptual modeling workshop - ER'OO
conference. Salt Lake City, USA, pp. 115-127

21. Haggard M. (1998) Survival guide to Web site development: Microsoft press,
Redmond, OR, USA

22. Hennicker R., Koch N. (2001) Systematic design of Web applications with UML. In:
Siau K., Halpin T. (Eds.), Unified modeling language: systems analysis, design and
development issues,. Idea group publishing, USA

www.manaraa.com

174 Lowe

23. Holtzman J.K. (1993) Ready, fire!! Aim? In: Proceedings of the 11th annual
international conference on systems documentation. ACM press, Waterloo, Canada

24. Isakowitz T., Stohr E., Balasubramanian P. (1995) RMM: A methodology for
structured hypermedia design. Communications ofthe ACM, 38: 34-44

25. Koch N., Kraus A. (2002) The expressive power ofUML-based Web engineering. In:
second international workshop on Web-oriented software technology, Malaga, Spain

26. Lange D. (1994) An object-oriented design method for hypermedia information
systems. In: Proceedings of the twenty seventh Hawaii international conference on
system sciences, Maui, Hawaii

27. Lee S.C. (1997) A structured navigation design method for intranets. In: Proceedings
of the third Americas conference on information systems, Association for information
systems, Indianapolis, USA

28. Lord J. (2000) Patterns for e-business: Lessons leamed from building successful e
business applications. IBM, pp. 4

29. Lowe D. (2000) A framework for defining acceptance criteria for Web development
projects. In: Proceedings of the Second ICSE Workshop on Web Engineering.
Limerick, Ireland, pp.l26-131

30. Lowe D. (2000) Web engineering or Web gardening? WebNet Journal, Internet
technologies, applications and issues, pp. 9-10

31. Lowe D., Henderson-Sellers B. (2001) Web development: addressing process
differences. Cutter IT Journal, pp. 11-17

32. Lowe D., Eklund J. (2002) Client needs and the design process in Web projects.
Journal ofWeb engineering, I: 23-36

33. Martin R. (2000) A case study of XP practices at work. In: Proceedings of XP2000.
Cagliari, Italy, pp. 74-77

34. OMG (2000) OMG unified modeling language specification. Version 1.3 (released to
the general public as OMG document formaIJOO-03-01 in March 2000)
http://www.omg.org/cgi-binldoc?formaIJOO-03-10 (accessed 16th April)

35. Overmyer S. (2000) What's different about requirements engineering for Web sites?
Requirements engineering journal, 5: 62-65

36. Paulo F.B., Turine M.A.S., de Oliveira M.C.F., Masiero P.C. (1998) XHMBS: A
formal model to support hypermedia specification. In: Proceedings of the ninth ACM
conference on hypertext, pp. 161-170

37. Philips R. (1997) The developer's handbook to interactive multimedia: Kogan Page,
London, UK

38. Pressman R. (2001) Software engineering: A practitioner's approach. McGraw HilI,
New York, USA

39. Russell P. (2000) Infrastructure - make or break your e-business. In Proceedings ofthe
technology of object-oriented languages and systems, Sydney, Australia, (keynote)

40. Sawyer S., Rosenbaum, H. (2000) Social informatics in the information sciences:
current (2000). Informing science, 3: 89-96

41. Schwabe D. Rossi, G. (1995) The object-oriented hypermedia design model.
Communications ofthe ACM, 38: 45-46

42. Schwabe D. Rossi, G. (1998) Developing hypermedia applications using OOHDM. In:
Workshop on hypermedia development processes, methods and models. Pittsburgh,
USA, pp. 207-225

43. Sinha G. (1999) Build a component architeeture for e-commerce. E-Business Advisor,
http://advisor.com/doc/05328 (accessed on 16th April)

www.manaraa.com

8 Emergent Knowledge in Web Development 175

44. Stein L.D. (2000) Profit, the prime directive. Web techniques, 5: 14-17
45. Takahashi K., Liang E. (1997) Analysis and design ofWeb-based information systems.

In: Proceedings of the 7th international World Wide Web conference, Brisbane,
Australia, pp. 367-375

46. Thomas D. (2000) Managing software development in Web time software. In:
Proceedings ofXP2000. Cagliari, Italy

47. Vilain P., Schwabe D., Souza C.S. (2000) A diagrammatic tool for representing user
interaction in UML. In: Proceedings of the IEEE, third international conference on the
unified modeling language. York, UK, pp. 133-147

Author Biography

AlProf. David Lowe is Associate Dean (Teaching and Learning) in the Faculty of
Engineering at the University of Technology, Sydney. His research focuses on
Web development processes and Web project specification, and information
contextualization. He has published widely, including several books focusing on
Web development. In the last 7 years, he has published over 50 refereed papers
and attracted over 1,300,000 AUD in funding. He is on numerous Web conference
committees, is the information management theme editor for the Journal of
Digital Information and is on the editorial board for the International Journal of
Web Engineering and Technologies. He has undertaken numerous consultancies
related to software evaluation, Web development (especially project planning and
evaluation), and Web technologies.

www.manaraa.com

Part 3
Application of Knowledge Management in
Software Engineering

Claes Wohlin

Knowledge is power.
- Francis Bacon

Software development is a human intensive activity. It is heavily dependent on the
creativity and ingenuity of talented people. This implies that the most important
assets in software organizations are the employees [3]. It is weIl known that
software is intangible and that the development of software is a design activity and
not a manufacturing activity. These characteristics make a leaming organization
particularly important for software development. Some of the challenges
pinpointed in the knowledge management literature are highlighted below, where
it also is emphasized that they are highly relevant in the software engineering
field. A software development organization is so heavily dependent on individual
software developers that the only way for an organization to avoid becorning too
dependent on its personnel is to adopt a leaming organization approach. The need
for viewing software organizations as leaming organizations has been proposed in
different forms in the software engineering literature [1, 8]. However, there is still
much to leam from knowledge management literature. The chapters in Part 3
illustrate how knowledge management approaches can be applied to software
engineering in different ways. Before going into the articles, it is important to
appreciate how the ''traditional'' knowledge management literature relates to the
needs in software engineering.

In [6], a selection of knowledge management papers is published by some of
the worlds' leading experts on knowledge management. Drucker explains how
large organizations will increasingly resemble orchestras, hospitals and
universities rather than traditional manufacturing companies [5]. By this he means
that the organizations will be knowledge-based and composed mainly of
specialists. This is already the situation in software development, with most
employees being highly educated individuals. Thus, achalienge in software
organizations is to be able to capture the individual's knowledge and turn the
organizations into leaming organizations.

Nonaka stresses that it is not sufficient to be able to handle explicit or
quantifiable knowledge [9]. He emphasizes the need for organizations to leam
how to handle tacit knowledge. This is also very important in software
organizations, since the software is intangible and not all knowledge is
quantifiable. Thus, the challenge is to capture both explicit and tacit knowledge in
software development.

www.manaraa.com

178 Wohl in

Garvin links the 1eaming organization with the need for continuous
improvement [7]. He discusses the need for systematic problem solving,
experimentation, leaming from past experiences and best practices, as weH as the
need for knowledge transfer to the whole organization. These needs are based on
the basic improvement paradigms such as the Plan - Do - Check - Act cycle
introduced by Deming [4] and the Quality Improvement Paradigm [2] in software
engineering literature. Further, experimentation as a method for evaluation of
methods and techniques in software engineering is discussed in [11]. Given the
above, one challenge is to master the improvement cycles to become a true
learning organization.

Argyris discusses the challenges in getting smart people to leam [1]. He
stresses that people are often enthusiastic about improvement, but are often fairly
reluctant to change. Given the high educational level in most software
organizations, this chal1enge is high1y relevant for most of them. Thus, achalienge
is to encourage and manage leaming and improvement.

Quinn et al. points to the fact that a company's success lies more in inteHectua1
capital than in other assets [10]. This raises questions with respect to different
types of knowledge. The authors divide the knowledge into four levels with an
increasing level of importance: cognitive knowledge (know-what), advanced skills
(know-how), system understanding (know-why) and self-motivated creativity
(care-why). Quinn et al. argue that organizations that manage to capitalize on the
fourth level will be the most successful companies. Thus, achalIenge for the
software development organizations is to be able to reach and maintain the fourth
level ofknowledge management.

In summary, knowledge has to be captured, managed and reused with the above
in mind. This includes being able to handle both explicit and tacit knowledge. In
particular, it is a challenge to manage the mixture of explicit and tacit knowledge.
Moreover, this involves being able to capitalize on the intellectua1 capital of the
individuals and turn this into a leaming organization that excels in continuous
improvement. The ability to manage knowledge in software engineering is likely
to be a key success factor for software projects and organizations in the future.
Managing knowledge, however, is not an easy task in an environment where there
is constant pressure to develop new and better products faster, cheaper and with
higher quality than your competitors. Thus, it is clear that supporting methods and
ways to manage changing knowledge in software engineering are greatly needed.

The objective of this part is to provide a selection of articles presenting
methods and experiences of managing knowledge in software engineering. The
chapters provide illustrations of how the challenges depicted in the knowledge
management literature may be addressed in software engineering. The authors of
the articles share their experiences and insights with the readers. This includes the
application of different methods to managing knowledge as weH as knowledge
management in different areas of software engineering. The chapters in this part
illustrate some possible methods to use when working with knowledge
management in software engineering.

There are five chapters in this part. In Chap. 9, "Case-based Reasoning and
Software Engineering", Martin Shepperd provides an introduction and overview

www.manaraa.com

Part 3 Application of Knowledge Management in Software 179

of case-based reasoning and reviews some of the software engineering
applications of case-based reasoning. The applications include project effort
prediction and reuse of software artifacts, processes and past experiences. The
chapter also points out some challenges in this area and some future areas for
research. In summary, the chapter illustrates how case-based reasoning can be
used as a method to manage knowledge in software engineering.

In Chap. 10, "A Process for Identifying Relevant Information for a Repository:
A Case Study for Testing Techniques", Sira Vegas, Natalia Juristo and Victor
Basili propose a process to identify the information that a characterization schema
should include for the purpose ofbuilding an experience base. They provide a case
study from software testing ofhow such a schema may be used. In summary, the
chapter illustrates how schemas may be constructed to store experiences that may
be used in later projects.

In Chap. 11, "A Knowledge Management Framework to Support Software
Inspection Planning", Stefan Biftl and Michael Halling introduce a framework for
decision support in software inspections. The framework consists of three levels:
inspector level, inspection level and quality management level. The authors
discuss how the framework can be used to manage knowledge for software
inspections. In summary, the chapter illustrates how a framework can help in
structuring questions and knowledge related to a specific development activity, in
this case software inspections.

In Chap. 12, "Lessons Learned in Software Quality Assurance", Linda
Rosenberg discusses lessons learned during the implementation of software
quality assurance. The lessons are documented to support project managers, and
hence help the managers increasing the probability of a successful project. The
author shares experiences from one environment and hence illustrates the
necessity to articulate lessons learned. This is particularly important when lessons
learned often are based on tacit knowledge. In summary, the chapter illustrates
how tacit knowledge from one environment, although relevant for many other
environments, has been documented as lessons learned.

In Chap. 13, "Making Software Engineering Competence Development
Sustained through Systematic Experience Management", Klaus-Dieter Althoffand
Dietmar Pfahl present how to extend the current state of the art in experience
management through integration with e-Iearning. They present their view on the
integration of e-Iearning and knowledge management and discuss a system that
supports this. They continue by presenting some recent advances in experience
management and finally discuss how to connect e-learning with experience
management.

The intention is that the articles Part 3 should form a source of information and
inspiration for those practitioners and researchers who would like to, more
effectively, use and manage knowledge in software engineering. This includes, for
example, managing knowledge to enable reuse of experiences between software
projects and within software organizations.

www.manaraa.com

180 Wohlin

References

1. Argyris C. (1998) Teaching smart people how to leam. In: Harvard business review on
knowledge management, Harvard business school press, USA, pp. 81-108

2. Basili V.R., Caldiera G., Rombach, H.D. (1994) Experience factory.ln: Marciniak, J.J
(Ed.), Encyclopedia of software engineering, John Wiley and Sons, Hoboken, NJ, USA

3. Boehm B. (1981) Software engineering economics. Prentice-Hall, Englewood Cliffs,
NJ, USA

4. Deming E. (1986) Out ofthe crisis. MIT center for advanced engineering study, MIT
Press, Cambridge, MA

5. Drucker P.F. (1998) The coming ofthe new organization. In: Harvard business review
on knowledge management Harvard business school press, USA, pp. 1-19

6. Drucker P.F., Leonard D., Brown 1.S. (1998) Harvard business review on knowledge
management Harvard business school press, USA

7. Garvin D.A. (1998) Building a learning organization. In: Harvard business review on
knowledge management, Harvard business school press, USA, pp. 47-80

8. Lennselius B., Wohlin C. (1987) Software metrics: motivation and fault content
estimation. Microprocessors and microsystems, 11: 365-375

9. Nonaka I. (1998) The knowledge-creating company. In: Harvard business review on
knowledge management, Harvard business school press, USA, pp. 21-45

10. Quinn J.B.P., Anderson P., Finkelstein S. (1998) Managing professional intellect:
making the most of the best. In: Harvard business review on knowledge management,
Harvard business school press, pp. 181-205

11. Wohlin C., Runeson P., Höst M., Ohlsson M.C., Regnell B., Wesslen A. (1999)
Experimentation in software engineering: an introduction. Kluwer Academic, Boston,
MA,USA

Editor Biography

Dr. Claes Wohlin is professor of software engineering at the Depamnent of
Software Engineering and Computer Science at Blekinge Institute of Technology
in Sweden. Prior to this, he held professor chairs in software engineering at Lund
University and Linköping University. He has a Ph.D. in communication systems
from Lund University. His research interests include empirical methods in
software engineering, software metrics, software quality and systematic
improvement in software engineering. Dr. Wohlin is the principal author of the
book Experimentation in Software Engineering - An Introduction, (Kluwer
1999). He is co-editor-in-chief of the Information and Software Technology
journal (Elsevier). Dr. Wohlin is on the editorial boards of Empirical Software
Engineering: An International Journal and Software Quality Journal.

www.manaraa.com

9 Case-Based Reasoning and Software Engineering

Martin Shepperd

Abstract: Case-based reasoning (CBR) is a technology that is based on the idea of
analogy. Solutions from past problems (cases) can be retrieved and deployed, with
adaptation where necessary, to solve new problems. It is argued that CBR as a
technology has a number of strengths, since it deals weH with poorly understood
problem domains, does not require explicit knowledge elicitation and supports
collaboration with users. This chapter provides some general background
information on CBR and then considers how CBR has been deployed to solve
problems in the domain of software engineering. These problems fall into two
general categories, namely prediction and reuse. The main prediction problems are
related to project characteristics such as effort and duration, whilst the chief reuse
foci are related to learning from past experiences. The chapter concludes by
identifying three research challenges. These are to be able to better adapt retrieved
solutions to solve new problems, to explore richer forms of representation for
complex problems and, last, to encourage better coHaboration between the user
and the CBR system.

Keywords: Case-based reasoning, Software engineering, Reuse, Project
management

9.1 Introdudion

Case-based reasoning (CBR) was first formalized in the 1980s following from the
work of Schank: and others on memory [41], and is based upon the fundamental
premise that similar problems are best solved with similar solutions [36]. The idea
is to learn from experience. However, a crucial aspect of CBR lies in the term
"similar" . The technique does not require an identical problem to have been
previously solved. Also CBR differs from many other artificial intelligence
techniques in that it is not model based. This means, unlike knowledge-based
approaches that use rules, the developer does not have to explicitly define
causalities and relationships within the domain of interest. For poorly understood
problem domains this is a major benefit.

CBR is a technique for managing and using knowledge that can be organized as
discrete abstractions of events or entities that are limited in time and space. Each
such abstraction is termed a case. Software engineering examples could be
projects, design patterns or software components. Cases are characterized by
vectors of features such as file size, number of interfaces or development method.
CBR systems typically function by solving the new problem, often termed the
target case, through retrieving and then adapting similar cases from a repository of
past (and therefore solved) cases. The repository is termed the case-base.

www.manaraa.com

182 Shepperd

CBR is argued to offer a number of advantages over many other knowledge
management techniques, in that it:

• Avoids many of problems associated with knowledge elicitation and
codification

• Only needs to address those problems that actually occur, whilst generative (i.e.
algorithmic) systems must handle all possible problems

• Handles failed cases, which enable users to identify potentially high risk
situations

• Copes with poorly understood domains (for example, many aspects of software
engineering) since solutions are based upon what has actually happened as
opposed to hypothesized models

• Supports better collaboration with users who are often more willing to accept
solutions from analogy-based systems since these are derived from a form of
reasoning akin to human problem solving. This fmal advantage is particularly
important if systems are not only to be deployed, but also to have trust placed
in them

Since the 1980s CBR has generated significant research interest and has been
successfully applied to a wide range of problem domains. Typical applications are
diagnostic systems; for instance, CASCADE addressed solving problems with the
operating system VMS. More recently, Alstom have deployed CBR technology in
conjunction with data mining of past fault data to support diagnosis of system
error messages from the on-board computers that control all the train electronics.
Another application area has been legal systems, unsurprisingly, since the concept
of precedent and case law lie at the heart of many judicial systems such as those of
the UK and USA. Design and planning are other problem domains that have also
been tackled. For instance, CADET was developed as an assistant for mechanical
designers, and ARCHIE provides support for architects. Decision support,
classification (e.g. PROTOS was developed to classify hearing disorders) and e
commerce (e.g. a last-minute Web-based travel booking system that uses a CBR
engine in order to overcome the problem of not always being able to exactly
match client requirements) are other problem domains that have been successfully
tackled using CBR. Although a little dated, Watson and Marir [49] provide
detailed descriptions of a wide range of CBR applications. Lists of more recent
examples of applications may be found in [18, 46].

The remainder of this chapter provides more background on CBR technology
(principally from a machine learning viewpoint), reviews some specifically
software engineering applications of CBR, namely project effort prediction, defect
prediction, retrieval from component repositories and the reuse of successful past
experience. It then goes on to consider some of the outstanding challenges (e.g.
similarity measures, feature and case subset selection, dimension rescaling and
learning adaptation rules) and point to potentially fruitful areas of future work.

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 183

9.2 An Overview of Case-Based Reasoning Technology

As previously indicated, case-based reasoning has at its heart the notion of
utilizing the memory of past problems solved to tackle new problems.) Problems
are organized as cases where each case comprises two parts: the description part
and a solution part. The description part is norma1ly a vector of features that
describe the case state at the point at which the problem is solved. The solution
part describes the solution for the specific problem and may vary in complexity
from a single value for a classification or prediction system to a set of rules or
procedures to derive a solution that might include a range of multimedia objects
such as video and sound files.

9.2.1 The Basic CBR Cycle

Aamodt and Plaza [1] helpfully identify four stages ofCBR-sometimes referred
to as the R4 model-that combine to make a cyclical process:

• Retrieve similar cases to the target problem
• Reuse past solutions
• Revise or adapt the suggested solutions to better fit the target problem
• Retain the target and solution in the case-base

Figure 9.1 illustrates this cycle diagrammatically. Central is the case-base,
which is a repository of completed cases, or in other words the memory. When a
new problem arises it must be codified in terms of the feature vector (or problem
description) which is then the basis for retrieving similar cases from the case-base.
Clearly, the greater the degree of overlap of features, the more effective the
similarity measures and case retrieval. Ideally, the feature vectors should be
identical since CBR does not deal easily with missing values, although of course
there are many data imputation techniques that might be explored [38]. Measuring
similarity lies at the heart of CBR and many different measures have been
proposed.

Irrespective of the measure, the objective is to rank cases in decreasing order of
similarity to the target and utilize the known solutions of the nearest k cases.
Choosing a value for k is a matter of some debate, but for a systematic exploration
see [30]. Solutions derived from the retrieved cases can then be adapted to better
fit the target case either by mIes, by a human expert or by a simple statistical
procedure such as a weighted mean. In the latter case the system is often referred
to as the k-nearest neighbor (k-NN) technique. Once the target case has been
completed and the true solution known, it can be retained in the case-base. In this

) Strictly speaking, some authors such as [37] differentiate between interpretative and
problem solving CBR. Interpretative CBR focuses upon classification rather than direct
problem solving, although it could always be argued that classification can be viewed as a
subgoal to solving another problem. However, this distinction is not pursued in this chapter.

www.manaraa.com

184 Shepperd

way the case-base grows over time and new knowledge is added. Of course, it is
important not to neglect the maintenance of the case-base over time so as to
prevent degradation in relevance and consisfency.

CODIFY

TargetCase

======~X3:%=-~--i pro~em descriptioo I ! f1 •...• fn> .

Case-base
Problem description

RETRIEVE Similar Solvad Case s .
Problem description

<f1 •.. . • fn>

REUSE
AND
REVISE

Fig. 9.1. The CBR process (adapted from Aamodt and Plaza [1])

This CBR proeess is best illustrated by an example. Consider the problem of a
project manager predicting how many resourees to alloeate for the development of
different software components. Knowledge or memory of the past is the basis for
predicting future effort. Here the ease is a software component. Each case will
eomprise a vector of features to describe each component. Examples of features
might inelude the programming language (categorieal), the number of interfaces
(discrete) and the time available to develop, sinee severe sehedule compression
may adversely affect the development effort (continuous). Notice how the vector
can comprise features of different types. This adds some complexity to the wayin
which distance is measured. The choice of features is arbitrary and may be driven
by both pragmatic considerations-what is easily available-and domain
considerations-which features best characterize the problem. One constraint is

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 185

that the values for the features must be knowable at the time the prediction is
required, which will usually militate against the use of features such as code
length. For effort prediction the solution part ofthe case is trivial, merely a single
value denoting the actual effort consumed.

For our effort prediction problem, the case-base grows as components are
completed and the solution, Le. the actual required amount of effort in person
hours or whatever, becomes known. When a new prediction problem arises, the
new component must be described in terms of the feature vector so that it can be
viewed as the target case. The problem then becomes one of retrieving similar
cases from the case base and using the known effort values as a basis of the
prediction for the target case. The prediction may be modified by the application
of roles, typically obtained from a domain expert such as an experienced project
manager, or by a simple procedure such as finding the mean. Once the component
has been completed and the true effort value is known, the case can be added to
the case-base. In this way the case-base is enlarged over time and can also follow
trends or changes in the underlying problem domain, such as the introduction of
new technologies and programming languages. For this reason some similarity
measures explicitly include a notion of recency so that newer cases are preferred.

9.2.2 Similarity Measures

As mentioned, measuring similarity has generated a range of different ideas.
These include

• Nearest neighbor algorithms are the most popular and are based upon
straightforward distance measures for each feature. Each feature must be first
standardized, so that the choice of unit has no influence. Some variants of this
algorithm enable the relative importance of features to be specified, although
for poorly understood problem dornains this rnay be very problernatic. A
common algorithm is given by Aha [2].

SIM(Cl,C2,P) = 1
~L jeP Feature _ di ssimilarit y(C Ij' C 2 j)

where P is the set of n features, Cl and C2 are cases and

1
2

(Clj -C2j)

Feature _dissimilar ity(C1j ,C2j) ~

www.manaraa.com

186 Shepperd

where (i) the features are numeric, (ii) ifthe features are categorical and Clj=C2j

or (iii) where the features are categorical and Clj:f:C2j respectively.

• Manually guided induction: here an expert manually identifies key features,
although this reduces some of the advantages of using a CBR system in that an
expert is required

• Template retrieval: This is similar to query by example database retrieval in
that the user supplies values or ranges for a subset of the problem description
vector, and all the cases that match are retrieved.

• Specijicity preference: Here cases are preferred that match features exactly over
those that match generally .

• Frequency preference: Here preference is given to those cases that have been
most ftequently retrieved in the past.

• Recency preference: This type of algorithm favors more recently matched cases
over those that have not been matched for some period of time.

• Object-oriented similarity: For complex problem domains it may be necessary
to make similarity comparisons between differently structured cases. In the
object-oriented approach cases are represented as collections of objects (each
object has a set of feature-value pairs) organized in a hierarchy of part-of
relationships [14].

• Fuzzy similarity: This approach uses concepts such as at-Ieast-as-similar and
just-noticeable-difference [42] as opposed to crisp values.

These similarity measures suffer ftom a number of disadvantages. First,
symbolic or c:ategorical features are problematic. Although there are several
algorithms that have been proposed to accommodate categorical features, these
tend to be fairly crude in that they tend to adopt a Boolean approach: features
match or fail to match with no middle ground. Note though that the fuzzy
similarity can be an exception since the linguistic concepts of, say, "quite similar"
might be applied to some categorical features, for example, comparing a feature
programming language containing the values C and C++.

A second criticism of many of these similarity measures is that they fail to take
into account information that can be derived from the structure of the data; thus,
they are weak for higher-order feature relationships such as one might expect to
see exhibited in legal systems. By contrast, the object-oriented similarity measures
can still be applied to complex problem domains where it may be necessary to
assess similari1ty between differently structured cases. Here, in order to consider
similarity it is necessary to take into account both intra- and interobject similarity.
Intraobject similarity is based on common properties. However, the difference
between two cases may reside in their differing class structures rather than in their
shared features, hence the need for a measure to take into account interobject
similarity. An example might be comparing software projects that are differently
comprised of staff and staff roles. For instance, project (case) A may comprise
management, clerical and technical teams, each characterized by their own set of
features, whilst project (case) B might comprise technical and sales teams. A
traditional similarity metric can only compare features in common, but cannot

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 187

compare the differing structures of these two projects or cases. Bergmann and
Stahl [14] describe a sophisticated similarity metric based on the product intra
and interobject similarity. The main difficulties for such metrics are validation and
encouraging collaboration between the human user and the CBR system since this
approach is somewhat less intuitive than a simple Euclidean distance measure.

9.2.3 Feature and Case Subset Selection

Another difficulty for CBR, which is common to all machine learning approaches,
is that the similarity measures retrieve more useful cases when extraneous and
misleading features are removed. Knowing which features are useful is not always
obvious for at least three reasons. First, the features contained in the feature vector
are often determined by no more a systematic reason than availability. Second, the
application domain may not be weH understood: There is no deep theory to guide.
Third, the feature standardization used by some similarity measures can
substantially complicate any analysis. This is because some features may actually
be more important than others, however, the standardization will assign each
feature equal influence. In such circumstances colinearity can be usefully
exploited. In effect, by using several closely related features, one underlying
dimension can be made more important in the search for similar cases. Deciding
which features to remove is known as the feature subset selection problem. There
is an equivalent problem relating to case removal, known rather unsurprisingly as
the case subset selection problem. Here the situation is one of eliminating
unhelpful solutions from the case-base. Unfortunately, both are computationally
intractable since they are NP-hard search problems. It is interesting to note that in
general, the pattern is for smaller, more relevant case-bases to substantially
outperform larger, less focused ones.

Approaches to searching for subsets fall into two categories: filters and
wrappers [33]. Filters operate independently of the CBR algorithm, reducing the
number of features prior to training. By contrast, wrappers use the CBR algorithm
itself on some sampie ofthe data set in order to determine the fitness ofthe subset.
This tends to be computationally far more intensive, but generally can find better
subsets than the filter methods. Various wrapper methods have been investigated
by a number ofresearchers. Early versions of ANGEL [43] addressed the problem
of searching for the optimal feature subset by an exhaustive search using a jack
knife2 on the case base in order to determine fitness. However, as previously
stated, the search is NP-hard, so once the number offeatures exceeds 15 - 20 this
becomes computationally intractable. Other approaches have included different
variantsof hill climbing algorithms [45], sequential feature selection algorithms,
both forward and backward [3] and genetic algorithms [51]. These have generaHy

2 A jack knife is a validation strategy that works by successively holding out each case, one
at a time, and using the remainder of cases to generate the prediction for the hold-out case
[20]

www.manaraa.com

188 Shepperd

been reported to lead to good improvements in solution quality without the
prohibitive computational cost of an exhaustive search.

Essentially all these methods have a search component to generate candidate
subsets from the space of all possible subsets and a fitness function that is a
measure of the error derived from the solution proposed by the CBR system using
the subset, trained on a sampIe from the data set and validated on a holdout
sampIe. Typical sampling techniques are the jack knife and n-fold3 validation. The
fitness function is generally a measure of deviation between the proposed and
desired solution, and as such is a cost that should be minimized. The exact nature
of the measure depends upon the nature of what is being predicted, but is usually
either based on the cost of misclassifications or the sum of absolute residuals.

9.2.4 Adaptation

Another important aspect of CBR is adaptation of the solution, particularly when
even the most similar cases differ substantially from the target case. This might
occur ifthe case-base is small or heterogeneous. The simplest approach, that of k
NN systems, is to use the solution of the nearest neighbor, or mean (possibly
distance weighted so that the nearest solutions are most influential) of several
neighbors. Hanney and Keane [24] describe an interesting alternative, which
leams how to adapt by comparing feature differences and solution differences.
Unfortunately, this structural approach is limited to linear, or near-linear
problems. Another widely used adaptation strategy is the use of rules to modify
proposed solutions. The difficulty, here is that the motivation for using CBR in the
first place is often the challenge of performing knowledge elicitation, so where do
the rules come from [37]? Whilst Watson and Marir [49] identify a number of
additional adaptation strategies, k-NN and rule-based approaches are the most
popular.

9.2.5 Unsuited Problem Domains

So far this section has focused on the successful application of CBR technology. It
is, however, also important to stress that there are problem domains that are not so
weIl suited to CBR. These can be characterized by one or more ofthe following:

• Lack of relevant cases, for example, when dealing with an entirely new domain.
In truth, such situations are extremely resistant to solution by any technique,
though one possibility is a divide-and-conquer strategy so whilst the problem

3 n-fold validation is another common validation procedure within the machine leaming
community whereby the data set is divided into n approximately equaI subsets. Each subset
is successively held-out and then returned to the training set. This process is repeated n
times so that each case forms part of the hold-out set exactly once. This is a generalization
of the jack knife where n is the total number of cases in the case-base.

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 189

may be novel in its entirety, it may be that useful analogies may be sought for
some, or all, of its constituent parts.

• Few cases are available due to a lack of systematically organized data, typically
due to information not being recorded or being primarily in a naturallanguage
format. CBR does not deal well with large quantities ofunstructured text 4.

• The problem domain can be easily modeled and is weH understood, for
example, when regression techniques can find simple structura1 equations that
have high explanatory power. In such circumstances it would seem wiser to use
the model-based technique.

This overview has been necessarily brief. For more detail, the reader is referred
to the classic book by Kolodner [34], more recent works such as Althoff [8],
Bergmann [13] and for a comparison of different approaches, to the paper by
Finnie and Sun [21].

9.3 Software Engineering Applications of CBR

Having considered case-based reasoning in general we now turn to its application
to problems drawn from the domain of software engineering. Broadly speaking,
this work falls into two categories: prediction and reuse type applications. We
discuss each in turn.

9.3.1 Prediction in Software Engineering

It has long been recognized that a major contribution to successful software
engineering is the ability to be able to make effective predictions particularly in
the rea1ms of costs and quality. Consequently, there has been significant research
activity in this area, much of which has focused on effort and defect prediction.
Both these problems are characterized by an absence oftheory, inconsistency and
uncertainty that make them well suited to CBR approaches.

It was suggested in the early 1980s that analogy might form a good basis for
software project effort prediction [16]. However, the earliest work to formalise
this process was by Vicinanza. and coworkers [27]. They developed a CBR system
with rule-based adaptation named Estor. This involved knowledge elicitation from

4 This not to say there has been no research into textual CBR. Much work has focused on
the extraction of predetennined features. Where the set of features required for describing
each case varies greatly, then an interactive CBR method (see for example, Aha et al., [4,
5]) may be useful for guiding the author through the elicitation process (i.e. through a series
of prompted questions whose answers assign values to relevant attributes). One advantage
of this method is that it can help avoid some standard problems with information retrieval
systems (e.g. how to interpret text expressions that have multiple potential meanings) by
clarifying the lesson writer's inputs during elicitation. However, in general, natural
language processing (NLP) remains an extremely intractable problem.

www.manaraa.com

190 Shepperd

a domain expert-an experienced software project manager-to derive adaptation
rules. They reported encouraging results based upon a small industrial dataset of
15 projects [31]. Estor was comparable to the expert and significantly more
accurate than COCOMO model [16] or function points [7]. However, their
approach requires access to an expert in order to derive estimation rules and create
a case-base. Also the rules are couched in terms of the particular set of features in
Kemerer's data set, which severely limits their applicability as there are wide
discrepancies in the range and types of features collected by different software
organizations.

Another early project [15] Finding Analogies for Cost Estimation (FACE) also
used CBR technology and reported results based upon another publicly available
data set, COCOMO [16]. The authors reported accuracy levels ofMMREs = 40-
50%; however, the system was only able to make predictions for 46 out of a total
of 63 projects. By contrast, Finnie et al. [22] reported good results using CBR with
adaptation rules for a large industrial data set of 299 projects, split into a training
set of249 projects and a validation set of 50 projects. Their CBR approach proved
to be significantly more accurate than a regression-based approach and
comparable with an artificial neural net (ANN), with the added advantage ofbetter
explanatory value than the ANN. As with the Vicinanza [27], the disadvantage of
this approach is that new adaptation rules must be derived for new data sets.

At the same time, a simpler approach was being pursued by Shepperd and
others [43,44] based on the idea of a k-NN system named ANGEL. The work was
guided by the twin aims of expediency and simplicity so as to make the approach
as widely applicable as possible whilst at the same time providing transparency in
order to increase trust by project managers. Similarity was defined in terms of
Euclidean distance between arbitrary sets of project features, such as number of
interfaces, development method, application domain and so forth. The number and
type of features chosen could depend upon what data is available to characterize
projects. The authors reported having analyzed datasets with as few as 1 feature
and as many as 29 features. Features could be either categorical or continuous and
are standardized so that each feature has equal intluence. The other distinctive
characteristic of the ANGEL approach is the implementation of an automated
feature subset selection search.

As per Finnie et al., Shepperd and co-workers used stepwise regression analysis
as a benchmark for evaluating the predictive performance of ANGEL. Table 9.1
summarizes the results from an empirical evaluation of ANGEL-based upon nine
different data sets. It can be seen that for these data sets the k-NN approach
consistently outperformed regression-based models. Subsequent studies have
reported more mixed experiences. A study of software maintenance effort [29]
found similar results. However, other researchers, most notably [17, 28] obtained
contlicting results where the regression model generated significantly better

5 MMRE or mean magnitude of relative error is a widely used aceuracy indieator by
software project cost researchers. It is defined as 1In L abs«actj-predj)/actj) where i is the
ith prediction and there are a total of n cases. One disadvantage of MMRE is that it is
asymmetrie, nevertheless it is widely quoted.

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 191

results than the ANGEL based approach. While there are some differences in
implementation, in particular [17] used a different procedure to select the best
feature subset based on a filter, this does not fully explain differences in the
results. Doubtless, the underlying characteristics of the problem data set are likely
to exert a strong influence upon the relative effectiveness of different prediction
systems. For example, the two datasets [17] used, both appear to contain weH
defined hyperplanes such that the regression procedures are able to genera te
models with good explanatory power as evidenced by the high R-squared
values. One would not expect case-based reasoning to perform weH since instead
of interpolating or extrapolating it endeavors to draw data points to the nearest
cluster. Clearly, this is not an effective strategy ifthe data falls upon, or elose to, a
hyperplane. In other words, a linear function exists that "explains" the relationship
between the dependent variable and the independent variables.

Recent work has shown that the difficulties with feature and case subset
selection for large data sets can be overcome using search metaheuristics, for
example random mutation hill elimbing and forward and backward selection
search, drawn from the artificial intelligence community [32]. These techniques
resulted in substantial improvements in the performance of ANGEL, typica1ly
from an MMRE of in excess of 50% down to 15%.

Table 9.1. Comparison of CBR and regression effort prediction accuracy (adapted ftom
Shepperd and Schofield [44])

Dataset Source NO.of No.of ANGEL Stepwise
cases features (MMRE) regression

(MMRE)
Albrecht [7] 24 5 62% 90%
Atkinson [10] 21 12 39% 45%
Desharnais [19] 77 9 64% 66%
Finnish Finnish dataset: dataset 38 29 41% 101%

made available to the
ESPRIT Mermaid project
bytheTIEKE
organization

Kemerer [31] 15 2 62% 107%
Mermaid MM2 Dataset: Dataset 28 17 78% 252%

made available to the
ESPRIT Mermaid project
anonymously

Real-time I Not in the public domain 21 3 74% N/A
Telecom 1 [44] 18 1 390/0 86%
Telecom 2 Not in the public domain 33 13 37% 142%

Despite these advances, CBR prediction of effort is still an uncertain process
with quite variable levels of accuracy. This should not be too surprising as the
pursuit of a "best" or universal prediction technique is unlikely to be a fruitful
quest. Probably what is most encouraging is the results of an experiment on

www.manaraa.com

192 Shepperd

professional project managers that found that k-NN (ANGEL) augmented by
expert judgment led to the most accurate effort prediction [28].

Another prediction problem that has been tackled with CBR technology is
classifying software components into low and high levels of defects [42]. The
authors report a success rate in excess of 85% when studying a military command,
control, and communications system. One interesting aspect of this work is their
use of fuzzy rather than crisp values to describe case features coupled with fuzzy
logic to assess similarity. Fuzzy logic is a form of logic used in some systems in
which feature set membership can be described in terms of degrees of truthfulness
or falsehood r1epresented by a range ofvalues between 1 (true) and 0 (false). For
example, a software component might be described as belonging to the set oflarge
components to a degree 0.8, in other words it is believed to be quite large. Note
this is quite different from making a probabilistic statement where p=0.8 that the
component is large. Set membership may also overlap so we might also have the
same component with a membership of the set of medium components to the
degree 0.3. Sirlce we are not dealing with probabilities, there is no requirement for
the degrees of set membership to sum to unity.

9.3.2 Reuse in Software Engineering

The concept of reuse within software engineering has long been acknowledged as
an important potential source of productivity gain. Moreover, reuse has been seen
in a much broader sense than just software or code artifacts to include designs,
patterns, specifications, processes and software project experience in general.
Reuse is percdved as a natural application for CBR since exact matching is
generally very difficult to achieve because it is precisely the difJerence between
software projl~cts that makes software engineering achalIenging discipline.
Instead, the problem is to retrieve similar components.

An early contribution was by Maiden and Sutcliffe [25, 26], who suggested that
analogical reasoning techniques might be employed to support the reuse of
software specifications. This was achieved by mapping both the target and source
(case-base) requirements specification descriptions into more abstract
representations to facilitate the measurement of similarity. In this system a domain
model of requirements is based on object structural knowledge, actions, object
types, pre- and postcondition constraints on state transitions, transformations that
lead to state transitions and events that trigger transformations. To determine if
two requirements are similar, Maiden and Sutcliffe compare the domains using
four different dimensions (semantic, structural, pragmatic and abstract) utilizing a
structural coherence algorithm. The target requirement is compared to the
requirements in the abstract domain hierarchy to form a set of possible matches.
Next a heuristic-based abstraction selector is used to select the best abstract
domain from the candidate set. Two domains are considered similar only if they
share the same abstract domain class.

Another early application of CBR technology was to support the reuse of
software packages within Ada and C program libraries [39]. Ostertag et al. used a

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 193

distance measure based on a combination of semantic networks (providing
conceptual connectivity) and the faceted index approach (which allows the user a
view from different perspectives) [40] and demonstrated their ideas with a
prototype system and some examples. Interestingly, the authors also noted another
potential application in the form ofBasili's Goal Question Metric framework [12]
together with process reuse.

The most ambitious form of CBR-supported reuse is that of experience reuse,
in other words to explicitly leam from past software projects and to make the
lessons widely available through sophisticated retrieval mechanisms using
similarity metrlcs. Such metrlcs are important due to the difficulty offinding exact
project matches within the domain of software engineering. Of course the idea of
experience reuse, or what is often termed a "lessons leamed" (LL) system is not
unique to software engineering. For an interesting review of LL systems in
commercial, government and military applications see Weber et al. [50].

Much of the motivation for experience reuse within the domain of software
engineering stems from Basili's ideas of an Experience Factory [11] although
other researchers have reached similar conclusions, for example Grupe et al. [23].
An Experience Factory (EF) is based upon a number of premises:

• A feedback process is required to best support learning and improvement.
• Experience must be viewed as a resource for an organization and therefore

stored appropriately in an experience base.
• Experience must be appropriately packaged in order to support appropriate

reuse, for example, it might be unwise to reuse the successful experiences of
writing game software when developing a protection system for a nuclear
reactor.

• Mechanisms must be provided to support the retrleval of experience packages.

These ideas are closely aligned with CBR technology so that it is no surprise
that many researehers have seen organizational learning as a natural application,
see for example, Tautz and Althoff [47] and von Wangheim et al. [48]. The
quality improvement paradigm (QIP)IEF provides a framework for continuous
learning about software engineering practices and techniques. In other words it
provides "an organizational infrastructure necessary for operationalizing CBR
systems in industrlal environments" [9].

In order to make a reuse decision it is necessary to characterize the technology,
the goal and the context or domain in which the technology will be applied, e.g.
developer experience. The context is particularly emphasized because the diversity
of software engineering activities and problem domains might otherwise result in
appropriate reuse. The context often is assessed subjectively, e.g. on a five-point
scale. Typically a project is viewed as a case. This implies the following process:

1. Decide upon the task and goal. This will determine the relevant context
features.

2. Characterize the new project (case) in terms of relevant features.

www.manaraa.com

194 Shepperd

3. Perfonn a similarity-based retrieval of other projects. The retrieval may be in
two stages fIrst, use a clustering or fIlter approach to fInd broadly similar
projects, and second, use a distance metric.

4. Adaptation ofthe most relevant retrieved case(s) since it may not be possible to
use the retrieved experience directly.

5. Perfonn the project.
6. Evaluate the project based on empirical evidence coIIected during the running

of the project. Empirical evidence is encouraged in order to promote
objectivity.

7. Identify lessons learned that can be added to the experience or case-base.

Two features distinguish the EF from many more general LL systems. First,
there is the explicit notion of context. Second, there is the use of empirical
evidence in order to evaIuate potential new cases. These address some of the
reported problems of poor usage rates for deployed LL systems by Weber et al.
[50], such as difficulties in retrieving relevant cases and validation of experience
prior to storing within the LL system.

Maintenance of the EF is another challenge in order to avoid obsolete,
inconsistent, invalidated or subjective, irrelevant and redundant cases. Weber et al.
report on a number of LL systems that contain in excess of 30,000 cases or
lessons. Interestingly, in an example of case-base maintenance they describe how
it was possible to reduce from 13,000 cases to 2,000 cases. For further information
on the topic of EFs, see Chap. 13 of tbis book ("Making Software Engineering
Competence Development Sustained through Systematic Experience
Management").

9.4 Summary and Future Work

In this chapter we have seen how case-based reasoning is a relatively recent
technology that has emerged from the artifIciaI intelligence and cognitive science
communities. It is based on the idea of memory rather than explicit models. It
would also seem to fIt closely with how humans often solve problems, that is, by
means of analogy [35]. This is important as it can help users to trust CBR systems
and, potentiaIly, to better interact with them. We have also seen that CBR
approaches do not require a deep understanding of the problem domain, which
suggests they are weH suited to many software engineering problems. This is
because we are dealing with creative processes, complexity, change and
uncertainty. There is also a strong sense within software engineering circles that
reuse is important. Again CBR is appropriate since it provides a mechanism of
organizing, storing and reusing an organization's memory or experiences. Thus it
is unsurprising that a major application area is that of implementing experience
bases. The other principaI area is that of prediction. Here CBR is more seen as
another machine learning, or inductive technique, but one that has good
explanatory value and with which the user can interact.

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 195

Whilst there are undoubtedly exciting opportunities for the deployment of CBR
methods there remain many challenges. First is the challenge of adaptation. As
seen from the examples discussed in this chapter, there are two main approaches
for adaptation. One is rule based, which can embody substantial domain
knowledge, but suffers from specificity to a particular case-base, plus there are the
difficulties of elicitation. Rule induction techniques may help overcome the latter
problem. The other approach is to use simple arithmetic techniques and rely more
on feature and case subset selection. This approach can be particularly vulnemble
to novel problems.

Second is the challenge of constructing cases from richer sources of data. Many
of the software engineering applications described above are restricted to simple
numeric information. Even categorical features can be troublesome. There has
been a range of work looking at textural CBR. Some researchers, for example
Grupe et al. [23] looked at using textural information by means oftrigrams. Others
deployed a range of other information retrieval techniques. Nevertheless in a
recent survey, Weber et al. [50] comment that

Our survey reinforced that the two most evident problems contributing to the
ineffectiveness of LL systems concern text representations for lessons and their
standalone design. Text formats are troublesome for computational treatment, and
attempts to create structure in records have rarely addressed core issues, such as
highlighting the reuse component of a [case].

Perhaps markup languages such as XML may also be a means of dealing with
semistructured data. Aha and Wettscherek [6] argue that CBR should move
beyond simple vector-based approaches and consider a range of richer forms of
case representation, such as directed graphs, preference pairs and Horn clauses.
Whatever approach making use of richer sources of information is likely to be
extremely fruitful when considering the range of data that is typically available in
software engineering projects and is a growing research topic.

The third chaIlenge is that of finding better ways to support collabomtion
between the human expert and the CBR system. In the past, in some quarters,
there has been a tendency to view many of these systems as replacements for the
human. For many applications, particularly when dealing with infrequent but high
value problems, such as experience factory-supported decision-making and project
prediction, this view may be inappropriate. Therefore we should explicitly address
the problem of how to bring about the most effective forms of interaction between
the human and the CBR system. Given the findings of Weber et al. [50] of the
limited impact of deployed lessons leamed systems this final challenge is of great
significance to the practical benefits of CBR systems.

References

1. Aamodt, A. Plaza E. (1994) Case-based reasoning: foundational issues, methodical
variations and system approaches. AI Communications, 7: 39-59

2. Aha D.W. (1991) Case-based learning a1gorithms. In: 1991 DARPA Case-based
reasoning workshop: Morgan Kaufinann, Washington, DC, USA

www.manaraa.com

196 Shepperd

3. Aha D.W.,. Bankert R.L. (1995) A comparative evaluation of sequential feature
se1ection algorithms. In: Proceedings of the Fifth international workshop on artificial
intelligence and statistics, Ft. Lauderdale, FL, USA, pp. 1-7

4. Aha D.W., Breslow L.A. (1997) Refining conversational case libraries. In: Leake D.,
Plaza, E. (Eds.), Case-based reasoning research and deve1opment, Springer, Berlin
Heidelberg New York, pp. 267-278

5. Aha D.W., Maney T., Breslow L.A. (1998) Supporting dialogue inferencing in
conversational case-based reasoning. In: Smyth B., Cunningham P., (Eds.), Advances
in case-based reasoning, Springer, Berlin Heidelberg New York, pp. 262-273

6. Aha D.W., Wettscherek D. (1997) Case-based learning: beyond c1assification of
feature vectors. In: Proceedings of 9th European conference on machine learning,
Prague, Czech Republic, pp. 329-336

7. Albrecht AJ., Gaffuey J.R. (1983) Software function, source lines of code, and
development effort prediction: a software science validation. IEEE transactions on
software engineering, 9: 639-648

8. Althoff K..D. (2001) Case-based reasoning. In: Chang S.K. (Ed.) Handbook on
software engineering and knowledge engineering. Vol. 1, World Scientific, Singapore,
pp. 549-588

9. AlthoffK.-D., Birk A., Wangenheim c.G., von Tautz C. (1998) Case-based reasoning
for experimental software engineering. In: Lenz M., Bartsch-Spörl B., Burkhard H.-D.,
Wess S. (Eds.) Case-based reasoning technology-from foundations to applications,
Springer, Berlin Heidelberg New York, pp. 235-254

10. Atkinson K., Shepperd MJ. (1994) The use of function points to find cost analogies.
In: Proceedings of 5th European software cost modeling meeting, Ivrea, Italy,
pp. 170-178

11. Basili V.R., Caldiera G., Rombach H.D. (1994) Experience factory. In: Encyc10pedia
ofsoftware engineering, Marciniak: J.J. (Ed.), John Wiley and Sons, New York, USA
pp. 469-476

12. Basili V.R., Rombach RD. (1988) The TAME project: towards improvement-oriented
software environments. IEEE transactions on software engineering, 14: pp. 758-771

13. Bergmann R. (2002) Experience management - Foundations, deve10pment
methodology, and Internet-based applications. Lecture notes in artificial intelligence,
Springer, Berlin Heidelberg New York, Vol. 2432

14. Bergmann R., Stahl S. (1998) Similarity measures for object-oriented case
representations. In: Lecture notes in computer science, Springer, Berlin Heidelberg
London, 1488: 25-36,

15. Bisio R., Malabocchia F. (1995) Cost estimation of software projects through case
base reasoning. In: Proceedings 1st International conference on case-based reasoning
research and development. Springer, Heidelberg New York, pp. 11-22

16. Boehm B.W. (1981) Software engineering economics. Prentice-Hall, Englewood
Cliffs, NJ

17. Briand L., Langley T., Wieczorek I. (2000) Using the European space agency data set:
a replicated assessment and comparison of common software cost mode1ing
techniques. In: Proceedings of 22nd IEEE international conference on software
engineering, Limerick, Ireland, pp. 337-386

18. Case-Based Reasoning Homepage, University of Kaiserslautern. Available from:
www.cbr-wc~b.org (Accessed 4th December, 2002)

www.manaraa.com

9 Case-Based Reasoning and Software Engineering 197

19. Desharnais J.M. (1989) Analyse statistique de la productivitie des projets informatique
a partie de la technique des point des fonetion, Master thesis, University of Montreal,
Canada

20. Efron B., Gong G. (1983) A leisurely look at the bootstrap, the jackknife and cross
validation. The American statistician 37: 36-48

2l. Finnie G.R., Sun Z. (2002) RS model for case-based reasoning. Knowledge-based
systems 16: pp. 59-65

22. Finnie G.R., Wittig G.E., Desharnais J.-M. (1997) Estimating software development
effort with case-based reasoning. In: Proceedings of 2nd international conference on
case-based reasoning, Providence, Rhode Island, pp. 13-22

23. Grupe F.H., Urweiler R., Ramarapu N.K., Owrang M. (1998) The application of case
based reasoning to the software development process. Information and software
technology, 40: 493-500

24. Hanney K., Keane M.T. (1997) The adaptation knowledge bottleneck: how to ease it
by learning from cases. In: Proceedings of the 2nd international CBR conference,
Amsterdam, The Netherlands, pp. 359-370

25. Maiden N.A. (1991) Analogy as a paradigm for specification reuse. Software
engineering journal, 6: 3-15

26. Maiden NA, Sutcliffe A.G. (1992) Exploiting reusable specifications through
analogy. Communications ofthe ACM, 35: 55-64

27. Mukhopadhyay T., Vicinanza S.S., Prietula MJ. (1992) Examining the feasibility of a
case-based reasoning model for software effort estimation. MIS quarterly, 16: 155-171

28. Myrtveit 1., Stensrud E. (1999) A controlled experiment to assess the benefits of
estimating with analogy and regression models. IEEE transactions on software
engineering, 25: 510-525

29. Niessink F., van Vliet H. (1997) Predicting maintenance effort with function points. In:
Proceedings of international conference on software maintenance, Bari, Italy,
pp. 32-39

30. Kadoda G., Cartwright M., Shepperd MJ. (2001) Issues on the effective use ofCBR
technology for software project prediction. In: Proceedings of the 4th international
conference on case based reasoning, Vancouver, Canada, pp. 276-290

3l. Kemerer C.F. (1987) An empirical validation of software cost estimation models.
Communications ofthe ACM, 30: 416-429

32. Kirsopp C., Shepperd MJ., Hart J. (2002) Search heuristies, case-based reasoning and
software project effort prediction. In: Proceedings of the genetic and evolutionary
computation conf., New York, USA, pp. 1367-1374

33. Kohavi R., John G.H. (1997) Wrappers for feature selection for machine learning.
Artificial intelligence, 97: 273-324

34. Kolodner J.L. (1993) Case-based reasoning. Morgan-Kaufmann, San Mateo, CA, USA
35. Klein G. (1998) Sources of power: how people make decisions. MIT press,

Cambridge, MA, USA
36. Leake D. (1996) Case-based reasoning: experiences, lessons, and future directions.

AAAI press, Menlo Park, CA, USA
37. Leake D. (1996) CBR in context: the present and the future. In: Leake D. (Ed.), Case

based reasoning: experiences, lessons and future directions, AAAI press, Menlo Park,
pp. 1-35

38. Littie RJ.A., Rubin D.B. (2002) Statistical analysis with missing data. John Wiley and
Sons, New York, USA

www.manaraa.com

198 Shepperd

39. Ostertag E., Hendler J., Prieto-Diaz R, Braun C. (1992) Computing similarity in a
reuse library system: an AI-based approach. ACM transactions on software
engineering methodology, 1: 205-228

40. Prieto-Diaz R., Freeman P. (1987) Classifying software for reusability. IEEE Software,
4: 6-16

41. Schank R. (1982) Dynamic memory: A theory ofreminding and learning in computers
and people. Cambridge university press, Cambridge, UK

42. Schenker D.F., Khoshgoftaar T.M. (1998) The application of fuzzy enhanced case
based reasoning for identifying fault-prone modules. In: Proceedings of the 3rd IEEE
international high-assurance systems engineering symposium, Washington, D.C.,
USA, pp 90-97

43. Shepperd MJ., Schofield C., Kitchenham B.A. (1996) Effort estimation using analogy.
In: Proceedings of 18th international conference on software engineering, Berlin,
Gennany, pp. 170-179

44. Shepperd MJ., Schofield C. (1997) Estimating software project effort using analogies.
IEEE transactions on software engineering, 23: 736-743

45. Skalak: D.B. (1994) Prototype and feature selection by sampling and random mutation
hill climbing aIgorithms. In: Proceedings of the 11 th international machine learning
conference, New Brunswick, NJ, USA, pp. 293-301

46. Success stories, INRECA Center, University of Kaiserslautern. A vailable from:
www.inreca.org/data/cbr/success.html (Accessed 4th December, 2002)

47. Tautz C., Althoff K.-D. (1997) Using case-based reasoning for reusing software
knowledge. In: Proceedings of the 2nd international conference on case-based
reasoning, Springer, Berlin Heidelberg New York, pp. 156-165

48. von Wangenheim C.G., Althoff K.-D., Barcia R.M. (2000) Goal-oriented and
similarity-based retrievaI of software engineering experienceware. In: Ruhe G.,
Bomarius, F. (Ed.). Leaming software organizations: methodology and applications,
Springer, Berlin Heidelberg New York, pp. 118-141

49. Watson 1., Marir F. (1994) Case-based reasoning: a review. The knowledge
engineering review, 9: 327-354

50. Weber R., Aha D.W., Becerra-Fernandez I. (2001) Intelligent lessons learned systems.
Expert systems with applications, 20: 17-34

51. Whitley D., Beveridge J.R., Guerra-Salcedo C., Graves C. (1997) Messy genetic
algorithms tor subset feature selection. In: Proceedings of the international conference
on genetic algorithms, East Lansing, Michigan, USA, pp. 568-575

Author Biography

Martin Shepperd has achair of software engineering at Bournemouth University,
UK. He received his Ph.D. in computer science in 1991 flom the Open University,
UK. His main research interests are empirical aspects of software engineering and
machine learning. He has published more than 75 papers and 3 books. Presently
he is co-editor of the journal Information & Software Technology and associate
editor of IEEE Transactions on Software Engineering.

www.manaraa.com

10 A Process for Identifying Relevant Information for
a Repository: A Case Study for Testing Techniques

Sira Vegas, Natalie Juristo and Victor R Basili

Abstract: One major issue in managing software engineering knowledge is the
construction of information repositories for software development artifacts
(techniques, products, processes, tools, and so on). But how does one package
each artifact so that the package contains the appropriate information to
understand and use the artifact? What is the appropriate characterization schema?
This chapter proposes an empirical and iterative process to identify the
information that should be used to characterize a software engineering artifact,
using theoretical knowledge, practical experience, and expert opinion to genera te a
schema. The ultimate goal is to improve the schema and the package contents
based upon it experience in their application. The proposed process has been
applied to defme a characterization schema for testing techniques. Nowadays,
there are numerous testing techniques available for generating test cases.
However, many ofthem are never used, while a few are used over and over again.
Testers have little (if any) information about the available techniques, their
usefulness and, generally, how suited they are to the project at hand. This lack of
information means less appropriate decisions on which testing techniques to use.
This chapter also shows this characterization schema and discusses the
information it contains and why it is included in the schema.

Keywords: Knowledge management, Experience packaging, Software testing,
Testing techniques.

10.1 Introduction

The goal of knowledge management (KM) is to take advantage of an
organization's intellectual capital [15]. When applied to software development,
this discipline deals with knowledge related to the whole range of software
engineering artifacts (techniques, products, processes, methods, and so on).

To make the best possible use of organizational knowledge, this knowledge
must be created, captured, distributed and applied [15]. Information organization,
also known as packaging, is a key activity within this process. It is so critical that
a poor information structure has Ied to the failure of many KM initiatives [11]. If
the avaiIabie information is weH structured, know1edge will be more widely and
better disseminated and applied, as people will be interested in and tend to consult
well structured information and will be clearer about when to use it. The
knowledge generation and capturing activities will also be more effective, as the

www.manaraa.com

200 Vegas, Juristo and Basili

format of this knowledge is defined beforehand, specifying which items of
knowledge need to be gathered.

One possible means of recording and giving access to the knowledge of an
organization is experience bases [4]. Experience bases are composed of
experience packages. SE experience packages usually contain knowledge on how
to use given artifacts. This knowledge must be associated with information for
deciding when and where a given artifact will be useful. Experience packages are
described by instantiating characterization schemas. The information reflected by
the characteri7..ation schema is vital for effectively identifying which artifacts are
useful in a given situation. But experience packages should be as compact as
possible, meaning that characterization schemas should contain the least possible
information; that is, they should include the minimum set of relevant information.
Nevertheless, it is not easy to fmd out which information these characterization
schemas should include. On the one hand, the information reflected by a
characterization schema is totally dependent on the artifact it characterizes, which
means that when characterizing a new artifact, we carmot benefit from the fact that
other artifacts have already been characterized. On the other hand, the theoretical
foundation of the artifact in question may not be mature enough to be of assistance
in deciding which information the characterization schema should include. If we
do not know the parameters that may influence the behavior of an artifact, it will
be more difficult to develop a characterization schema for it than if these
parameters were known.

Here, we propose a process for identifying what information a characterization
schema should include for the purpose of building an experience base. The
proposed process is empirical and iterative. It is empirical because it is not based
purelyon how the person who is designing the schema sees the artifact to be
characterized, but also takes into account the view of potential experience base
users and artifact builders. It is iterative because it begins with a preliminary
schema that is refmed as different views are incorporated.

The proposed process has been applied to define a characterization schema for
testing techniques. Besides the generation process, we also show the resulting
characterization schema for testing techniques and discuss the information it
contains and why it has been included in the schema

The chapter has been organized as follows. Sect. 10.2 presents aseries of
approaches described in the literature for developing characterization schemas for
a range of software artifacts. Sect. 10.3 discusses the proposed process for
developing characterization schemas. Section 10.4 is an application ofthe process
presented in Sect. 10.3 for a particular artifact: software testing techniques.
Section 10.5 presents the evaluation of the proposed process, and finally, Sect.
10.6 provides some conclusions.

www.manaraa.com

10 A Proeess for Identifying Relevant Information for a Repository 201

10.2 Related Work

Although the activities ofwhieh KM is composed are clear, it is not so ciear which
methods should be IlPplied within each of these activities. Indeed, while it is
generally accepted that the acquired knowledge needs to be packaged [2, 15], and
several proposals have been made [1, 18, 19], no one has formalized or
standardized what these knowledge packages should be like, not to mention how
they should be built.

Nonetheless, the use of characterization schemas in SE as an aid for selecting
different artifacts is not new. In the field of software reuse, where there is a
repository of coded software modules ready for use, there is already an emerging
need for characterization schemas. In the case of reuse, characterization schemas
summarizes the characteristics of the module and then, by inspecting these
characteristics, adecision ean be made on which module or modules are best
suited. The characteristics encompass the module attributes, its application
conditions and the characteristics of the operating environment. Apart from the
reuse field, other areas of SE, like software architectures or software technology
selection, also use characterizatioIi schemas.

Below, we examine aseries of characterization schema proposals described in
the literature, as we have not found any formalized proposal of how to develop
such a schema within KM. For each proposal, we discuss the artifact it aims to
characterize, the characterization proposal, the process followed for
characterization and the information proposed for inclusion.

Prieto-Diaz [14] was the first researcher to realize the benefits of using
characterization schemas for classifying reusable artifacts. In [14], he presents a
characterization schema for reusable software modules to aid the identification
and later retrieval of such modules (stored in a repository) and find the
components that are less costly, in effort terms, to adapt to the current project. The
schema was constructed by means of discrimination or examination and Iater
classification of existing reusable modules (what is called literary warrant),
analyzing the similarities and differences between these modules. This schema
contemplates two aspects of the modules: the functionality of the object (which
represents what), and the environment (which represents where).

Based on the idea that anything related to development, and not just software
products, is reusable, Basili and Rombach [3] present a characterization
metaschema for any software development element: products, processes,
techniques, and so on. Owing to the generality of this metaschema, it needs to be
adapted to the type of artifact to be characterized before it is used. The process
they have followed to design the metaschema, reflection by the schema designers,
is based on a reuse model, which is gradually refined through reasoning. Each step
of the refinement captures the logie of the resulting schema. The schema
contemplates three aspects: it should contain characteristies proper to the artifact
(the object), characteristics of the relationships between the artifaet and other
artifacts (interface) or environment, and characteristics of the environment in
which the artifact can be used (the eontext or problem).

www.manaraa.com

202 Vegas, Iuristo and Basili

In [10], Henninger proposes a characterization schema together with a support
tool to capture and, thus, enable later dissemination of different problems related
to software development, alongside their solution. The process followed for
creating the schema is not fully explained, from which we infer that it is
developed from the reflections ofthe schema designer. The aspects inc1uded in the
schema are descriptions of problems, which are associated with resources (or
solutions to the problem, possibly tools, development methods, people, process
models, technology, etc.), and which constitute the object, and projects or the
environment associated with the object. Accordingly, one can start from any ofthe
three aspects to arrive at any ofthe other two.

Bass et al. [5] provide a catalogue of architectural design styles, which means
that the schema is already completely instantiated. The catalogue was designed
following a process of discrimination by studying and c1assifying numerous
designs. This means that the different designs were observed, and on this basis, the
authors deduced which characteristics differentiate one style from another. The
catalogue contemplates not only the characteristics proper to the styles (the
object), but also characteristics of the application requirements (the problem) and
characteristics of the environment in which the design is to be implemented (the
context), which can place restrictions on the developer when using the style.

In [7], Birk proposes a characterization metaschema for characterizing software
technologies. This work is based on the fact that methods, techniques and tools are
not universally applicable, and the goal is to improve the selection oftechnologies
for use in a software project. The process followed to design the schema is not
made explicit, and it is, therefore, assumed to be the result of the reflection of the
schema designer. This metaschema focuses primarily on reflecting the application
domain (the context) and the problem for which the technology is suited.

Similarly, von Wangenheim proposes a metaschema for characterizing software
engineering experiences in [19]. The author recommends asking experts on the
artifact to design the schema. Therefore, the author does not discuss the
information that the metaschema should contain.

Maiden and Rugg [12] present a schema for characterizing requirements
acquisition methods to improve method selection and help developers to prepare
an acquisition programme. Apart from the schema, they propose aseries of tables,
which are actually the instantiation of the schema as a catalogue. With regard to
the process followed to produce the schema, the authors speak of research and
their own experiences. As the developers of the schema are experts in the area,
one can infer that the process was based on observation and discrimination of the
existing methods. However, the authors have added a stage where aseries of
experts validate the work they have done. The aspects reflected in the schema are
the object and the problem.

After studying the characterization area, the fmdings are as folIows:

• There is no proposal that sufficiently formalizes the process to be followed for
defining or building experience packages for a knowledge base. This process
must be defined so that other people attempting to build a knowledge base can
follow it.

www.manaraa.com

10 A Process for Identifying Relevant Infonnation for a Repository 203

• The schemas are usually designed either by discriminating existing elements,
asking experts (which is at least justified) or, at worst, on the basis of the
personal opinions ofthe schema designers and are not checked against reality.
The opinions of other groups, like software developers or other researchers, are
never taken into account.

• Only a few proposals take into account the three desirable aspects: object,
environment and problem. However, although they propose storing information
based on developers' experiences in using the elements, they do not have an
aspect that asks developers for their personal (subjective) opinions about the
elements.

The process proposed here intends to overcome these problems.

10.3 Proposed Process for Discovering Relevant Information

Having detected the pitfa1ls of current characterization schema construction
processes, we propose a means of detennining relevant information about any
particular artifact type for inc1usion in an experience repository. Sects. 10.3.1 to
10.3.5 justify each stage of the proposed characterization schema construction
process. This process can be divided into two parts: schema generation and
schema testing.
• Schema generation. Schema generation has been divided into four different

stages. They explicitly state each source of information used to fonnulate the
schema, and each stage aims to gather different information types. The
generation stages are: development of a theoretical schema, development of an
empirical schema, synthesis ofperspectives and expert peer review.

• Schema testing. Schema testing or start up involves having two different
population groups examine the schema and assess two different facets:
population and use.

Figure 10.1 shows the resulting process for developing the characterization
schema.

10.3.1 Know the Artifact: Development of a Theoretical Schema

As discussed in Sect. 10.2, there are two usual ways of developing
characterization schemas:

• Starting from the set of artifacts for characterization (or as complete as possible
a subset of these artifacts, if this is not feasible), analyze the similarities and
differences between the different artifacts to build a schema that contains the
parameters that reflect the differences.

www.manaraa.com

204 Vegas, Juristo and Basili

• On the basis of the knowledge that the people who are building the
characterization schema have. of the artifacttype, reflect the most prominent
features ofthis artifact type that are likely to vary from one artifact to another.

Development
of a theoretical

schema

Development
of an empirical

schema

~ JI I Synthesis I
~

SCHEMA
GENERATION

SCHEMA
TESTING

Fig. 10.1. Proposed characterization schema development process

Therefore, the construction of a schema is guided by deductive reasoning
concerning available artifacts and what relevant characteristics they all have in
common. Here, we propose to use a combination of the two strategies, aiming
primarily to develop a first draft of the characterization schema to serve as a
starting point that will be added to and improved in later iterations. A secondary
goal of this stage is to familiarize the people developing the schema as much as
possible with the artifacts they are trying to characterize. This is why this step is
done first. This stage is, therefore, a sort of introduction to the development of
what will be the final characterization schema.

A strategy of decomposition is followed to build this theoretical schema. First,
the high-level information the schema should contain is identified. Then, this
information is refined until an adequate level of granularity is reached.

10.3.2 Incorporation ofDiverse Viewpoints: Development ofan
Empirical Schema

Our aim is to facilitate or improve the process of artifact selection in experience
bases and thus contribute to the construction of higher-quality software systems.
The proposed process can be considered successful if the resulting

www.manaraa.com

10 A Process for Identifying Relevant Infonnation for a Repository 205

characterization schema is used; that is, the schema should be workable, which
means that the process must be aimed at promoting (and even guaranteeing) its
use. This focus on schema use is what made us decide to get people related to the
artifact area involved.

During characterization schema design, the main decision relates to what
information it should contain. This is not an easy task, however, as the schema has
to meet the information needs of a variety of people with different goals. More
precisely, it must be

• Useful for consumers when selecting the artifacts for their project situation
• Possible for producers to fill in the infonnation asked for in the schema

The schema obtained in the first iteration reflects the opinion of the schema
designer on the information that can influence decision-making on which artifacts
should be used in a given project. However, this schema does not necessarily
respond, at least completely, to the consumers' opinion of selection.

Therefore, the question is what information does the consumer need to select an
artifact from the experience base. One possibility is to think about what one
believes consumers would like to know when deciding on which artifact or
artifacts to use and even gather a collection of infonnation that appears to be more
or less coherent. But, would this collection of information be the real solution to
the selection problem? This problem is far from trivial. If the inclusion of the
infonnation that appears in the schema is not justified by a theory (and no such
theory exists today for most SE artifacts) or is incomplete with respect to the items
required to make the selection, the fitness of the resulting characterization schema,
or even its validity, could be questioned. By this reasoning, the schema generated
would possibly be of little use, and it would take longer to reach a satisfactory
solution.

We need to be pragmatic and have the resulting schema used (in fact, this is the
only way of improving artifact selection). So, in the absence of a theory that
confIrms why some information facilitates or is necessary for selection and other
information is not, the schema should reflect the opinion of consumers and
producers (future schema users). But, being a matter of opinion, there is a risk of
the schema being a mere collection of nonconvergent infonnation. The process is,
therefore, subject to two restrictions:

1. The thoughts of the schema designer are used as a basis upon which the
opinions of the participants take shape

2. A study is carrled out to see if the theoretical and empirical opinions converge,
i.e. if there is sufficient common ground between the theoretical and empirical
knowledge about the subject to generate an experience base for the artifact
type. If this study were to find that the opinions did not converge, it would
mean that there is not enough common ground between opinions; that is, there
is neither a theory nor empirical knowledge enough about the subject to
generate an experience base for this kind of artifacts.

The empirical schema is developed incrementaIly. A set of opinions (questions
or information) about the infonnation required to completely selectldefme an

www.manaraa.com

206 Vegas, Juristo and Basili

artifact is gathered for each consumer/producer surveyed. The sets of
questions/information obtained are analyzed incrementally. This means that the
producers/consumers are gradually incorporated, making it possible to cover the
total set of possible producers/consumers according to their characteristics.
Therefore, the process is inductive, producing a schema containing the
characteristics desired by producers and consumers.

To be more precise, the iteration for running the analysis is as folIows. Taking a
reference set (originally empty) and the opinions of the producer/consumer, the
reference set is updated to include any opinions not included before, and the
respective empirical schema is obtained. The reference set can be updated in
several ways: either by adding new opinions or reformulating others to make them
more generic ür more specific (never by deletion). Fig. 10.2 shows the activities to
be performed to get ''the ith" empirical schema

(Empirical
schema;

Fig. 10.2. Activilles to get the "ith" empirical schema

One interesting point is that the characteristics of the participants should be
known, as it is important to be acquainted with what type of producers/consumers
are represented in the schema. Another point (not as important as accounting for
all producer/consumer types) is the number of people that have to participate in
this stage. The number is not essential, as Glaser and Strauss [9] state that the
number of data collected during research is relevant for testing and not for
generating the hypothesis. So, the number of individuals involved will be
important at that point and, as such, will be taken into account later on.

The stopping criterion for this activity is the stability of the characterization
schema. It is not possible to stop gathering information from different people until
the rate of change of the schema is zero for at least the last 25% of subjects.
Therefore, what we are examining at this stage is the evolution and change of the
characterization schema as new producers/consumers are incorporated.

www.manaraa.com

10 A Process for Identifying Relevant Infonnation for a Repository 207

10.3.3 Synthesis ofPerspectives: Theory and Practice

As we now have two independent sets of information about the object to be
characterized, they have to be merged. Accordingly, a synthesis stage is required
in which the theoretical and empirical schemas are united to produce a schema
that contains the information from both.

In this stage, the two characterization schemas created earlier (the theoretical
and the empirical schemas) are taken and synthesized into a single
characterization schema to provide a single view of the information that is relevant
for selection. Rules should be defined to guide this process and ensure that the
schemas are synthesized in an orderly manner and no infonnation is lost.
Depending on the environment in which the schema is to operate, the synthesis
rules could vary from the collection. of all the information that appears in the two
schemas to the selection of given types of infonnation if performance or the
amount ofinfonnation handled for selection are critical factors. However, ifthere
is no restriction on the amount of infonnation the preliminary schema should
contain, the recommended heuristic is that all infonnation appearing in either the
empirical or theoretica1 schema should appear in the preliminary schema This can
be translated into

• Any infonnation that appears in at least one schema will be direct1y entered in
the preliminary schema.

• If there is similar information or some infonnation is more generic or more
specific than others, study the best way of adding it to the schema to assure that
no infonnation is lost during synthesis and there is no redundancy.

Once the preliminary schema has been built, it might be of interest to examine the
source of the infonnation of which it is composed so as to analyze the different
viewpoints of the subject types that have contributed to creating this preliminary
schema.

10.3.4 Expert Peer Review

The schema obtained after the synthesis of the theoretical and empirica1 schemas
reflects the viewpoint of the schema designer, consumers and producers
concerning the selection problem. However, neither the consumers nor the
producers have so far seen the schema (they were asked for their opinion on
selection, but they were never shown what information bad been input). It would,
therefore, appear to be a good idea to get someone else to inspect and give an
opinion on the schema. Also, according to the principles of some sciences, for
example, medicine, it is advisable to get a second opinion about a complex
problem. Therefore, aseries of experts in the area to which the artifact belon.gs to,
should be asked to give their verdict on the preliminary schema prior to start up.
The goal of this expert peer review is to correct possible schema defects caused by
the way in which it was derived. The typical defects of the schema obtained prior
to the review by experts are as folIows:

www.manaraa.com

208 Vegas, Juristo and Basili

• Defects of form: Both producers and consumers have given their particular view
of the information they believe to be relevant for selecting that particular
artifact. However, the schema designer alone created the structure that reflects
this information. It would not be amiss to get a second opinion on this structure.

• Defects of substance: The information for the preliminary schema is gathered
indiscriminately. It may contain errors involuntarily introduced by the schema
designer or by the people participating in the research. For example, there may
be redundant information (dependencies between information contained in the
schema), or missing or unworkable information not detected by the designer.

The preliminary schema will be modified on the basis of the analysis of the
opinions of the experts to incorporate their suggestions, giving rise to a new,
improved and almost final schema. The ideal number of experts for an expert peer
review is as many as possible, and no less than three, so that discrepancies among
experts can be handled. However, it is not easy to find experts, and therefore any
number would be acceptable.

10.3.5 Start Up

Qwing to the risk involved in deploying the characterization schema, a
preliminary evaluation must be run in order to detect possible improvements. The
best way of examining product validity is to put it into operation and observe how
weIl it fits in with development to determine what problems users come up against
and how the product could be improved to make it useful for developers. For this
purpose, once the preliminary schema has been buHt, it will be first instantiated
for a range of artifacts, and then potential users of the repository (producers,
consumers and librarians) will be asked to use it under several circumstances. The
use of the schema will provide feedback to the schema designer, which can be
used to improve it.

As mentioned before, the ~tart-up stage consists of two parts: first, a mini
repository is populated with representative artifacts from the whole population;
later, this repository is USed by people under different circumstances. A refined
version of the schema is created on the basis of the results of the data analysis.

1. Repository Population: The aim of this part of the start-up stage is to examine
basic schema characteristics, namely, its feasibility and flexibility from the
producer viewpoint. For this purpose, the characterization schema will be
instantiated over again to study these aspects. The ideal situation is to have the
future producers, consumers and librarians instantiate the characterization
schema for the different artifacts. However, if this is not possible, the people
who created the schema are perfectly qualified to do this job. They can act as
librarians, getting the necessary information from books, papers and past
projects.

2. Repository Use: This part of the start up involves running the repository
populated during repository population. The primary aim of this part of the

www.manaraa.com

10 A Process for Identifying Relevant Infonnation for a Repository 209

start-up stage is to observe the feasibility and completeness of and user
satisfaction with the schema from the consumer viewpoint.

This second part of the start-up stage is again carried out on the preliminary
schema. Here, a number of subjects will act as consumers and use the schema to
select artifacts. Both quantitative and qualitative data is collected during this stage,
which, after analysis, will be used to again modify and improve the schema.
Again, it would be desirable to have real consumers perfonn apretest of the
schema. If no real consumers are available, however, other types of developers
could be used (students, for example).

10.4 Case Study: Developing a Charaderization Schema for
Software Testing Techniques

The process described in Sect. 10.3 has been applied to build a characterization
schema for testing techniques. The construction of this schema is described step
by step throughout this section as an example for readers who are interested in
applying the process for characterizing any SE artifact in order to build an
experience base.

10.4.1 Development of a Theoretical Schema

As discussed in Sect. 10.3.1, the schema was developed by gradually refming the
information that it is to contain. In this case, the relevant information for selecting
testing techniques (schema attributes) is grouped around the elements that are
involved in software testing, which are then organized around the levels of which
the testing process is composed.

10.4.1.1 Schema Levels

The software system testing process can be divided into the foIlowing stages:

1. Selection of the quality attributes that are to be tested, as weIl as the expected
values for each attribute, when they are to be tested, the metrics to be used for
the evaluation, and the parts of the system that will be affected by each test.

2. For each of the attributes identitied in the previous stage, the tests identified
above should be perfonned, which means: generate and execute the test cases
and evaluate the results obtained, always considering the environment where
the test took place.

The main difference between points 1 and 2 lies in the fact that the purpose of
point 1 is to establish a generic framework within which the testing of the software
in question will take place. This stage is necessary because not all software
systems are the same, and adecision must therefore be made on which is the best
way to evaluate each system. Stage 2 is necessary because not all projects are the

www.manaraa.com

210 Vegas, Juristo and Basili

same, even if they are building the same software. This means that neither the
characteristics of the developer organization nor the team members nor the
technologies will be the same, and the tests to be run must therefore be carried out
differently.

The characterization schema must capture all this to assure selection of the
optimum testing techniques. More formally, we have named these types of
information as taetical and operational information, and they correspond to two
different levels. The information contained in the tactical level is related to the
initial or taetical planning that will be followed to run the tests, and retlects
information related to the use to which the generated test cases will be put.

As is the case with the industrial manufacturing of some materials, where the
characteristies that the material should have are established by analyzing the uses
to whieh the material is to be put, the use to which the genera ted test cases will be
put determines the characteristics they should have for testing purposes. For
example, whether a plastic is to be used either to manufacture the inside of a ear,
to make plastic bags, to fabrieate bottles, etc., will determine how tlexible, how
resistant and how malleable it has to be. Likewise, the fact that a set of test cases
is to be used to test the security of a software system or the correctness of an
algorithm implementation determines whether the cases should be exhaustively
test all sorts of inputs, only the most common inputs or perhaps the inputs that
entail anomalous behavior on the part ofthe user. Finally, we should explain that
just as a given material cannot be used on all occasions and some of its properties
have to vary depending on its use (leading to variations or versions of the
material), when a set of test cases is generated for a given purpose it is very likely
that it will not be useful in other circumstanees.

The information contained in the operational level is related to the optimal
conditions of testing techniques suitability, once given characteristics of the
environment in which the technique is to be applied have been determined. Just as
certain pressure and temperature eonditions are required for a ehemical reaction to
take place, the technique application conditions have to be as conducive for the
expected test cases to be generated effectively (in terms of time and resourees) and
efficiently during software testing. This means that it may or may not be
appropriate to apply a given teehnique depending on the knowledge and
experience of the personnel and whether or not the available tools are suitable.
This is equivalent to the reaction not taking place or to the products obtained being
ofpoor quality.

In other words, the operationaI level retlects the characteristics of both the
technique and the project environment. These include tools, knowledge of the
personnel, characteristics of technique applicability and so on from which it is
possible to deduee whether or not the technique in question is the best suited for
the project situation in question.

www.manaraa.com

10 A Process for IdentifYing Relevant Infonnation for aRepository 211

10.4.1.2 Tactical Level

As mentioned above, the aim of this level is to identifY the test to which the code
will be subjected or to choose the tactic to be followed to test the code. There are
two parameters:

1. The pur pose or objective of the test, which defmes the software attribute that is
to be evaluated and how rigorously this is to be done. The set of cases
generated when applying a testing technique cannot be used to test any
software quality attribute or to test the same attribute in the same way. For
example, a set of test cases generated to test whether an algorithm is correctly
implemented is not generally useful for checking whether the implementation
of this algorithm is efficient or whether the system is acceptable. Suppose that
one wants to check, on the one hand, system security and, on the other, system
usability. The best way to test security is to use test cases that represent attacks
or unlikely situations rather than the routine use ofthe system. To test usability,
on the other hand, one looks for test cases that represent the usual or common
uses of the system. And, again, if one wants to test the correctness of an
algorithm, one must use test cases that test both the nonnal actions of the
algorithm and the exceptional cases (whether or not they are erroneous).

Furthennore, a technique that generates cases to test security in a safety
critical system is of no use for generating cases in a non-safety-critical system.
And this is precisely what the purpose of the test reflects the software attribute
that is to be evaluated using the test and how rigorously or with what degree of
confidence this is to be done.

2. The scope ofthe test, which can be defmed by saying what part ofthe software
system is to be tested, when the test is to be run and the components of the
software system that are affected by the test.

Depending on which test is run, are affected different parts of the software,
ranging from an algorithm, through an entire module, a group of modules that
perfonn a system function, to a subsystem and even the entire system. Also,
depending on how system development has been organized, the test takes
place at one time or another within the process. We should also specifY the part
of the functionality offered by the system that needs to be tested. The scope,
then, refers to the part of the system involved in the test.

10.4.1.3 Operational Level

As mentioned earlier, the aim at this level is for the application (or use) of the
technique to be as effective as possible, as weIl as efficient. This involves aseries
offactors, which are discussed below.

Being a software process, the generation of test cases can be represented
generically as shown in Fig. 10.3a. As shown in Fig. lO.3a, a software process
generates a software product, where the techniques used, on the one hand, and the
resources used, on the other, are the controllers ofthe process. Ifthis generic view
is specified for the case at hand, the process is then the generation oftest cases, the

www.manaraa.com

212 Vegas, Juristo and Basili

input is the software (generally, as each testing technique calls for specific inputs
that vary from one technique to another). The output is the generated test cases
and the controllers are, on the one band, the technique or techniques used and, on
the other, the tools and personnel, as shown in Fig. IO.3b. In other words, the test
case generation technique that is applied to the software outputs aseries of test
cases within an environment that is determined by the tools available for
performing the task and the personnel who carry out the task.

Inputs •
Methods (guidelines

& techniques)

PROCESS
(activities
& tasks)

(a)

Product •
Techniques

Software • TESTCASE
GENERATION

Tools t
(b)

Testeases •

Fig. 10.3. Representation of the software process: (a) Generic process, (b) Specific case,
generation of test cases

Therefore, according to Fig. 10.3b, it can be said that the information that the
operationallevel of the characterization schema should contain has to refer to:

• The people who are to use the technique or agents. The characteristics ofthese
people can lead to one or another technique heing chosen. If the testing
personnel are not very experienced in one technique and there is no time for
training, another is likely to be selected.

• The tools that should or could be used. The fact that a company does or does
not own a given tool that supports the use of a given technique can lead to the
selection of one technique over another.

• The software (code) to be tested or the object. The code has certain
characteristics that can determine the use or rejection of a technique, for
example, the type of programming language used, the code size and so on.

• The technique. Depending on the characteristics of the technique, adecision
can be made on whether or not to use it at a given time. Characteristics like
complexity, effectiveness, maturlty, usability, and so forth will be the key for
deciding on its use.

• The generated test cases; that is, the results (and/or consequences) ofusing the
technique. Some characteristics of the technique are environment dependent,
and these are precisely the ones that retlect its behavior. How good a technique
is when applied can be ascertained from the generated test cases and not from
the technique. Thus, some characteristics of these test cases will be of interest
for selection purposes.

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 213

10.4.1.4 Attributes ofthe Theoretical Schema

Table 10.1 shows the composition of the theoretical schema.

Table 10.1. Theoretical schema

LEVEL ELEMENT ATTRIBUTE

Objective Quality attribute
Rigor

Tactical Phase
Scope Element

Aspect

Agents Experience
Knowledge
Tools
Comprehensibility
Cost of application

Technique Sources of information
Dependencies
Repeatability
Adequacy criterion

Operational Completeness
Cost of execution

Results Type of defects
Effectiveness
Correctness
Adequacy degree
Software architecture

Object Software type
Programming language
Development method

10.4.2 Development of an Empirical Schema

The tasks to be carried out to get the empirical schema include sending out two
different questionnaires to respondents: a questionnaire that asks the consumers
what information they believe to be relevant for selection purposes, and another
that asks the producer what information they believe to be necessary to define a
testing technique. The responses are then analyzed to produce a characterization
schema that reflects the opinions of both consumers and producers about the
selection problem. The empirical schema is buHt incrementally, as described in
Sect. 10.3.5. That is, the first version ofthe empirical schema is generated with the
information received from the first respondent and the schema version was
updated as the information from successive respondents, is analyzed. When
working with the empirical schemas, we tried to use the levels and elements of the
theoretical schema as far as possible, because the respondents only supplied
attributes.

www.manaraa.com

214 Vegas, Juristo and Basili

An important issue we had to deal with during this stage was the stability
analysis of the empirical schema. This analysis was performed in order to find out
when to stop gathering information. Fig. 10.4 shows the accumulated growth
speed of the empirical schema. The x-axis shows the different people surveyed
ordered according to time (C stands for consumer and P stands for producer), and
the y-axis shows the size of the empirical schema as a percentage of its final size.
It can be seen that the empirical schema reaches 50% of its fmal size with the first
respondent. This figure increases to 80% with the second respondent, and the
schema reaches its final size with the tenth respondent. Tbis means that the last six
respondents did not add any new information to the empirical schema, and
therefore the empirical schema can be considered as stable at this point.

CI
lio1
lio1
lIoo
rIl

= ~
i
t:I
~
§
<

100.00%

90.00%

So.oO%

70.00%

60.00%

50.00%

40.00%

CI C2 PI C3 C4 P2 C5 C6 C7 CS P3 C9 CIOCllCI2C13

RESPONDENTS

Fig. 10.4. Schema accumulated growth speed

Another of the key tasks for designing the empirical schema was the selection
of the respondents. The characteristics of the people involved in the construction
of the empirical schema a significant influence on the resulting schema. The
people involved should be as heterogeneous as possible to assure that the schema
does not reflect a unilateral viewpoint. For this purpose, an attempt was made to
include respondents with a wide variety of characteristics: from a range of fields,
with varying experience and of different nationalities. As the set of participant
subjects had to be as heterogeneous as possible, we looked for people who played
different roles in the testing area. Also, when asking for information we started
with those respondents who were most likely to give us more useful information.

Table 10.2 shows the contents ofthe empirical schema. Note that the empirical
schema provides us with some information that did not appear in the theoretical
schema, since practitioners care about practical issues that are very often
overlooked by theoreticians. The main differences of the empirical schema from
the theoretical schema are

• Use level: It was not possible to associate the information contained in this
level with any of the two levels in the theoretical schema. Therefore, a new
level was created: the use level. The questions of which this new level is

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 215

composed refer to the personal experiences of people who have used the
technique. This level contains two elements:

Table 10.2. Empirical schema

LEVEL ELEMENT ATTRIBUTE

Objective Quality attribute
Rigor

Tactical Phase
Scope Element

Aspect

Agents Experience
Knowledge
Identifier
Automation

Tools Cost
Environment
Support
Comprehensibility
Maturity level
Cost of application
Inputs

Technique Adequacy criterion
Operational Test data cost

Dependencies
Repeatability
Sources of information
Coverage

Results Effectiveness
Type of defects
Number of genera ted cases
Software type
Software architecture

Object Programming language
Development method
Size
Reference projects

Project Tools used

Use
Personnel
Opinion

Satisfaction Benefits
Problems

- Project: The information covered in this element refers to the respondents'
interest in learning about and characterizing software projects in which the
technique has been applied in order to compare these earlier projects with the
current situation.

- Satis/action: The information covered in this element complements the above
information on earlier projects. The respondents are also interested in

www.manaraa.com

216 Vegas, Juristo and Basili

knowing the results of using the technique in the project from the viewpoint
of what impression it caused on the person who used the technique.

• Tools element: The information covered in the tools element refers to the
characteristics ofthe tools that can be used when applying the technique.

However, the inclusion of too much information can also lead to difficulties.
Experts play an essential role during peer review in dealing with this matter.

10.4.3 Synthesis

At this point, we have two characterization schemas, a theoretical and an empirical
schema, that reflect different viewpoints or perspectives of the problem of
selecting testing techniques in software projects. These are theory, represented by
the schema designer, and practice, represented by testing technique producers and
consumers. The next step is to synthesize these two perspectives into one.

The heuristic to be followed for the synthesis is based on the preservation of
information: all information appearing in either the theoretical or empirical
schema will appear in the synthesized schema. In no case has the possibility of
removing information from the characterization schema been considered at this
stage. The fact that the schema designer has not been ahle to deduce any attribute
mentioned by any respondent from the theory (or vice versa) does not necessarily
mean that this attribute is not important or necessary. The omission may be due to
amistake or oversight. Likewise, as there is no way of knowing which attributes
are not necessary for selection (this information was never solicited), it is better to
play it safe and include all information.

Before defining the rules of synthesis, two fundamental concepts related to
these rules must be defined:

• Equality: Two attributes are considered equal if they bear the same name and
belong to the same element and level.

• Similarity: Two attributes are considered similar if they do not bear the same
name or do not belong to the same element or same level, although they
represent the same or similar concepts.

Accordingly, the following mIes are defined for synthesis:

1. The levels and elements of the synthesized schema are the union of the levels
and elements of the original two schemas.

2. Any attributes that appear in just one of the characterization schemas appears
unchanged in the synthesized schema.

3. Any attributes that appear in both schemas and are equal appear unchanged in
the synthesized schema.

4. Any attributes that appear in the two schemas and are similar are studied to
decide whether they are used to generate one or several attributes.

5. In no case is information deleted from the characterization schema.

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 217

Table 10.3. Preliminary schema

LEVEL ELEMENT

Objective

Tactical
Scope

Agents

Tools

Tecbnique

Operational

Results

Object

Project

Use

Satisfaction

On the basis of the above mIes, the two original characterization schemas are
synthesized into what termed hereinafter the preliminary schema which is shown
in Table 10.3. Table 10.3 also shows the source ofthe attributes ofthe preliminary
characterization schema. Columns 1 to 3 show the schema itself (levels, elements
and attributes). The next two columns indicate whether the information
represented by an attribute is present in either of the two schemas: theoretical and

www.manaraa.com

218 Vegas, Juristo and Basili

empirical. Accordingly, the original composition ofthe two schemas can be traced
back from Table 10.3.

It is interesting to note that 14 of the attributes present in the preliminary
schema do not appear in the theoretical schema. On the other hand, there are only
two attributes that are present in the preliminary schema and not in the empirical
schema. This means that, except for two attributes, the empirical and the
preliminary schema are practically identical. In other words, 58% ofthe attributes
of the preliminary schema are common to the two original schemas, 5% are
supplied by the theoretical schema, and 37% by the empirical schema. This is an
interesting point that is worth analyzing in more detail. The major omissions of the
theoretical schema are the use level and the tools element. As regards the use
level, one reason why it is not present is possibly that it was assumed durlng the
investigation that the information provided by the producers with respect to a
testing technique is complete enough for consumers not to have to look for other
sources of information. As regards the tools element, they were considered
important, but details like their automation (part of the technique automated by the
tool), their cost, the support provided by the tool vendor, or the platform
(hardware and software) and programming language (environment) that support
the tools were not taken into account. This could be due to the fact that pragmatic
aspects of the techniques were overlooked. The minor omissions of the theoretical
schema are some attributes of the technique element (maturity level, inputs and
test data cost) and the object attribute (size), which corroborate the above
supposition that pragmatic aspects of the testing techniques were overlooked when
building the theoretical schema.

The empirical schema, on the other hand, has only minor omissions, as the
respondents failed to detect only two attributes of the final schema: adequacy
degree and correctness, both belonging to the results element. The absence of
these concepts in the empirical schema is likely due to the fact that not enough
people were interviewed or that the set of possible respondents was not
satisfactorily covered.

10.4.4 Expert Peer Review

Taking into account that the experts use open-ended questionnaires, in which their
response is adescription rather than a quantification, the opinions are analyzed
critically. This means that the opinions of all the experts on a particular subject are
read and understood. Then, the schema designer checks whether the opinions are
contradictory or coincident and, fmally, makes adecision on whether or not to
accept the suggestion and, when accepted, how it can be included. The decision on
whether or not to accept the experts' suggestions is made according to aseries of
rules, which are now presented. Table 10.4 shows the results of this stage.

1. If the experts disagree, the majority view is respected.
2. If more than one expert recommends a given change, the recommendation is

taken into account.

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 219

3. If only one expert recommends a change, this change is accepted, provided the
proposed change is not due to amisinterpretation of the schema, its logic or its
contents. When only one expert recommends a given change, this change is not
always as evident as when it is recommended by several experts. In this case, it
is the expert's versus the schema designer's opinion. It is sometimes impossible
to reconcile the two viewpoints, and it was decided that the opinion of the
schema designer should take precedence. One such case is the suggestion to
replace the attribute cost 0/ application (technique) by complexity, as the
schema designer is of the opinion that a technique can be easy and still take a
long time to use. It is contradictory to make modifications in which the schema
designers do not believe or about which they are not sure.

4. If the solution of the problem stated by the expert goes beyond structural
changes to the schema (for example, build a tool to improve schema use), the
suggestion is accepted, but the solution will be left for future research.

The changes the four experts involved in the expert peer review made to the
preliminary schema can be briefly summarized as folIows:

• Five attributes have been deleted: three from the tactical level (quality
attribute, rigor and phase) and two from the operationallevel (maturity level
and adequacy degree). This was done because the experts pointed out
dependencies or redundaneies with respect to other attributes.

• The correctness attribute of the operational level was replaced by another
named precision.

• Two attributes were moved from the operational level to the tactical level
(effectiveness and defect type).

• A new attribute, termed pur pose, was created and placed in the objective
element, as the experts noted that it was missing and justified its need.

• The results element was renamed as test cases.
• The use level was renamed as historicallevel.

10.4.5 Start Up

The reviewed characterization schema has been put into practice according to the
process described in Sect. 10.3, for a university environment, using final-year
(sixth grade) students as consumers. The results are presented below.

10.4.5.1 Repository Population

The first thing to do before starting to populate the repository is to decide which
techniques will be used to check both schema feasibility from the producer
viewpoint and schema flexibility. For this purpose, it was decided to seleet a
number of technique families, which cover the variation between techniques of
different families, and a number oftechniques within each family, which cover the
variation between teehniques of the same family. Additionally, we resolved to

www.manaraa.com

220 Vegas, Juristo and Basili

choose well-known techniques, as this gives a better understanding of how the
schema is instantiated.

Table 10.4. Final schema (1 of2)

LEVEL ELEMENT ATTRIBUTE DESCRIPTION

Purpose Type of evaluation and quality
attribute to be tested in the system

Objective Defecttype Defect types detected in the system
Percentage of defects detected by

Tactical Effectiveness the technique out of the total
number of defects detected

Element Elements ofthe system on which

Scope
the test acts
Functionality ofthe system to be Aspect
tested

Knowledge Knowledge required to be able to
apply the technique

Agents
Experience required to be able to Experience apply the technique

Identifier Name ofthe tool and the
manufacturer

Automation Part ofthe technique automated by
thetool

Cost Cost oftool purchase and
Tools maintenance

Platform (SWand HW) and
Environment programming language with which

the tool operates

Support Support provided by the tool
manufacturer

Operational Whether or not the technique is Comprehensibility easy to understand

Cost of application How much effort it takes to apply
the technique

Inputs Inputs required to apply the
technique

Adequacy criterion Test case generation and stopping
Technique rule

Test data cost Cost of identifYing the test data

Dependencies Relationships of one technique
with another

Repeatability Whether two people genera te the
same test cases

Sources of Where to find information about
information the technique

www.manaraa.com

10 A Process for Identifying Relevant Infonnation for a Repository 221

Table 10.4 (conL). Final schema (2 of2).

LEVEL ELEMENT ATTRIBUTE DESCRIPTION

Completeness Coverage provided by the set of
cases

Test cases Precision How many repeated test cases the
technique generates

Number of genera ted Number of cases generated per
cases software size unit

Software type Type of software that can be tested
using the technique

Operational
Development paradigm to which it Software architecture is linked

Object Programming Programming language with which
language it can be used

Development method Development method or life cycle
to which it is linked

Size Size that the software should have
to be able to use the technique

Reference projects Earlier projects in which the
technique has been used

Project Toolsused Tools used in earlier projects

Personnel Personnel who worked on earlier
Historical projects

Opinion General opinion about the
technique after having used it

Satisfaction
Benefits Benefits ofusing the technique
Problems Problems with using the technique

Accordingly, the chosen techniques were:

• Functional testing techniques: Boundary value analysis and random testing
• Control flow testing techniques: Sentence coverage, decision coverage, path

coverage and thread coverage
• Data flow testing techniques: All-c-uses, all-p-uses, all-uses, all-du-paths, and

all-possible-rendezvous
• Mutation testing techniques: Mutation and selective mutation

The authors of this chapter were responsible for instantiating the above
mentioned techniques. Table 10.5 shows the results of instantiating the chosen
technique for feasibility purposes: decision coverage. The fmdings of the schema
feasibility check were:

• There is information that is difficult to fmd, especially information related to
reference projects. This is due to the fact that companies do not like to see

www.manaraa.com

222 Vegas, Juristo and Basili

their confidential data published. A cultural change has to take place at
companies for it to be possible to get reliable information about the past uses
of a testing technique. Also, companies have to get used to doing postmortem
analyses of projects to weigh up the results of using the techniques.

Table 10.5. Decision coverage technique

LEVEL ELEMENT ATIRIBUTE VALUE
Purpose Find defects

Objective Defecttype Control
Tactical Effectiveness 48%

Scope
Element Units
Aspect Any

Agents
Knowledge Flow graphs
Experience None
Identifier LOGISCOPE
Automation Obtain paths

Tools Cost €3,000 - 6,000
Environment Windows; C/C++
SuPPOrt 24-hour hotline
Comprehensibility High
Cost of application Low
Inputs Sourcecode
Adequacy criterion Control flow

Technique Test data cost Medium
Supplemented with Operational

Dependencies techniques that find
processing errors

Repeatability No
Sources of information SommerviIIe
Completeness -

Test cases Precision -
Number of generated
cases Exponential # decisions
Software type Any
Software architecture Any

Object Programming language Any
Development method Any
Size Medium
Reference pf(~jects -

Project Tools used -
Personnel -
Opinion OK, but should be

complemented with others Historical
Benefits It is easy to apply

Satisfaction Dynamic analyzer should be

Problems
avoided when used with real
time and concurrent systems
due to code instrumentation

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 223

• There were also two schema attributes (precision and completeness) whose
value was not found anywhere. This casts doubts upon the advisability of
these two attributes appearing in the schema. However, they are found in both
the theoretical and empirical schemas and the experts did not consider them
unsuitable. Tbis appears to be relevant information that is not available in the
literature on testing techniques. So, it is an omission of the testing literature,
not of the schema, as this information is considered relevant from all
viewpoints (note that there are not many attributes in the schema ofwbich this
can be said), but is, however, not easy to locate.

• Contradictory information is often found about the testing techniques. This is
inevitable, because as long as the parameters that affect the use of a testing
technique are not perfectly defined, some may not be studied. The studies
carried out on testing techniques should be as rigorous as possible and, thus,
reflect the information more correctly in order to output noncontradictory
information.

• The metrics used to fill in some attributes are not easy to interpret. For
example, for technique effectiveness, one often fmds probability of jinding a
given fault as the associated metric. However, this attribute should really
reflect the percentage of faults that the technique can detect. Can both metrics
really be considered to reflect the same information? Or, contrariwise, do they
reflect different things? This problem has to do with what developers would
like to know and what can be easily collected [8]. Tbis problem could be
solved if the metrics expressly asked for by the schema were used every time
studies were carried out on testing techniques.

However, it is important to stress that the potential ofthe schema, wbich is now
limited by the existing theory on testing techniques, is much greater. The schema
can be very useful as an aid for looking for information on testing techniques. This
includes information that is at present very dispersed and information that is not
now disseminated, like the opinions of other people who have used the technique.

As regards schema jlexibility, it was possible to satisfactorily instantiate all the
testing techniques that were originally selected. This means that we were able to
instantiate the schema for thirteen testing techniques from four different families.
Of course, this does not mean that the schema is totally flexible. It would be
necessary to instantiate the schema for all existing testing techniques to make such
a claim. However, the fact that aseries of techniques that are representative of
existing techniques have been able to be instantiated without any problem
indicates that the schema is flexible enough to be able to instantiate the huge
majority of, if not all, testing techniques.

10.4.5.2 Repository Use

Repository use aims to assess schema feasibility, completeness and user
satisfaction from the consumer viewpoint. The following project was used to
check schema feasibility.

www.manaraa.com

224 Vegas, Juristo and Basili

A system is to be built to manage a car park (concurrent system). At this
stage of the project, the quality assurance team has identified the key quality
attributes of this software system. These were deduced by examining the
characteristics of the software to be developed, as weIl as its application domain.
In this particular case, the essential attributes are correctness, security and
timing.

Having examined the quality attributes of interest, the question is to decide
which techniques would be best suited to evaluate the correctness of the above
mentioned software system, bearing in mind the following project situation. The
system is to be coded in ADA, the development team is quite experienced in
developing similar systems and it has also been found that almost all the errors
that the developers make are proper to concurrent programs. The testing team is
also experienced in testing this type of systems.

When illustrating how the problem is solved, the process defmed is also shown:

• Determine bounded variables (attributes of the schema whose value is
determined by the software project and cannot be changed): According to the
problem statement, correctness is to be evaluated, which means that the
purpose would be to detect f~ults in any type of element. The system is to be
developed in Ada, which is a language for real-time systems. The development
team is experienced in developing this type of systems, which means that they
are unlikely to make many errors. Table 10.6 shows the associated variables for
the example.

• Preselect an initial set 0/ techniques: Given the associated variables in
Table 10.6, their value was compared with those ofthe technique contained in
the repository. The techniques selected are: boundary value analysis, random,
path coverage, all-possible-rendezvous, all-c-uses, all-p-uses, all-uses, all-du
paths, standard mutation and selective mutation. The techniques sentence
coverage and decision coverage are rejected because their effectiveness is low,
and the technique threads coverage is discarded because it is for object
oriented software.

TabJe 10.6. Bounded variables

LEVEL ELEMENT ATTRIBUTE VALUE

Purpose Find faults

Objective Defecttype ANY

Tactical Effectiveness >50%

Scope
Element ANY
Aspect ANY
Software type Real time

Software architecture Concurrent

Operational Object Programming language Ada

Development method ANY

Size Medium

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 225

• IdentifY the best-suited techniques /or selection: Of the preselected techniques,
there is one that is specific for Ada-style programming languages (concurrency
implementation using rendezvous). Although there are general-purpose
techniques (for all software types) that are more effective, it appears that the
technique that is specific for concurrent software detects the faults proper to
concurrency better than the other techniques. Furthermore, the technique path
coverage states that when used with concurrent and real-time systems, a
dynamic analyzer cannot be used as a tool. AdditionaIly, the techniques all-c
uses, all-p-uses, all-uses, all-du-paths, standard mutation and selective
mutation cannot be used without a tool (which is not available). Therefore, the
all-possible-rendezvous techniques will be selected. However, the dependency
attribute states that the technique should be supplemented with a black-box
technique. Observing the black-box techniques in the preselected set (boundary
value analysis and random), it is found that the random testing technique is
useful for people with experience in the type of tests to be run and is therefore,
also selected.

The finding for schema foasibility is, therefore, that it is possible to make at least
one selection using the characterization schema.

The study of schema completeness addressed both the information the subjects
used during selection and the missing information. The main fmding of this study
is that it is important for the characterization schema to be completely instantiated
for users to be ahle to take full advantage ofthe schema and for them to consider it
useful (this can pose a threat to its utility). Another interesting point observed is
that subjects are not always able to ascertain the value of variables that do not
appear in the schema, but whose values can be easily deduced from the schema.
This is the case of the time it will take to apply the technique. If the cost of
application of the technique, the knowledge of the people who are to use the
technique, whether or not tools are to going to be used and the size of the software
are known, it is easy to find out how long it takes to apply the technique.

To assess satis/action with the schema, the subjects are asked by means of open
questions to subjectively summarize their perceptions of the selection process.
These questions are related to the advantages and disadvantages the subjects have
seen with the schema, whether they would use it in their work if available, the
improvements they would make to the schema, what they liked and did not like
about the schema, whether their view of the selection problem has changed after
using the schema, what have they learned and the suitability of the names in the
schema. Generally, the subjects like the schema. However, they do stress the fact
that there are uninstantiated attributes. They also think that the schema contains
too much information. This again suggests the need to build a tool to make the
information the schema contains easier to handle. All the subjects would be
prepared to use the schema, provided they do not have to instantiate it. They miss
some information, although, interestingly, the information they do not fmd either
refers to things that they can deduce from the schema (like the time it will take to
apply a technique, for example) or information that they should extract from their
project context for comparison with a schema attribute (as is the case of the

www.manaraa.com

226 Vegas, Juristo and Basili

experience of the development team, where what they are really looking for are
the defect types to be detected). As regards the suitability of the names, the names
that they allege not to be very intuitive are precisely the ones that refer to non
intuitive concepts about the techniques (adequacy criterion, precision, etc.), which
suggests that the schema names are suitable.

10.5 Process Evaluation

Additionally, we wanted to check whether the process followed output a suitable
schema and whether repository use really improves selection. For this purpose, we
ran an experiment with the repository built with 87 students. For details about the
experiment, see [17]. The experiment compared characterization schema use with
books used for selecting testing techniques [6, 13, 16]. The fmdings are reported
below.

As regards schema ejJiciency, the total time required to solve the selection
problem is the sum of the study time plus the selection time and consultation time
(which is zero if books were used for selection). This experiment found that the
schema helps to reduce both the study and the selection time as compared with
books, and that the time spent consulting the schema can be considered negligible
with respect to the other two. Accordingly, it can be concluded that one of the
objectives of this research has been achieved, which is the construction of a
characterization schema that makes selection more efficient. However, the results
are subject to the following conditions: non-English-speaking and inexperienced
subjects.

After studying schema effectiveness, it was found that the number of original
techniques is lower for books than with the schema and varies ftom subject to
subject. It was also found that the number of selected techniques is lower for the
schema than for books, and the subjects select either families oftechniques, things
that are not techniques or techniques with which they are very familiar.

Combining these results, the conclusion is that the subjects using books are
unable to distinguish between a technique and a family or something that is not a
technique even though they were given an explanation as to what a technique iso
This is indicated by the fact that the set of original techniques is different for the
subjects who made the selection using books and who select things that are not
techniques. As none of the subjects is incompetent for performing the task (they
would also have failed in the selection using the schema), this could be explained
by saying that books are confusing as regards the information they provide. This
could also be the reason why the subjects tend to select more techniques, gaining
more assurance that the tests will turn out right, and why they choose techniques
with which they are very familiar. Finally, it should be stressed that the schema
leads to more precise selections.

With respect to schema completeness, it was observed that the schema contains
more useful information for selection purposes than books. Books focus on
explaining how a technique works rather than when to use it.

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 227

As regards schema usability, the number of problems found during selection,
the sort of problems, the number of schema attributes that are problematic for
selection purposes and the sort of attributes were taken into account to evaluate
schema usability. The first two variables provide relative results on schema
behavior as compared with books, whereas the latter two provide absolute results,
irrespective ofbooks.

From the relative comparison ofthe schema against books, it was found that the
subjects have fewer problems using the schema than books. It was also discovered
that the frequency of appearance of each problem lower. In addition the main
problems encountered by the subjects using the schema are the result of there
being attributes that are not instantiated in the schema, as weH as there being too
much information (a problem that was predicted by an expert and which could be
solved by building a tool). On the other hand, the problems conceming the
selection with books are weH known: poor organization of the available
information, as weH as missing information of interest and the existence of
information that is unnecessary for selection purposes.

From the absolute comparison, it was found that the frequency with which the
meaning of attributes is consulted is low. It was also found that the most often
consulted attributes appear to be the attributes that represent concepts that are not
intuitive or are difficult for the subjects to interpret. Finally, it can be said that
characterization schema usability is acceptable, although there is room for
improvement. It is acceptable insofar as the frequencies of appearance of problems
are lower than for books, and the frequency with which the meaning of the
attributes is consulted is also low. However, schema usability could be improved,
for example, by building a tool to make the information easier to handle. It could
also be improved by assuring that, every time a technique is added, the entry
contains as much information as possible.

From all this, it can be concluded that the use of characterization schemas
improves selection and also that the proposed process helps in the construction of
characterization schemas, since it defines a systematic way of identitying relevant
information.

10.6 Conclusions

Throughout this chapter, we presented a process for developing characterization
schemas. As discussed in Sect. 10.2, the generation of characteriza.tion schemas is
one of the most important activities for creating an experience base. We also
found that no process has yet been deflned for their development.

The proposed process was applied to a particular artifact type: software testing
techniques. The existence of a large group of testing techniques, the lack of
pragmatic information about these techniques and the lack of a theoretical
foundation makes them a paradigmatic example of the difficulties involved in
building experience bases. Thanks to the practical application of the proposed
process, we demonstrate first, the adequacy of the characterization schema output

www.manaraa.com

228 Vegas, Juristo and Basili

by following the process and, second, the soundness of the process. We operated a
mini-repository containing thirteen testing techniques to test the adequacy of the
resulting schema. By setting up and using the repository, we were able to detect
some ofthe possible schema defects (in this case, none).

Additionally, we ran an experiment to check the soundness of the proposed
process, which compared the use of the mini repository developed from the
schema with the use oftesting books. From this experiment, we were ahle to find
that the schema generated with the process proposed here contains more complete
information than testing books, is easier to use, is more efficient and leads to
better selections than books. Thanks to this experiment, we were also able to
confirm the generic hypothesis that artifact selection improves with the use of
characterization schemas.

Going back to the more generic problem of using characterization schemas in
software engineering, it is important to note that the areas that can benefit most
from these conceptual tools are the ones that have a wide variety of elements to be
characterized and knowledge to be stored.

While the first point represents an essential issue, the second one represents an
issue that can be somehow overcome by having researchers perform more
research into the issues that are relevant for the characterization schema (for
example, inspections where there is not much knowledge). At the moment there
would be no point in developing a characterization schema for selecting
development paradigms, since there are only two paradigms i.e. structured and
00. However, some knowledge must always be available about the element that is
to be characterized.

References

1. AlthoffK.D., Birk A., HartkopfS., Müller W., Nick M., Surmann D., Tautz C. (1999)
Systematic population, utilization and maintenance of a repository for comprehensive
reuse. In: Proceedings of the 11th international conference on software engineering
and knowledge engineering, Springer, Berlin Heidelberg New York, pp. 25-50

2. Basili V.R., Lindvall M. Costa P. (2001) Implementing the experience factory
concepts as a set of experience bases. In: Proceedings of the 13th international
conference on software engineering and knowledge engineering. Buenos Aires,
Argentina, pp. 13-15

3. Basili V.R., Rombach H.D. (1991) Support for comprehensive reuse. IEEE software
engineering journal, 6: 303-316

4. Basili V.R., Rombach H.D., Caldiera G. (1994) Tbe experience factory. Encyclopedia
ofSoftware Engineering, lohn Wiley and Sons, UK, pp. 469-476

5. Bass L., Clements P., Kazman R. Bass K. (1998) Software architecture in practice. SEI
series in software engineering. Addison-Wesley, Readings, MA, USA

6. Beizer B.. (1990) Software testing techniques. International Tbomson computer press,
London, UK

7. Birk A. (1997) Modeling the application domains of software engineering
technologies. In: Proceedings of the 12th international conference on automated
software engineering, Lake Tahoe, California, 291-292

www.manaraa.com

10 A Process for Identifying Relevant Information for a Repository 229

8. Fent.on N, Krause P. Neil M. (2002) S.oftware measurement: uncertainty and causal
m.odeling. IEEE S.oftware, 19: 116-122

9. Glaser B., Strauss A. (1967) The disC.overy .of gr.ounded the.ory: strategies f.or
qualitative research. Aldine publishing, Chicag.o, USA

10. Henninger S. (1996) Accelerating the successful reuse .of problem S.olving kn.owledge
through the d.omain lifecycle. In: Pr.oceedings .of the 4th internati.onal conference .on
software reuse, Orland.o, FI.orida, USA, pp. 124-133

11. K.omi-Sirvi.o S., Mäntyniemi A., Seppänen V. (2002) T.oward a practical s.oluti.on f.or
capturing kn.owledge f.or s.oftware pr.ojects. IEEE S.oftware, 19: 60-62

12. Maiden N., Rugg G. (1996) ACRE: Selecting meth.ods f.or requirements acquisiti.on.
Software engineering j.ournal, 11: 183-192

13. Pfleeger S. L. (1999) Software engineering: theory and practice. Mc-Graw Hili, New
Jersey, NY, USA

14. Prieto-Diaz R. (1989) Classificati.on .of reusable m.odules. In: BiggerstafI T., Perlis A.
(Eds.), S.oftware reusability, ACM Press, New Y.ork, NY, USA, pp. 99-124

15. Rus 1., Lindvall M. (2002) Kn.owledge management in software engineering. IEEE
S.oftware, 19: 26-38

16. SommervilIe 1. (1998) Software engineering. Pears.on Educati.on, Harl.ow, UK
17. Vegas S. (2002) A Characterizati.on schema f.or selecting software testing techniques.

PhD thesis, Facultad de Inf.ormätica, Universidad P.olitecnica de Madrid, Spain
18. von Wangenheim C.G. (1999) REMEX- A case-based approach f.or reusing software

measurement experienceware. In: Alth.off, K.-D., Bergmann R., Branting L.K. (Eds.),
Case-based reas.oning research and devel.opment, Springer, Berlin Heidelberg L.ond.on,
pp. 173-187

19. v.on Wangenheim C.G., Althoff K.-D., Barcia R.M. (2000): Goal-.oriented and
similarity-based retrieval .of software engineering experienceware. In Ruhe, G.,
B.omarius, F., (Eds.), Learning s.oftware .organizations: meth.od.oI.ogy and applications,
Springer, Berlin Heidelberg New Y.ork, pp. 118-141

Author Biography

Dr. Sira Vegas is assistant professor of computer science at the Universidad
Politecnica de Madrid in Spain. She bad a summer student grant at the European
Center for Nuclear Research (Geneva) in 1995. In 1997, she worked at GMV
(Madrid) in the ENVISAT project for the European Space Agency. She has been a
regular visiting scholar at the University of Maryland from 1998 to 2000. Dr.
Vegas has a Ph.D. in computer science from the Universidad Politecnica de
Madrid. She is a member ofthe IEEE Computer Society and ACM.

Dr. Natalia Juristo is professor in computer science at the Universidad Politecnica
de Madrid in Spain. She is the Head of the Politecnica Master of Software
Engineering degree program. Dr. Juristo has worked at the European Center for
Nuclear Research (Geneva), and at the European Space Agency (Rome). In 1992
she was Resident Affiliate at the Software Engineering Institute (Pittsburgh) on a
NATO Fellowship. Dr. Juristo has a Ph.D. in computer science from the
Universidad Politecnica de Madrid. She has served as Member of the editorial

www.manaraa.com

230 Vegas, Juristo and Basili

board ofthe IEEE Software Magazine from 1997 to 2001. She is a senior member
oflEEE Computer Society and member of ACM, AAAS and NY AS.

Dr. Victor Basili is professor of computer science at the University of Maryland,
College Park, the executive director ofthe Fraunhofer Center Maryland and one of
the founders and principals in the Software Engineering Laboratory (SEL) at
NASAlGSFC" He works on measuring, evaluating and improving the software
development process and product. Dr. Basili is the recipient of the 2000
Outstanding Research Award from ACM SIGSOFT, has authored over 160
journal and refereed conference papers, and has served as editor-in-chief of the
IEEE Transactions 0/ Software Engineering. He is co-editor-in-chief of the
International Journal 0/ Empirical Software Engineering, and is an IEEE and
ACMFellow.

www.manaraa.com

11 A Knowledge Management Framework to Support
Software Inspection Planning

SteJan BifJl and Michael Halling

Abstract: Software inspection requires eustomization to eaeh development
context and guidelines for planning for optimal results. In this work we present a
role-oriented knowledge management framework for key deeisions in software
inspection planning and foeus on how to use available knowledge from literature,
which may vary considerably in different contexts, with local empiricaI data. We
identify three deeision levels, which differ by knowledge requirements and the
level of uncertainty for decision inputs: the quality management level, the project
planning level, and the inspection level. On each inspection planning level we
provide scenarios with key decisions that outline the decision-making process and
show how available inspeetion knowledge based on measurement in a particular
context can be used for decision support. The eonceptual framework is a first step
to make inspeetion planning more explieit and proeedural in order to be able to
further improve this process.

Keywords: Quality management, Projeet management, Software inspection,
Decision support, Knowledge management framework, Empirical software
engineering.

11.1 Introduction

Software inspeetion is a full-life-eyc1e and eeonomic quality assuranee (QA)
approach to deteet defeets [1]. For best results inspection requires customization to
each development eontext, beeause for eaeh development context there is a large
variety of goals, proeess variants, and context factors to consider [14]. Inspection
in general is cost intensive and often shows big performance variations in different
contexts [43]. In the past 25 years a eonsiderable amount of inspection data has
been colleeted in many contexts, but little universally applicable inspeetion
knowledge was created. Especially regarding knowledge in support of inspeetion
planning, very Httle progress has been doeumented so far. However, appropriate
knowledge management (KM) that generates inspeetion knowledge promises to
further enhance software inspeetion performance in many contexts.

Knowledge management is the systematic sharing of documented knowledge
[33]. This knowledge can consist of quite heterogeneous items, for example,
simple performance measures collected in the past; process models with varying
levels of detail and complexity, or unstructured experience from past applieations
of a technology [12]. Key components ofknowledge are data and information [33]

www.manaraa.com

232 Biffl and Halling

available to organizations data inc1udes measures collected during events, and
information represents data organized to make it useful for end users.

The term knowledge has multiple defInitions (see Kakabadse et al. [22] for a
summary of the most popular ones). We refer to knowledge as information that
has been organized and analyzed to make it understandable and applicable to
problem solving or decision making. A further distinction of knowledge inc1udes
factual and procedural knowledge. According to Kahneman et al. [23], factual
knowledge implies having long-term memory and an extensive database, while
procedural knowledge is represented as a repertoire of mental procedures or
heuristics used to select, order, and manipulate information in the database and is
used for purposes of decision making and action planning.

In Sect. 11.2 we provide abrief overview of existing factual knowledge in
software inspection. We refer to software inspection knowledge as, for example,
knowledge [33] in the following areas: software inspection process variants,
defect detection techniques, and role definitions (e.g., expertise and training as
inspector, moderator, or inspection manager). The most important and challenging
aspect of inspection KM is to link context parameters like characteristics of the
inspection object, expected or targeted c1asses of defects, available inspectors, and
time budget available to inspection process design parameters.

In Sect. 11.3 we outline an inspection framework to help move factua1
knowledge to create procedural knowledge. This framework incorporates
traditional inspection activities, but also provides an insight into managerial and
knowledge-oriented dimensions of the inspection process as a first step to applied
knowledge m~Ulagement in software inspection. We identify decisions on three
levels according to the different users/customers of the inspection process and
present examples for key decisions on these levels:

1. The quality management level concerns the selection of the set of quality
assurance techniques applied during software development, which may inc1ude
some form of review or inspection.

2. On the inspection level, the detailed inspection planning, conduct, and analysis
influences the determination of the team composition, i.e., team size and defect
detection tet.:hniques, for the execution of specific inspections.

3. On the inspector level, the inspector follows the inspection process description
and has to rlecide for when to stop and whether an issue is really a defect.

Furthermore, these levels of inspection planning differ by decision-making role
(quality manager, inspection manager, and inspector), context (environment
factors influencing the decisions), uncertainty, and knowledge requirements for
these decisions. Thus they need separate treatments in a KM framework/system.

In Sect. 11.4 we summarlze important decisions and knowledge items in the
inspection process, discuss the knowledge generation potential of inspection, and
derive requirements for a knowledge management system. Sect. 11.5 summarizes
and concludes the chapter.

www.manaraa.com

11 A Know1edge Management Framework to Support Software 233

11.2 Knowledge in Software Inspection

In the past 25 years a considerable number of empirical studies have been
published (for surveys refer to [8, 19, 24, 31]). Overall, inspection research shows
potential for improvement regarding general validity, as available studies usually
focus on individual problems. In this section we provide a brief review of the
existing inspection information and discuss the current level of knowledge in key
inspection areas.

11.2.1 The Software Inspection Process

The core inspection process was developed by Fagan [16] nearly 30 years ago and
consists of defect detection defect collection and defect correction. However, we
focus particularly on defect detection in the remainder of this paper, as it is the
most important and challenging inspection activity. Gilb and Graham [17] offer a
practical introduction into the software inspection field while Laitenberger and
DeBaud [24] provide a detailed overview of inspection-related research over the
past decade. Different alternative inspection process designs have been proposed,
like N-fold inspection, active design reviews, and phased inspection (for more
details refer to [24]). However, very little empirical evidence is available on the
performance of these inspection techniques in comparison to the traditional
inspection approach.

As far as the traditional inspection process is concerned, empirical studies
clearly document that defects are detected on average with satisfying effectiveness
and efficiency [24]. However, inspection performance shows large variations in
individual defect detection effectiveness [4, 18, 25, 30]. The origin of this
variation is not fully understood so far the possible explanations include
inspection process parameters, the inspection environment, or the inspectors
involved. In our opinion a major potential for improving software inspection lies
in reducing performance variability and making the process more predictable.

Therefore, inspection planning is a particularly important preliminary step of
inspection as it customizes the inspection process to the development context. In
Sect. 11.3 we mainly focus on inspection planning. A structured approach towards
inspection planning is important as it lowers the risk to select incompatible
inspection ingredients, such as products incompatible with the chosen inspection
technique or defect detection techniques with inspectors who lack the expertise for
these techniques. An experience factory [33] can support the analysis, packaging,
and communication of inspection knowledge on several levels: use of inspection
as a black-box quality assurance process, tailoring of inspection process steps and
roles, and detailed techniques for inspection conduct.

www.manaraa.com

234 Biffl and Halling

11.2.2 Team Defect Detection

A very fundamental general question is whether defect detection is a group
activity (i.e., defect detection during a meeting) or an individual activity. While
early inspection designs emphasized the importance of inspection meetings [16],
later research encouraged individual defect detection and instead used meetings
for defect collection [3, 21]. Consequently, different empirical results exist which
in some case emphasize the benefits and in other cases the costs of inspection
meetings.

For a detailed overview ofthe information on the difference between individual
and group defect detection, see [3,21]. Related behavioral studies have found no
evidence of synergy as a source of group advantage [45]. In general, a widely
accepted opinion proposes that synergy only justifies meeting costs in few,
specific situations and that other aspects like, for example, the removal of false
positives encourages group activity. However, no consolidated inspection
knowledge on group defect detection is available so far.

11.2.3 Individual Defect Detection

As far as individual defect detection is concemed, reading is the key activity in
individual defect detection to understand a given software artifact and to compare
it to a set of expectations regarding structure, content, and desired qualities. The
recognition of differences between expectations and the artifact helps readers to
spot defects. Reading of software artifacts has been identified as a process for
scientific study lately, resulting in quite a comprehensive set of related theories
[2,35].

Inspectors often have to leam how to read and analyze documents for particular
purposes. Most inspection related research in the past has focused on the
development of reading techniques (RTs), which ass ist the reader in extracting,
gathering, and understanding the information necessary to assess certain quality
requirements [2]. In an ad hoc inspection no RT is applied, and therefore
inspection performance depends completely on the capability of the inspector and
not on a repeatable process. Examples of more systematic reading techniques
include checklist-based reading [13, 17], scenario-based reading [2, 15, 31, 35,
36], usage-based reading [37, 38], and traceability-based reading [39].

There are many studies that provide empirical data on individual defect
detection: A very good survey on the available data is presented in [31]. They
come to the conc1usion that it is not c1ear whether more sophisticated reading
techniques like scenario-based reading really outperfonn the simpler defect
detection approaches.

www.manaraa.com

11 A Knowledge Management Framework to Support Software 235

11.2.4 Inspection Team Size and Inspector Characteristics

Other important inspection process parameters related to defect detection are team
size and inspector expertise. However, these areas are even 1ess evaluated and
documented than the area of reading techniques. Sauer et al. [34] propose that the
effectiveness of both individual preparation and the team meeting depend on the
level of inspector task expertise for defect detection and defect discrimination, Le.,
the ability of an inspector to discem a defect, to distinguish among defect types,
and to detect certain defect types. Inspector task expertise may vary with several
parameters of the inspection object (e.g., type and notation) and detection aids
used (none, checklist, or specific procedures). Arecent study on inspector
selection shows little influence of inspector experience and software development
skills on inspection performance [10].

As far as the influence of team size on defect detection performance is
concemed, some preliminary inspection data indicate that increasing team size has
decreasing marginal benefits, and that comparatively large team sizes up to ten
inspectors may make sense in some situations [5, 11]. Petersson [27] determines
the contribution of individual inspectors to the performance of teams with
different sizes and finds that, on average, the individual reviewer contribution to
the inspection team effectiveness is 1imited and decreases with team size. In
general, the limited number of studies and inspection environments considerably
limits the general applicability of available inspection know1edge in this area.

11.3 A Conceptual Knowledge Management Framework for
Software Inspection Planning

This section introduces a decision- and knowledge-oriented framework of the
inspection process. In the previous section we saw that some inspection
knowledge is c1ear but some is very ambiguous. Therefore it is important to
emphasize research in the area of procedural knowledge to support planning and
decision-making. The presented framework (see Fig. 11.1) is a frrst step in this
direction and extends existing inspection research by adding two manageriallevels
to the traditional technical inspection process. The framework is hierarchical to
distinguish different types of knowledge and levels of uncertainty. It is also role
oriented to support a clear definition of responsibilities and competencies and is
decision-oriented to help take the most important decisions in the process.

Figure 11.1 consists of three levels (large surrounding boxes): quality
management in a software development project as context for a possible
inspection; inspection management, if an inspection is actually conducted; and the
technical inspection process. The small boxes represent activities on the different
levels. Arrows between the boxes indicate a flow of information. The left column
of process boxes (especially on the top two levels) deals with KM for inspection
planning, while the right column describes processes, which extract information
out of past inspections and therefore generate know1edge from inspection analysis.

www.manaraa.com

236 Biffl an<! Halling

~~~~ Update guidelines Re-plan further 

Context 
for QA planning QA activities 

"ect 
proj I Goals for Inspection result t 

l forQA I 
Plan Update Quidelines 

Analyze 
Inspection 

Context Inspection for inspection planning 
Result 

nspection 
!Inspection Inspection t 

., plan data I 

I~Defeds ~ Collect Defects f-+ Correct 
Defects Defs Defs I """~ _M _""""'-

Level 2: Decisions on inspection process - white box view 

Level 1 : Decisions on QA in the project/organization 

Fig. 11.1. Process steps and associated decisions 

U pdated 
QApla n 

Qesti male 
uct for prod 

'-

I 
~ 

mproved 
P roduct 
I 

In the following subseetions we foeus on the inspeetion planning side and 
provide a detailed level-oriented deseription of the framework, ineluding a 
seleetion of key planning decisions (see Table 11.1 for an overview). For eaeh 
decision we diseuss the level of knowledge, both theoretieal and empirieal, 
available. Howl~ver, we do not provide general strategies for decision making. We 
view this work as a first step towards gathering procedural knowledge for 
inspeetion planning. A further step in the future is to extend the existing level with 
explieit deeision support teehniques, like eeonomie valuation approaehes [40] and 
multi-eriteria decision aid [41]. 

11.3.1 Level 1 : Quality Manager 

At the quality manager level, inspeetion is one of several approaehes to defeet 
reduetion. The ehallenge for quality managers is to appropriately determine the 
mix and timing of different QA teehniques while facing a high degree of 
uneertainty eombined with limited data. Usually deeisions on this level require a 
less detailed but more extensive set of knowledge (e.g., a quality manager needs to 
have some but not detailed knowledge on a large variety of QA teehniques) 
eompared to lower levels in the framework. The eombination of these 
eharaeteristies makes decisions on this level espeeially diffieult: Little knowledge 
is available on the interpretation of data items, and little theoretieal support exists. 
Therefore an organization could, in our opinion, profit most from a comprehensive 
KM system on this level. 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 237 

Table 11.1. Overview on roles, decisions, and decision input information 

Scope 
Quality 
manager 

Decision 
1.1 To what extent and at what time 
should inspections be used for 
defect reduction? [9,29] 

1.2 Is it worthwhile to conduct a 
reinspection? [4, 6] 

Inspection 2.1 Which defect detection 
manager techniques are to be applied? 

[2][15] 

2.2 What is the optimal team 
structure, i.e., team size and 
assignment of defect detection 
techniques? [5] 
2.3 Who are the most suitable 
inspectors to perform this type of 
inspection? [10][34] 

Inspector 3.1 Is a defect a true defect? [2] 
3.2 When to stop inspection? 

Decision input information 
Project context 
defect density and defect impact 
defect reduction potential 
Same knowledge items as before 
plus inspection performance data 
from first inspection, product 
quality estimates after first 
inspection. 
Inspection context 
Effectiveness of different 
individual reading techniques; 
effectiveness of individual and 
group defect detection 
Detailed inspection context 
Defect detection redundancy 
defect overlap. 

Detailed inspection context 
Inspector qualification, theory on 
important inspector characteristics 
for selection. 
Inspection material. 
Inspection material, opportunity 
costs 

Decision 1.1: To what extent and at what point should inspections be used for 
defect reduction in a certain project (in competition to development and other QA 
approaches)? Inspections should be used in a project whenever it is likely to be the 
most effective or efficient way to find important defect classes. We map this 
decision to an allocation problem of limited resources (staff hours) to QA 
activities rather than on aselection problem of exclusive QA activities. With 
regard to the defect reduction, there are several alternatives to inspection that 
should be assessed and compared to each other, for example: 

• Rework defects later can be reasonable if the impact on development effort, 
duration, and product quality is bearable in the context, e.g., in a prototyping 
activity or the extreme programming process [26]. 

• Rigid/uniform development processes in organization; defect-focused 
development process, e.g., pair programming or iterative development, which 
result in products of sufficient quality [26]. 

• Testing on severallevels of intensity. 
One specific technique to take this decision whether to use inspection as defect 
reduction approach or not is to apply an economic model considering both the 
costs and benefits of inspection. Detailed information on inspection benefits and 
costs can be found in [9]. The main advantage of an economic model is that it 



www.manaraa.com

238 Biffl and Halling 

allows estimation of a functional relationship between all decision variables. 
Using appropriate information on the benefits and costs of other quality assurance 
techniques, an economic model can be used to determine a close-to-optimal mix 
and timing of activities. Important knowledge items for this decision are (a) the 
likely impact of defects in the project context, (b) an estimate of the likely defect 
density and severity in key products, and (c) the likely effectiveness and cost of 
defect reduction candidates. 
Project context: Usually the quality manager knows the project context, e.g., time 
and cost schedule, and quality requirements. However, only little public 
knowledge is available on the influence of project context parameters on software 
inspection (see [14] for an analysis of a limited variety of scenarios) or on optimal 
QA planning in order to satisfy project guidelines. This requires historie company 
data to create a company-specific database and a KM framework to support the 
quality manager in using these data items. 
Defect density and defect impact: These items are very dependent on the project 
context, e.g., time pressure and staff quality. Some theories exist on defect 
introduction and defect spreading. Combining these theories with historie 
company data can provide reasonable estimates. 
Defect reduction potential: The only public empirical information available at this 
level deals with the defect reduction potential and associated costs of quality 
assurance approaches. Detailed overviews ofinspection are presented in [3, 4, 24]. 
Although this information has, of course, some uncertainty, it enables quality 
managers to roughly assess the defect reduction potential to be expected. As far as 
comparing effort of inspection and other defect reduction techniques is concemed, 
Laitenberger and DeBaud [24] summarize that most of the available literature 
presents solid data supporting the claim that the costs for detecting and removing 
defects during inspections is much lower than detecting and removing the same 
defects in later phases. 

Decision 1.2: Is it worthwhile to conduct a reinspection (several inspection 
cycles)? If an inspected product is suspected to still contain a substantial number 
of defects, a second inspection cycle, called reinspection, can be conducted to find 
more defects [6]. The decision whether or not to conduct such a reinspection is 
similar to the decision whether to conduct an inspection, with the valuable 
additional information on the product and defects from the recent inspection. 
Benefits of a reinspection are fewer defects in the product and improved accuracy 
of measuring the number of defects remaining in the product [4, 6, 7]. Note that 
data from the first inspection cycle resolves a considerable amount ofuncertainty, 
e.g., better estimates for the remaining defect density and the defect reduction 
potential of inspection given the specific context. So far, there are very few reports 
on empirical data on reinspections [4, 6, 8]. These reports, however, document 
that a reinspection can be a reasonable option after an inspection. 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 239 

11.3.2 Level 2: Inspection Manager 

Under the assumption that the quality manager decides to use inspection at some 
point in the project, the inspection manager is responsible for planning and 
conducting an inspection for a given context in order to reach the quality goals. 
Therefore inspection managers operate in a less uncertain world as they receive 
certain guidelines from quality managers as inputs to the planning process. While 
the quality manager only requires aggregated knowledge of the inspection process, 
the inspection manager has to determine the specific inspection design to be 
executed within a given inspection context. 

This planning involves a sequence of decisions regarding different inspection 
process parameters, like the individual defect detection techniques or the 
inspection team. In practiee, the sequence of steps may vary and follow several 
iterations until a stable concept has been found. Before we discuss aselection of 
the most important decisions on this level (for a detailed survey see [19]), we want 
to emphasize that our analysis is based on the traditional inspection process 
defined by [16] and that we do not deal with different inspection process designs 
and their implications on the following decisions. For an overview on inspection 
process variants see [24]. 

Inspection context: While a key knowledge item on the quality management level 
has been project context, we identify the inspection context partly given by the 
quality manager, partly determined by the project context as an important 
knowledge item on this level. Basically, the inspection context including 
inspection goals, schedules, and resourees is given. However, the interrelationship 
between inspection context and inspection design is uncertain. 

Decision 2.1: Which defect detection techniques are to be applied? The most 
important inspection goal is usually to detect defects in the inspection object. 
Therefore, a main inspection planning decision is to determine the defect detection 
techniques optimally used during inspection. 

Individual versus team defect detection effectiveness: As far as defect detection in 
inspection meetings is concemed, so far no systematic or theoretically motivated 
support exists. Existing knowledge on group defect detection is very 
heterogeneous and therefore provides little support. However, reeent work [3,21] 
concludes that synergy effects hardly take place. However, meetings can still be 
useful to remove false positives, provide training for novice team members, and to 
discuss unc1ear issues on the work product or the inspection process. Votta [42] 
presents different types of meetings for these purposes. 

Because of the lack of explicit group defect detection theories, group defect 
detection performance depends to a large degree on inspector ability and tacit 
knowledge, i.e., on group interaction knowledge, which is personal to inspectors, 
not easily visible or easy to formulate [28]. If the project and inspection contexts 
justify inspection meetings, a KM framework should focus on collecting data from 
the meeting process and on making this tacit knowledge more explicit. 

Reading Techniques Effectiveness: A large variety of inspection data exists on 
individual defect detection (Sect. 11.2). However Httle generally applicable 



www.manaraa.com

240 Biffl and Halling 

knowledge has been created from this data. Therefore the selection of defect 
detection techniques is a difficult and uncertain activity. From a theoretical point 
of view, a set of concepts exists that are potentially helpful for this decision. For 
example, reading techniques can be c1assified according to the following 
characteristics [24]: the usability regarding the guidance of the reader, the 
adaptability to a range of different document notations and typical sets of defects, 
the person-independent repeatability of results, the coverage of important quality 
aspects, and the focus it assigns to the inspectors in a team on different aspects of 
the document and target defects. These characteristics strongly influence the 
feasibility of reading techniques in different project situations and enable the 
inspection manager to better identity the best set of reading techniques for a given 
inspection context. Unfortunately, ambiguous empirical evidence with little 
general applicability exists on the performance of different reading techniques. 
Nevertheless, structured reading techniques like scenario-based reading reduce the 
amount of tacit inspector knowledge required for inspection. If ad hoc and 
checklist-based reading are applied, little information is gained on how inspectors 
identity defects. Structured reading techniques combined with knowledge 
generation techniques like feedback questionnaires and interviews enable 
organizations to transform tacit defect detection knowledge into explicit defect 
detection techniques. 

Decision 2.2: What is the optimal team structure, i.e., team size and assignment 
of defect detection techniques? The team structure describes the combination of 
defect detection techniques and the number of inspectors applying a specific 
defect detection technique. An important aspect of this planning step is to estimate 
the trade-offbetween defect detection:redundancy and defect overlap. 

Defect detection redundancy: The term defect detection redundancy is USed to 
indicate that several inspectors apply the same defect detection technique, which 
usually increases the defect overlap. Defect detection redundancy increases costs 
because inspectors are added but decreases the risk of undetected defects. 
Therefore some redundancy might be reasonable and advantageous. 

Defect overlap: The term defect overlap denotes the number of defects that are 
detected by more than one inspector. Usually the inspection manager aims at 
reducing both defect detection redundancy and defect overlap. 

Most empirical reports contain data on inspections with team sizes of two to 
six [24] and yield contradicting results conceming the influence ofteam structure 
on their results. See [5] and [li] for a first step to a more systematic analysis of 
team structure based on synthetic nominal teams, where we confirm the theoretical 
expectations that defect overlap increases and the marginal number of newly 
detected defects decreases with an increase in team size. However, in some 
situations detecting another individual but important defect might justity the 
increased effort. Therefore the inspection manager' s target is to determine the 
optimal team size to increase the variety of expertise available while avoiding 
process loss from too large groups [34]. 

Decision 2.3: Which inspectors are most suitable to perform this type of 
inspection? As reported in Sect. 11.2, empirically documented inspection 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 241 

performance shows large variation, which can only partly be explained through 
process variation: the remaining part seems to stern from individual inspector 
variation [34]. In general, Sauer et al. [34] report that the implications of 
behavioral theory for software inspection are that interventions, which 
significantly increase the available defect detection expertise, should have the 
largest impact on performance. If processes are poor, expertise may be lost. But, 
when expertise is poor, an excellent process does not increase the available 
expertise and, hence, does not improve performance. Therefore selecting the right 
inspector for a particular inspectionjob is very important. 

Inspector qualification: Key criteria for inspector selection are certainly the 
knowledge of the inspectors with respect to the inspected artifact and with respect 
to the inspection process and defect detection techniques used. However, these 
knowledge items are often only implicitly given since it is difficult to objectively 
measure qualification. A KM system should provide a variety of inspector-related 
information, including performance measures on past inspections, in order to 
enable inspection managers to select those inspectors who fit the selected 
inspection design best. 

In general, the issue of identifying a good inspector is a topic of current 
research. Although different papers argue that inspector qualification is an 
important aspect, only little systematic empirical evidence on this issue is 
available [10]. In practice, the best approach seems to use data from past 
inspections in the target context to evaluate the qualification of potential 
inspectors, as the general influence of development skills and experience on 
inspection performance is unclear. 

11.3.3 Level 3: Inspector 

While the previous two levels describe real management activities, the third level 
is an executing level, where the inspection is, in fact, conducted. Inspectors' 
decisions neither face a large amount of uncertainty (dependent on the inspection 
design) nor require detailed expert knowledge of the inspection process. 
Furthermore, inspectors receive detailed information compared to quality and 
inspection managers in the form of inspection material from inspection managers. 

Nevertheless, inspectors' decisions are of crucial importance for software 
inspection performance and have so far received very little attention. Most of the 
knowledge required to make the decisions on the inspector level is tacit 
knowledge, Le., remains to the inspector's judgment. However, using a KM 
framework and appropriate inspection designs can make parts of this tacit 
knowledge explicit by collecting inspection measures and providing explicit 
guidelines to inspectors. 

Decision 3.1. Is an issue really a defect? The inspectors follow the procedures 
to detect and collect defects and have to decide quickly for each issue that they 
observe whether this issue is a noteworthy defect. This is actua11y the most 
frequent key decision in the process, as lost defects lower the effectiveness of the 
process, while many false positives create nonproductive extra work. Although 



www.manaraa.com

242 Biffl and Halling 

detailed inspection material should usually be available, including a defect 
classification and characterization, this decision is not trivial and still involves 
uncertainty . 

Structured defect detection techniques aim at providing explicit decision 
support to inspectors. Empirical studies show some success using aggregated 
measures conceming inspection performance. However, so far, research has 
devoted little effort to explicitly model and document the decision processes of 
inspectors. Especially in this context, knowledge provided usually through 
inspection material but potentially also through a KM framework is of key 
interest. 

Decision 3.2. When to stop the inspection step? Adecision of the inspection 
manager, which has not been discussed in detail in the preceding section, is to 
determine and plan inspection duration by setting a deadline. However, in the end 
it is the inspectors who decide upon their real inspection effort. From an objective 
point of view, when to stop depends on the coverage of the document, the 
durationlnumber of sessions, and process conformance for specific RTs. From a 
subjective point ofview, it depends on the inspector's personal opportunity costs. 

Opportunity co ... ts: these costs measure the inspectors' benefits ifthey invests their 
time into inspection compared to the benefits they can create if not inspecting. If 
opportunity costs of inspection are high, inspectors may try to finish inspection as 
fast as possible, jeopardizing the success of the inspection. However, these 
opportunity costs are to a large extent implicit. Therefore a comprehensive KM 
system should try to make these opportunity costs explicit as a key knowledge 
item for inspection planning. 

Similar to the fIrst inspector decision there is very little information on the time 
issue of inspections, as most inspection experiments make sure that all inspectors 
can and do finish their tasks in the allotted time frame. Furthermore, experiments 
are unable to capture the influence ofpersonal opportunity costs. For this purpose, 
real-life company data is needed. 

11.4 Discussion 

KM supports software development and inspection by helping the people involved 
- quality managers, inspection managers, and inspectors - to leam effectively 
and efficiently from the existing knowledge in the community and their 
organization. The scope and usefulness of the KM approach with software 
inspection depends on the possibility to make the existing published knowledge 
available to prospective users and to help in eliciting further knowledge, which in 
turn depends on a functioning measurement program and the ability to create 
context descriptions to structure the available knowledge. In this section we 
summarize important decisions and knowledge items in the inspection process, 
discuss the knowledge generation potential of inspection, and derive requirements 
for a KM system. 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 243 

11.4.1 Inspection Knowledge in Theory and Practice 

Decisions on each level require very different types of knowledge. Quality 
managers face a strategic decision problem with a large amount of uncertainty in 
planning general QA activities. Therefore they need broad overview knowledge 
but only Iittle understanding of details. Furthermore, they require decision models, 
which allow for comparison of different quality assurance techniques and are 
capable of dealing with uncertainty. So far, very Iittle theoretical and empirical 
knowledge is available on this topic. An initial step is described in [29]. 

In contrast to this decision, the reinspection decision is a tactical decision, as it 
responds to detailed feedback on the first inspection cycle and the resulting 
product quality, which must be provided by the inspection manager. However, as 
a reinspection represents an alternative to passing the document on or redoing the 
document, there is also a large strategic part in this decision. 

As far as inspection manager decisions are concemed, they require a very 
detailed understanding of the inspection process and the impact of context 
variables and design parameters on the likely performance. As pointed out in 
Sect. 11.3 there is a large amount of both theoretical and empirical knowledge 
available for the selection of defect detection techniques and comparatively Iittle 
on the determination of team structure and inspector selection. In general, the 
main challenge associated with available empirical data is to transfer it to specifIc 
project situations, which might differ considerably from the context of the 
empirical study. Therefore current research activities like CeBase 
(www.cebase.org) and Visek (www.visek.de) aim at characterizing the usefulness 
of defect reduction approaches in different project contexts based on empirical 
data. Their goal is to combine results from individual empirical studies and to 
derive generally applicable knowledge. Wohlin et al. in [44] present a benchmark
oriented approach that combines various empirical data sources in order to derive 
comparatively general results on inspection effectiveness for different inspection 
objects and group sizes. 

However, even these approaches cannot fully substitute for a data collection 
framework within an organization. Data collection is a necessary requirement for a 
KM system. Some tool support is currently discussed in order to support the 
inspection process and the data gathering [18, 20]. Finally, inspectors have to 
make decisions on a very frequent basis, whenever they identify potential issues 
and have to decide whether to report them or not. However, appropriate inspection 
material should support inspectors in making these decisions. So far, Iittle 
theoretical and empiricaI material is available on the behavior of inspectors. 

11.4.2 Knowledge Generation from Inspection 

For knowledge generation from inspection data, there are three main additional 
activities: process elicitation and improvement, defect content estimation, and 
defect matching. Note that data from a good inspection can be very useful, while a 
sloppy inspection yields very often unreliable data, which should be viewed with 



www.manaraa.com

244 Biffl and Halling 

proper caution. As pointed out in Sect. 11.3, appropriate inspection analysis not 
only creates new knowiedge, but it also enables corporations to make implicit 
knowledge explicit (e.g., by improving reading techniques to inspector 
characteristics ). 

Process elicitation and improvement gathers data on the actually conducted 
inspection process and on suggestions to increase inspection performance. The 
development team and quality engineers can appIy "defect cause analysis" to find 
out which development activity introduced defects to the product. Consequently, 
weak development processes can be improved, and project management can adjust 
their assumptions on likely results of these development processes for project 
planning. If feedback suggests faulty development or inspection processes, then 
they can report to QM for further monitoring and possibIy improving these 
processes. Long-term benefits can be improved development and QA processes 
based on information on weak points. 

Defect content estimation determines the likely number of defects in the 
inspected product after inspection to help evaluate the quality of the product and 
the inspection process. There are objective defect content estimation techniques, 
such as capture - recapture and the detection profile method [7, 8]. Another defect 
content estimation technique is based upon interviewing the inspectors and 
collecting subjective estimates for the defect content of the inspected document 
[8]. Reports on these measures show that they perform comparabIy to objective 
methods [8] in experimental environments. The main argument for subjective 
estimates is that inspectors have achieved expert knowiedge on the quality of the 
document during inspection and therefore they qualify for subjective estimation. 

Matching reported defects to true defects to eliminate false positives is either 
performed by the author individually or in a team meeting. Further, it can be 
useful to match the defects from several inspectors to find out how often a certain 
defect was found, which enables the analyzer to calculate defect overlap in a team 
and prepares the defect data for use with objective defect content estimation 
models. Matching the defects in a long list from several inspectors can be a major 
effort. Tool support can considerably accelerate the collation of defects, e.g., by 
sorting defects according to Iocation or keywords in the description. In addition, 
voting on the severity of each defect can help to uncover differences in the 
opinions of team members on the severity rating, which can be valuable input to a 
discussion on the views of defect importance in the project context. 

11.4.3 Requirements for a Knowledge Management System 

A KM system should support the following main functions: knowledge 
generation, capture, transfer, and sharing. While this sounds straightforward, the 
implementation of a useful system needs to fit the process domain, in our case 
software inspection. The framework presented in Sect. 11.3 supports feedback and 
learning as a part of software inspection on severallevels according to the views 
ofthe main roles involved. The use ofthe framework encourages context-specific 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 245 

measurement and analysis on the levels of a single inspection, along a project, and 
on company level. 

A KM system building on the framework and supporting the most important 
decisions should have the following functions: 

• Systematic context description. 
• Store, evaluate, and retrieve reports from theory and practice: e.g., guidelines 

and data. 
• Help to establish relationships between reported data and local data from 

ongoing inspections within the organization. 
• Provide feedback to quality manager, inspection manager and inspectors. An 

important aspect of a KM system is to document the impact of decisions on 
different levels on inspection and project success. This feedback enables 
participating roles to adjust their behavior and optimize the decision-making 
process. 

In addition to these functional requirements for a knowledge management 
system, we identify the following quality requirements: the knowledge must be 
provided in time (e.g., especially the feedback cycle must be quick enough to 
allow for correcting actions during inspection); the collected data must be accurate 
because wrong knowledge is potentially more dangerous than no knowledge; data 
must be sufficiently complete enough in order to support the decisions [32]. 

There are two key components for the successful usage of a KM system in 
practice: for a practitioner to find out whether a KM system is worth the extra 
effort to improve the current process; and whether it is possible to lower the 
threshold of effort for using such a KM system to make it easy to share and use 
the available knowledge. 

Current research activities in the academic inspection community focus on the 
following areas which are important from a knowledge-oriented perspective: 

• Databases for available empirical and theoretical data e.g., from CeBase 
(www.cebase.org), Visek (www. visek.de), ISERN (www.iese.fhg.deIISERN). 

• Tool support for inspection management and data collection, which must be 
further integrated with a more general knowledge management system. 

• Simulation and decision-making model to provide techniques to quality 
managers, inspection managers and inspector to make their decisions. 

11.5 Conclusion 

In this chapter we present a framework that adds two managerial levels to the 
technical inspection process and represents a first step to make inspection 
planning more explicit and procedural in order to be able to further improve the 
inspection process. The framework adds important insight since it is role oriented 
to support a c1ear definition of responsibilities and competencies, and decision 
oriented to help take the most important decisions in the process. Decisions on the 



www.manaraa.com

246 Biffl and Halling 

various levels differ by knowledge requirements and the level ofuncertainty. This 
systematic approach helps to identify data for taking planning decisions, enables 
process- and role-oriented reasoning, and proposes KM requirements to turn 
public and company-specific information into procedural knowledge. 

Using our KM framework for software inspection we identify the following 
implications for KM in the inspection context: 

• Inspection planning needs a variety of different know how for different roles, 
which should be systematically managed. 

• Available academic inspection knowledge can yield some important input to 
inspection planning in practice, as it outlines a variety of alternatives and offers 
empirical data in several application domains. 

• Inspection analysis, i.e., the systematic collection and evaluation of measures 
during software inspection; is a central component of knowledge management 
in inspection. 

• Combined with a process improvement approach, such as an experience 
factory, the framework can integrate knowledge aspects of all roles involved, 
which helps to transfer proven inspection know-how. 

To conclude this work, we would like to emphasize that significant progress has 
been made in the area of software inspection in the past years, but that existing 
inspection knowledge is often ambiguous and merits further research. 

References 

1. Aurum A., Petersson H. Wohlin C. (2002) State-of-the-art: software inspections after 
25 years. Software testing, verification and reliability, 12: 133-154 

2. Basili V.R., Green S., Laitenberger 0., Lanubile F., Shull F., Soerumgaard S., 
Zelkowitz M. (1996) The empirical investigation of perspective-based reading. 
Empirical software engineering: an international journal, 1: 133-164 

3. Bianchi A. Lanubile F., Visaggio, G. (2001) A controlled experiment to assess the 
effectiveness of inspection meetings. In: Proceedings of IEEE Metrics'OI, London, 
UK, pp. 42-50 

4. Biffi St., Halling M., Köhle, M. (2000) Investigating the effect of a second software 
inspection cycle. In: Proceedings of the IEEE Asia-Pacific conference on quaIity 
software, Hong Kong, pp. 155-164 

5. Biffi S., Gut jahr W. (2001) Influence ofteam size and defect detection methods on 
inspection effectiveness. In: Proceedings ofIEEE Metrics'OI, London, UK, pp. 63-75 

6. Biffi S., Freimut B., Laitenberger O. (2001) Investigating the cost-effectiveness of 
reinspections in software development. In: Proceeding of ACMlIEEE international 
conference on Software Engineering, Toronto, Canada, pp. 155-164 

7. Biffi St., Grossmann W. (2001) Evaluating the accuracy of objective estimation 
models based on inspection data from multiple inspection cycles. In: Proceedings of 
ACMlIEEE international conference on software engineering, Toronto, Canada, 
pp. 145-154 

8. Biffi S. (2001) Software inspection techniques to support project and quaIity 
management. Habilitation thesis, Shaker Verlag, Aachen, Germany 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 247 

9. Biffi S., Halling M. (2001) A value-based framework for the cost-benefit evaluation of 
software inspection processes. In: Proceedings of the workshop on inspection in 
software engineering, Paris, France http://www.cas.mcmaster.ca/wise/ (date accessed 
22nd April, 2003) 

10. Biffi S., Halling M. (2002) Investigating the influence of inspector capability factors 
with four inspection techniques on inspection performance. In: Proceedings of 8th 
IEEE Metrics'02, Toronto, Canada, pp. 115-121 

11. Biffi S., Halling M. (2003) Investigating the defect detection effectiveness and oost
benefit of nominal inspection teams. To appear in the IEEE transactions on software 
engineering 

12. Birk A., Dingsoyr T., Stalhane T. (2002) Postmortem: never leave a project without it. 
IEEE Software, 19: 43-45 

13. Chernak Y. (1996) A statistical approach to the inspection checklist formal synthesis 
and improvement. IEEE transactions on software engineering, 22: 866-874 

14. Ciolkowski M., Shull F., Biffi S. (2002) A concerted family of experiments to 
investigate the influence of context on the effect of inspection techniques. In: lEE 
Proceedings ofthe EASE conference, Keele University, UK 

15. Dunsmore A., Roper M., Wood M. (2002) Further investigations into the development 
and evaluation of reading techniques for object-oriented code inspection. In: 
Proceedings of the 24th international conference on software engineering, Orlando, 
Florida, pp. 47-57 

16. Fagan M.E. (1976) Design and code inspections to reduce errors in program 
development. IBM systems joumal, 15: 182-211 

17. Gilb T., Graham D. (1993) Software inspection. Addison-Wesley, Reading, MA, USA 
18. Halling M., Grünbacher P., Biffi S. (2001) Tailoring a COTS group support system for 

software requirements inspection. In: Proceedings of 16th IEEE international 
conference on automated software engineering, San Diego, California, pp. 201-208 

19. Halling M. (2002) Supporting management decisions in software inspection process. 
PhD thesis, Vienna University ofTechnology, Austria 

20. Halling M., Biffi S., Grünbacher P. (2002) A groupware-supported inspection process 
for active inspection management. In: IEEE Proceedings of281b Euromicro conference, 
track on software product and process improvement, Dortmund, Germany, pp. 251-258 

21. Halling M., Biffi S. (2002) Investigating the influence of software inspection process 
parameters on inspection meeting the performance. In: IEE Proceedings - Software 
engineering, 149: 115-122 

22. Kakabadse N.K., Kouzmin A., Kakabadse A. (2001) From tacit knowledge to 
knowledge management: Leveraging invisible assets. Knowledge and process 
management, 8: 137-154 

23. Kahneman D., Slovic P., Tversky A. (1984) Judgment under uncertainty: heuristics 
and biases. Cambridge university press, Cambridge, UK 

24. Laitenberger 0., DeBaud J.M. (2000) An encompassing life-cycle centric survey of 
software inspection. Journal of systems and software 50: 5-31 

25. Laitenberger 0., EI-Emam K; Harbich T.G. (2001) An intemally replicated quasi
experimental comparison of checklist and perspective-based reading of code 
documents. IEEE transactions on software engineering, 27: 387-421 

26. Marchesi M., Succi G., Wells D., Williams L. (eds.) (2002) Extreme programming 
perspectives. Addison-Wesley professional series, Boston, MA, USA 



www.manaraa.com

248 Biffl and Halling 

27. Petersson H. (2001) Individual reviewer contribution to the effectiveness of software 
inspection teams. In: Proceeding of IEEE Australian software engineering conference, 
Canberra, Australia, pp. 160-168 

28. Polanyi M. (1966) The tacit dimension. Routledge and Kegan Paul, London, UK 
29. Port D., Halling M., Kazman R., Bifll S. (2002) Strategic quality assurance planning. 

In: Proceedings of the 4th international workshop on economics driven software 
engineering research (EDSER-4) at the international conference on software 
engineering, Orlando, Florida, USA 

30. Porter, A.A., Johnson P.M. (1997) Assessing software review meetings: results of a 
comparative analysis of two experimental studies. IEEE transactions on software 
engineering, 23: 129-145 

31. Regnell B., Runeson P., Thelin T. (2000) Are the perspectives really different? Further 
eXperimentation on scenario-based reading of requirements. Empirical software 
engineering, 5: 331-356 

32. Reifer DA (2002) A little bit of knowledge is a dangerous thing. IEEE Software, 
19: 14-15 

33. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. IEEE 
Software, 19:26-38 

34. Sauer C., Jeffery R., Land L., Yetton P. (2000) The effectiveness of software 
development technical reviews: A behaviorally motivated program of research. IEEE 
transactions on software engineering, 26: 11-14 

35. Shull F.J. (1998) Developing techniques for using software documents: A series of 
empirical studies. PhD thesis, University ofMaryland, College Park, USA 

36. Shull F., Ioana R. Basili V.R. (2000) How perspective-based reading can improve 
requirements inspections. IEEE Computer, 33:73-79 

37. Thelin T., Runeson P. Regnell B. (2001) Usage-based reading - An experiment to 
guide reviewers with use cases. Infonnation and software technology, 43: 925-938. 

38. Thelin T., Runeson P. Wohlin C. (2002) An experimental comparison of usage-based 
and checklist-based reading. Submitted to IEEE transactions on software engineering 

39. Travassos G., Shull F., Fredericks M. Basili V. (1999) Detecting defects in object
oriented designs: using reading techniques to increase software quality. In: 
Proceedings conference on object-oriented programming systems, languages and 
applications, Denver, Colarado, USA, ACM Sigplan notices, 34: 47-56 

40. Trigeorgis L. (1996) Real options. MIT Press, Boston, MA, USA 
41. Vincke P. (1992) Multicriteria decision-aid. John Wiley and Sons, New York, NY 
42. Votta L. (1993) Does every Inspection need a meeting? ACM software engineering 

notes, 18: 107-114 
43. Weller E.F. (1993) Lessons from three years of inspection data. IEEE Software 

10: 38-45 
44. Wohlin C., Aurum A., Petersson H., Shull F., Ciolkowski M. (2002): Software 

inspection benchmarking - a qualitative and quantitative comparative opportunity. In: 
Proceedings of8th IEEE Metrlcs'02, Toronto, Canada, pp. 118-127 

45. Yetton P.W., Bottger P.C. (1982) Individual versus group problem solving: an 
empirical test of a best-member strategy. Organizational behavior and human 
perfonnance, 29: 307-321 



www.manaraa.com

11 A Knowledge Management Framework to Support Software 249 

Author Biography 

Prof. Stefan Biffi is professor of software engineering at the Vienna University of 
Technology. His main research interests include project and quaIity management 
in software engineering: software quality, economic software engineering models, 
software inspections, risk management, and know-how transfer between research 
and engineering practice. 

Dr. Michael Halling is a researcher at the Johannes Kepler University Linz and the 
University ofVienna. His main research interests inc1ude the empirical evaluation 
of software quality techniques and software engineering processes, the integration 
of economic concepts in the software engineering field, and the development of 
simulation models for decision-making support. 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 

Linda H Rosenberg 

Abstract: Software quality assurance (SQA) is a vital aspect of software 
engineering - one that is honed by experience rather than coming straight from a 
book. SQA is comprised of many areas of software engineering, e.g., life-cycle 
development, metrics, safety, and reliability. Extensive research has been 
conducted in each of these areas resulting in several theories, yet the actual 
practice of SQA and its supporting activities must be grounded in practical 
experience. This chapter discusses lessons learned by the NASA community as it 
dealt with day-to-day issues of software quality, reliability and safety. Lessons are 
written broadly so as to be applicable to almost any software assurance activity; 
these should then be tailored to an organization's needs. 

Key words: Software quality assurance, Process assurance, Product assurance, 
Safety, Reliability, IV&V, Metrics 

12.1 Introduction 

Over the years, National Aeronautics and Space Administration (NASA), along 
with all large enterprises, has become increasingly reliant on software to provide 
the complex functionality of its systems. The effectiveness of software directly 
impacts projects' success. NASA long aga recognized the importance of 
improving development processes. Thus, the activities of software quality 
assurance (SQA) are critical to the success of every project, and yet the roles and 
responsibilities are often misunderstood. SQA plays a vital role in all phases ofthe 
software development process including safety, reliability, independent 
verification and validation (lV&V), and metrics. However, it is often difficult for 
those involved in projects to understand either the interrelationships or how to 
apply appropriate quality assurance practices at a cost that is also affordable. 

All federal agencies are under pressure to downsize, while, at the same time, 
the workforce within NASA is aging. As the most experienced people retire, the 
valuable lessons learned about the implementation and practice of software quality 
assurance are being lost. Each of NASA's ten space flight centers is making an 
effort to capture this knowledge so that it can continue to be utilized and applied 
into the future. The purpose of this chapter is to identify some of the knowledge 
nuggets gleaned about software quality assurance so that we can continue to 
improve NASA's missions without having to rediscover what we already know. 

This chapter discusses lessons learned during the implementation of an SAQ 
program on projects at NASA in the hope that project managers will be able to 
increase the probability of a successful mission. These lessons were distilled 
primarily during the author's ten years of working in the quality assurance 



www.manaraa.com

252 Rosenberg 

directorate at NASA's Goddard Space Flight Center (GSFC), in Greenbelt, MD. 
This is a relatively small office, and the lessons are a compilation ofthe author's 
experience and those of the approximately 50 SAQ engineers who have worked at 
GSFC over the past decade. 

Tbe chapter starts with a general discussion on the meaning of SAQ, those 
tasks that comprise quality, and their interdependencies. Tbe discussion also 
covers the processes and products of SQA as weIl as the activities called for by 
quality assurance (QA) planning documentation as systems progress through the 
software development life cycle. Tbere is also an exploration of issues relating to 
the requirements phase, testing activities, and the importance of metrics. Lessons 
learned when implementing three specific areas, safety, reliability and IV&V, are 
then discussed since these areas are critical for NASA's approach to software 
assurance. Tbe chapter conc1udes by exploring the importance ofrisk management 
to SQA. 

12.2 Lessons Learned 

Tbe concepts of knowledge management (KM) are neither generally nor 
consistently applied; thus, the lessons that are captured become even more 
valuable. The lessons presented here were chosen because they are genera1ly 
applicable for most software development projects. Quality assurance tends not to 
be a major topic of software engineering courses, and although it is not a new 
activity, it is generally not very visible to the end user. If, however, quality 
assurance is not made an integral part of the project development life cyc1e, the 
end result, in extreme cases, can be the loss of a mission - the ultimate 
catastrophic failure. It is, therefore, of vital importance that NASA captures this 
knowledge accurately and ensures this information is passed on to future 
practitioners. 

12.2.1 Lesson 1: Project Managers and Software Developers Need To 
Understand What "Software Quality Assurance" is, and How Their 
Project ean Benefit by Its Application 

Shortly after a project is conceived, a budget is developed. At this point in time, 
funds should be earmarked for QA activities, and, of course, this includes 
software. Yet, history shows that funds are generally not carefully designated for 
software quality assurance. Rather, they are later squeezed from some other part of 
a strained budget. Tbe result is a minimization of quality assurance. Why this 
happens time and time again is ascribable to an incomplete understanding what 
SQA entails as weil as the real benefits to be gained. Hence. the first lesson is a 
statement of the need for increasing the awareness and general understanding of 
the value that software quality assurance truly adds to a project's success. 
Software quality assurance is actually a combination of three concepts: quality, 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 253 

QA, and SQA. While these tenns are often used interchangeably, we need to 
understand the basics of quality before we can understand the components and 
problems of software quality assurance. 

Before defining the tenn "software quality," it is important to understand the 
broader concept of"quality." NASA, as well as many other federal agencies, has 
adopted standards from externally recognized sources; thus, the agency has chosen 
to use the IEEE Standard Glossary of Software Engineering Terminology to 
define this tenn. Quality is ''tbe degree to which a system, component, or process 
meets (1) specified requirements, and (2) customer or user needs or expectations" 
[5]. The International Standards Organization (ISO) defines quality as the totality 
of features and characteristics of a product or service that bear on its ability to 
satisfy specified or implied needs [8]. IEEE and ISO definitions associate quality 
with the ability of the product or service to fulfill its function. Thus, quality is the 
net result ofa product's features and characteristics. 

While this definition would seem to be clear and unambiguous, the concept of 
quality really is not. Kitchenham states that quality is "hard to defme, impossible 
to measure, easy to recognize" [9]. Gilles states, "Quality is generally transparent 
when present, but easily recognized in its absence" [2]. Therefore, while we can 
define quality in theory, in practice, and in use, an absolute definition is elusive. 
Although fundamental, this is the kind of abstract knowledge that NASA strlves to 
capture, preserve, and most important, apply to real systems. Software quality is 
defined in the Handbook of Software Quality Assurance in multiple ways but 
concludes with the defmition: "Software quality is the fitness for use of the 
software product" [16]. This defmition implies the evaluation of software quality 
related to the specification and application of software quality. There are, 
however, criteria that help in the evaluation of software quality. For each NASA 
project, the appropriate criteria need to be identified within the context ofboth the 
application and the intended operating environment, which frequently means the 
harsh conditions of space. 

McCall and Boehm recognized that in order to develop models of quality, 
criteria are needed [2]. As a starting point, GSFC developed the following list of 
quality criteria for software: 

• Correctness: Extent to which a program fulfills its specifications 
• Efficiency: Use ofresources execution and storage 
• Flexibility: Ease of making changes required by changes in the operating 

environment 
• Integrity: Protection of the program from unauthorized access 
• Interoperability: EfIort required to couple the system to another system 
• Maintainability: EfIort required to locate and fix a fault in the program within 

its operating environment 
• Portability: EfIort required to transfer a program from one environment to 

another 
• Reliability: Ability not to fail 
• Reusability: Ease of re-using software in a different context 



www.manaraa.com

254 Rosenberg 

• Testability: Ease oftesting the program to ensure that it is error-free and meets 
its specification 

• Usability: Ease ofuse ofthe software 

In a perfect world, all criteria would be met, but software is not developed or 
run in such a world, and trade-offs are a part of all development projects. This 
may be a software developer's first real-world lesson learned, and the companion 
lesson is learning how to choose the appropriate evaluation criteria Often the 
most efficient software is not portable, as portability would require either general 
or additional code, which would decrease the level of efficiency. Another 
difficulty is the subjective nature of several attributes. For example, degrees of 
usability vary not only from developer to developer but also among the end users 
ofasystem. 

When using any of the above criteria to deflne assurance objectives for a 
software system, the ultimate purpose and use of the system must be taken into 
account. In the real world of software development, criteria for quality are 
identified and applied to differing extents as a result of trade-off decisions, which 
often have little to do with technological considerations and more to do with 
programmatic and management motivations. 

IEEE deflnes the QA as "a planned and systematic pattern of all actions 
necessary to provide adequate confidence that an item or product conforms to 
established technical requirements" [5]. This definition needs to be adapted to 
software since, unlike hardware systems software is not subject to the physical 
laws of nature and does not wear out or break in the traditional sense. 
Consequently, its usefulness over time remains unchanged from its original state 
at the time of delivery. Thus, the goal of software quality assurance is to establish 
a systematic effort to improve the delivery condition. 

In the SQA Handbook, the following definition is given: "Software quality 
assurance is the set of systematic activities providing evidence of the ability of the 
software process to produce a software product that is fit to use" [16]. Within 
NASA, we strive to achieve a systematic approach to SQA, and we rely heavily on 
the knowledge from previous successes and failures. The criteria chosen are 
evaluated in part against the above criteria and measured as described in a later 
section ofthis t~hapter. 

12.2.2 Lesson 2: Software Quality Assurance Implementation is a Balancing 
Activity That Must Be Tailored as Project Appropriate 

No project in the history of software development at NASA has ever had 
"enough" money, especially when it comes to implementing SQA programs. In 
the quality attributes listed above, it is not possible to achieve all aspects of quality 
because of the interrelationships. SQA engineers must determine which trades are 
to be made based on accumulated experience as weIl as on specific knowledge of 
the current project. Some of the interrelationships between the QA criteria were 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 255 

stated by Gilles [2]. In order to make the most reasonable trade-off decisions, we 
need to understand these relationships and use experience to anticipate the impact. 

In reading the remainder ofthis chapter, keep in mind that the lessons presented 
are shared not to produce a one-size-fits-all QA program, but rather to impart 
knowledge compiled from multiple development projects. SQA should always be 
tailored to meet each project's specific needs - good tailoring is essential to the 
success ofSQA. 

While SQA must be embedded into and merged with the project's other 
business practices, it must also fit seamlessly and appropriately with the level and 
critica1ity of the development project. Not all aspects presented here are 
appropriate for every project; not all projects have safety as an aspect, for 
example. To achieve all criteria to the level of 100% would be an "ideal" set of 
SQA activities on a project, but perfect projects do not happen in the real world. 
Furthermore, no project has sufficient time or resources even to attempt such a 
feat. Most projects, therefore, defme the amount of SQA activity based on mission 
objectives, degree of overall risk, and available funding. Finding just the right 
balance between attributes and tradeoffs is critical to the ultimate success of all 
SQA programs. The obvious lesson in this case is to tailor with care. Good 
managers know how to factor into these decisions the relevant experiences from 
previous projects and missions, and to ensure that the degree of SQA to be applied 
is appropriate to achieve characteristics of quality, while not negatively impacting 
others to an unacceptable level. 

12.2.3 Lesson 3: Software Quality Assurance Must Evaluate the Process as 
weil as the Products 

Historically, software quality assurance at NASA tended to focus on the final 
products, Le., deliverables, such as the requirements documents, designs, code 
listings and test plans. A more effective approach to SQA, however, is to monitor 
activities continuously throughout the software development life cycle to ensure 
the quality of the delivered product and to avoid any "surprises" later in the 
schedule. This requires monitoring both the processes and the products. In process 
assurance, SQA provides management with objective feedback regarding 
compliance to approved plans, procedures, standards, and analyses. Product 
assurance activities focus on the changing - and, it is to be hoped increasing -
level of product quality within each phase of the life cycle. The objective is to 
identify and eliminate defects as early as possible throughout the course of the life 
cycle, thereby reducing test and maintenance costs. 

12.2.3.1 Process Assurance 

It has been proven that the use of standards and process models has a positive 
impact on the quality of delivered software. Standardization of SAQ activities 
ensures that there is discipline and control in the software development process via 



www.manaraa.com

256 Rosenberg 

independent evaluation [16]. ISO 9001 and subsequent versions provide a way to 
gain external accreditation for a quality management system. The application of 
ISO for developing software has been used by many organizations, but the 
complaint is that rigid adherence tends to fossilize procedures rather than 
encourage process improvement [8]. A range of standards and models has been 
developed that seek to realize the intended benefits of quality standards while 
recognizing the different stages of development. All NASA Centers are ISO 
certified including quality assurance. 

The Software Engineering Institute (SEI) at Carnegie Mellon University 
developed one of the most common software development models. The original 
Capability Maturity Model (CMM) has recently evolved into Capability Maturity 
Model Integrated (CMMI). The fundamental premise of both the CMM and 
CMMI is that the quality of the software product is largely determined by the 
quality of the software development and maintenance processes used to build it. 
The CMMlCMMI is defined as a five-Ievel framework assessing the maturity of 
an organization's software processes, based on specific key process areas [17]. 

In addition to ISO, NASA centers have adopted either the CMM or CMMI as 
the baseline for their software development activities. The implementation of a 
development model is the responsibility of the quality assurance area at the NASA 
Centers, including GSFC [15]. 

Software process improvement and capability determination (SPICE) is a major 
international initiative focused in Europe and Australia to develop a Standard for 
Software Process Assessment. This project is carried out under the auspices of the 
International Committee on Software Engineering Standards, ISO JTC 1. The 
SPICE standards cover software process assessment, improvement, and 
capabilities [4]. Many ofNASA's international partners utilize SPIeE instead of 
CMMlCMMI, thus, the quality assurance engineers must be familiar with multiple 
models. 

Many commercial standards are also followed in the development of software. 
Some ofthe more common ones are the US Department ofDefense (DOD) issued 
MIL-STD-498, Software Development and Documentation; IEEE-STD1074, 
IEEE Standard for Developing Software Life Cycle processes; and EIAIIEEE 
12207, Information Technology - Software Life Cycle Processes [16]. Many 
organizations, including NASA, have in the past developed their own standards 
for software development. Current thinking recognizes both the value and 
efficiency gained by adopting commercial standards rather than creating them. It 
is now NASA's policy to use commercial standards whenever possible; the result 
is to encourage more standardization not only across NASA but also within the 
international aerospace industry. 

SQA is an ongoing process that attempts to ensure that software development is 
carried out according to procedures set forth by a standard or model. SQA's other 
role is to measure the effectiveness ofthe procedures on product quality. 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 257 

12.2.3.2 Produd Assurance 

Product assurance includes activities that focus on the quality of the products with 
the objective of identifying and eliminating defects early in order to reduce testing 
and maintenance costs. Many different methods are applied to achieve these goals, 
such as traceability of requirements, software development folders, configuration 
audits, formal inspections, reviews, and testing. Software products follow a 
development process, and many plans are developed that define details of the 
processes. For each of the documents listed in the following sections, the SQA 
function is to ensure that procedures are followed as weil as that final products are 
accurate. 

At GSFC, the depth and breadth of coverage depends on the mission's 
criticality, risk and funding. SQA engineers depend on guidance and collaboration 
with more experienced engineers, developers, and test teams but especially on 
project managers to determine appropriate evaluation criteria for individual 
projects. 

12.2.4 Lesson 4: There Must Be a Software Assurance Plan 

Most project managers feel there are too many plans, and suggesting another one 
that specifically lays out SQA might be the proverbial straw that breaks the 
camel's back! The ultima te success of any undertaking is tightly coupled with 
knowing exact1y what you are trying to achieve and how you expect to accomplish 
it. Therefore, a plan for software quality assurance can be critical to successful 
development projects. A good plan clearly specifies project goals, what is to be 
performed, standards against which the development work is to be measured, and 
all relevant procedures. In addition, the organizational structure of the quality 
assurance group in relation to the other parts of the project should be carefully and 
clearly specified. At NASA, a software assurance plan is required. 

The software assurance plan serves another function. It is an agreement 
between the project and the quality assurance engineers stating what the scope of 
responsibility is in order to ensure no misunderstandings. It should start by stating 
which standards, guidelines, processes, and procedures the quality engineers are to 
use to monitor and evaluate the project. It is, furthermore, a statement by 
management regarding accountability: all reviews, analyses, audits, tools, 
techniques, and methodologies that are going to be used should be spelled out in 
advance. 

A comprehensive software assurance plan also includes a baselined schedule 
(we say "baselined" since schedules change and evolve during the course of a 
project to reflect real-world events). A timetable of when critical milestones are 
planned should also be included. The document should state what the SQA 
expects from the project teams in order to complete their work as weIl as their 
possible needs for technical support. 

The extent and nature ofparticipation in project- and software-specific reviews, 
inspections, configuration management, testing, problem reporting, corrective 



www.manaraa.com

258 Rosenberg 

action processes, and so on needs to be clearly specified. Since software is often 
developed by teams, roles and responsibilities need to be stated unambiguously, 
e.g., how SQA will work with IV&V, contractors, subcontractors, system safety, 
operations, and so forth. Finally, the project team has both the right and need to 
know what, when, and how SQA will deliver its products, services, reports, and 
findings to the project team and what the appropriate communication paths will 
be. A software assurance plan should speIl out the steps to resolve any 
disagreements or conflicts that may arise in completing the defined activities. 

NASA has developed many standards and guidelines over the years. However, 
the trend is to rely on those developed by organizations recognized as experts in 
the field of software engineering. An example of this is the use of IEEE Standard 
730, which specifies the constituent elements of a SQA Plan [6]. The sections of 
the plan have been very useful at NASA in achieving the objects discussed above. 

12.2.5 Lesson 5: Software Quality Assurance Must Span the Entire 
Software Development Life Cycle 

At NASA's Goddard Space Flight Center (GSFC), SQA is carried out by an 
independent group of people whose function is solely to monitor the 
implementation of quality. In this context "independence" means not being part of 
the development organization, which avoids any contlicts of interest. At GSFC, 
responsibility for SQA is assigned to the Office of Systems Safety and Mission 
Assurance. In an efIort to help project managers and less-experienced software 
quality engineers, the Assurance Management Office at GSFC recently created a 
list of tasks that SQA should perform at each phase of the software development 
life cycle [13]. Below is a partial list of activities associated with the various life 
cycle development phases. This information is not in any book or standard, rather 
it was gleaned from the experiences of countless quality assurance engineers at 
GSFC over 25 years of developing software applications. 

12.2.5.1 Concept Phase Activities 

• Attend concept reviews and facilitate tracking and resolution of issues, 
concerns, risks, and so on. 

• Generate or assist in the identification of program and project risks, and 
mitigation strategies and techniques. 

12.2.5.2 Requirements Phase Activities 

• Review and analyze requirements for industry - acceptable and required 
characteristics (testability, traceability, consistency, clarity, and so on. See 
IEEE Standards. 

• Review and provide guidance on program and project metrics including 
strengths, weaknesses, limitations, and so forth. 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 259 

• Observe witness and participate in prototyping efforts. Provide feedback as 
applicable on prototyping efforts and results. 

12.2.5.3 Design Phase Activities 

• Attend and participate in design reviews, and track and maintain any issues or 
resolution tracking logs, tools, and so on. 

• Observe witness and participate in prototyping efforts. Provide feedback as 
applicable on prototyping efforts and results. 

12.2.5.4 Implementation Phase Activities 

• Attend code walkthroughs and peer reviews. Participate in the tracking and 
resolution of any issues, and so forth. 

• Review and assess code per organization's coding standards. 
• Review unit test plans and procedures. 
• Test Phase Activities. 
• Witness, observe and assist in testing activities (integration, system acceptance, 

operational readiness and launch readiness). 
• Attend change control and defect review board meetings and participate in the 

assessment of changes and defects. 

12.2.5.5 Operations and Maintenance Phase Activities 

• Support launch range activities in an oversight capacity. 

This list represents an "ideal" set of SQA activities on a project, but projects 
rarely have sufficient funds or need to perform them all. For most projects, the 
amount of SQA to be applied is negotiated based on the purpose, degree of 
mission risk, and the funding level ofthe project. As stated previously, experience 
guides these decisions. 

12.2.6 Lesson 6: Requirements, the Birthplace ofSuccessful Projects 

Although SQA is performed across the entire life cycle, success of a project can 
often be determined by the attention paid to requirements. It is generally accepted 
that the earlier in the life cycle potential risks are identified, the easier it is to 
eliminate or at least manage the conditions that introduce that risk. Problems that 
are not found until the testing phase are as much as 14 times more costly to fix 
than they would have been if they were found early in the requirements phase [2, 
3]. The requirements specification document is the first tangible representation of 
the functional and performance capabilities to be produced, whether they are 
system, hardware, software, or operational requirements. The document also 
serves to establish the basis for all of the project's engineering management and 
assurance functions. If the quality of the requirements specification is poor, the 



www.manaraa.com

260 Rosenberg 

project is at risk even before work begins [18]. Therefore, a specific lesson in 
SQA is on the importance ofhigh quality requirements [14]. 

Requirements are the basis for software development, but if they are neither 
complete nor understandable, the final product cannot be either. Effort must be 
invested in the development of requirements, as weIl as their verification and 
validation. There are specific attributes that can be used as guidelines when 
evaluating the quality ofthe requirements; in addition, tools are currently available 
to assist in this area. 

It is critical that the requirements be written in such a way that no 
misunderstanding between the developer and the c1ient is possible. For successful 
projects, requirements must be structured, complete, and easy to implement 
(design and code). A set of complete requirements is both stable, that is, not 
subject to significant modifications, and thorough in specifying the functional 
expectations. Furthermore, they must be sufficiently detailed to be translatable 
into a design without being so specific that they force design decisions onto the 
developer. Requirement specifications should not contain placeholders or phrases 
such as to be determined (TBD), or to be added (TBA) since vagueness only leads 
to a disjointed architecture, 10w funetional integrity, or eompletely missing system 
capabilities. 

To increase the ease of capturing requirements, they are usually written in 
ordinary language (as opposed to symbolic notation such as "Z"). The result of 
using everyday language is a level of ambiguity due to the inherent richness of 
meanings, terms, and implications. In order to develop reliable software of high 
quality, the requirements must never contain ambiguous terms, nor should a 
requirement statement be interpretable as an option. Ambiguous requirements are 
those that may have multiple meanings; optional ones leave the choice of 
inclusion or omission up to the development organization. Requirements are not 
choices or options. 

The importanee of correctly documenting requirements has spurred the 
software industry to produee a significant number of tools that aid in the creation 
and management of the requirements specifieation doeuments as weH as the 
individual statements themselves. Very few tools, however, are capable of 
addressing the inherent quality of either the requirements document or the 
individual specification statements. 

The Software Assurance Teehnology Center (SATC) at GSFC developed a tool 
to parse requirement documents. The Automated Requirements Measurement 
(ARM)1 software was developed to sean a file that contains the text of the 
requirement specification. During this sean process, it searches each line of text 
for specific words and phrases. SATC studies have found these search arguments 
(speeific words and phrases) to be indieators of a document's quality, which are 
useful to the QA engineers [12]. The evaluation ofthe quality ofthe requirements 
should be one of the primary emphases of QA, assessing both the proeess of 
iteratively developing them and the final requirements themselves. 

1 ARM is available from the SATC homepage: http://satc.gsfc.nasa.gov. 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 261 

12.2.7 Lesson 7: Software Quality Assurance"" Testing 

All too often project managers assume they have adequate quality assurance 
coverage simply by planning for significant software testing. Alternatively, they 
might even believe that no software quality assurance activities are needed prior to 
a formal testing phase, but unfortunately these assumptions are incorrect. IEEE 
defines testing as 

the process of operating a system or component under specified conditions, 
observing or recording the results, and making an evaluation of some aspect of the 
system or component. The process of analyzing a software item to detect the 
differences between existing and required conditions (that is, bugs) and to evaluate 
the features ofthe software items. 
Simply stated, testing is way of demonstrating that the system performs 

according to expectations, i.e., the requirements are met. It is important to note in 
the IEEE definition there is no reference to quality assurance; nor should there be, 
since the activities and purposes are different. 

From the perspective of quality assurance, the purpose oftesting is to 

• Assure problems are documented, corrected, and used for process improvement 
• Assure problem reports are valid, accurate, and complete 
• Ensure all reported problems and their associated corrective actions are 

implemented in accordance with customer-approved solutions 
• Provide feedback to the developer and the user of problem status 
• Provide data for measuring and predicting software quality and reliability 

Note, the above list does not inc1ude the responsibility to identify problems. 
That is the job of the test team. Too often, however, there is a common 
misperception that the job of software quality assurance is the same as that of the 
tester. This is emphatically not the case. Whenever this incorrect assumption is 
made, others follow. 

Another managerial mistake is to assume that developers test their own 
programs sufficiently; however, programmers are motivated to show that a 
program works, not that it fails. A third fallacy is the one that assumes software 
needs to be tested only once, i.e., at the end ofthe development phase. In reality, 
testing, which is to say defect prevention, must be done thrOUghout the 
development process. Finally, there is the philosophical mistake that assumes 
testing should focus solelyon the product rather than on the process by which the 
product was built. Yet we clearly know the most significant improvements in 
quality and productivity come from process improvements, not more rigorous 
product testing. 

As stated in an earlier lesson learned, software quality assurance is most 
effective when implemented across the entire life cyc1e, not just at the end of the 
development activity. The lesson to be learned here is c1ear: Y ou cannot test 
quality into a product; you have to build it in from the start. 



www.manaraa.com

262 Rosenberg 

12.2.8 Lesson 8: The Necessity ofMetrics 

Software metrics are often overlooked during the early phases of the software 
development life cycle and are not an activity generally associated with SQA; 
however, they should bel Given the broad responsibility of SAQ practitioners for 
assessing both the processes and products of software development, have a critical 
need to establish procedures for measurement. Metrics, when relevant and 
accurate, have proven invaluable in the evaluation ofthe quality. 

At GSFC and throughout NASA, many SQA professionals have become 
cognizant of, and to differing degrees proficient in, the use of relevant metrics to 
aid their assurance efforts. When projects establish software metrics as a 
constituent part of their development processes, the SQA team needs only to 
validate the metrics and ensure the correct interpretation of the data. If a project, 
for any reason~ is not routinely employing metrics in its feedback loops, the job of 
SQA becomes more difficult. One ofthe fIrSt tasks of an SQA organization, then, 
is to encourage and perhaps facilitate the development of an independent metrics 
program as a means of managerial insight into all development activities. 

The US Department of Defense founded the Practical Software Measurement 
(pSM) program in 1996 with the intention of capturing experiences of metrics 
applications throughout industry and government. The purpose was to develop a 
generic but commonly usable metrics program. One of their first products was a 
set of seven principles for successful development of a metrics program. These 
have been adapted and applied throughout many companies, industries, and 
government agencies, including GSFC [1 l. 
1. The goals and objectives ofthe project should drive the metrics program. 
2. The software developer's process defines how the software is actua1ly 

measured. 
3. Collect and analyze data at a level of detail sufficient to identify and isolate the 

software problems. 
4. Implement an independent analysis capability. 
5. Use a structured analysis process to trace the measures to decisions. 
6. Interpret the measurement results in the context of other program parameters. 
7. Integrate software measurement into the management process throughout the 

entire software life cycle. 

It is the responsibility of the SQA organization to be cognizant of available and 
relevant metrics that help evaluate and assure products. For each development 
phase, metrics should be chosen to help guide the developers, designers and 
testers, as weIl as to help managers become more effective. When projects use 
software metrics consistently as part of their development, the SQA team needs 
only to validate the metrics and ensure correct interpretation of the data. When a 
project fails to implement metrics gathering or, worse yet, utilize the metrics it 
gathers, the challenge rests on the SQA organization to fmd ways to make metrics 
an effective reality. 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 263 

12.2.9 Lesson 9: Safety and Reliability are Critical Aspects of Software 
Quality Assurance 

12.2.9.1 Safety 

Safety is both a collective effort and everyone's responsibility. Software within 
NASA is a vital part of the system, and therefore has a role in system safety. 
Project managers, systems engineers, software leads, and engineers, both software 
assurance or QA, and system safety personnel must all contribute to the creation 
of a safe system. Safety-critical software is defined by the NASA Software Safety 
Standard as "software that directly, or indirectly, contributes to the occurrence of a 
hazardous system state, controls or monitors safety-critical functions, runs on the 
same system as safety-critical software or impacts systems which run safety 
critical software, or handles safety critical data" [11]. The goal is for quality 
assurance teams to ensure that software contributes to the safety and functionality 
of the whole system. 

When a device or system could possibly lead to injury, death, or the loss of 
vital (and expensive) equipment, system safety is always involved at NASA. 
Often hardware devices are used to rnitigate the hazard potential or to provide a 
"faH - safe" mechanism. As software becomes a more pervasive part of 
electromechanical systems, hardware hazard controls are being replaced, or 
backed up, by software controls. Software has the ability not only to detect certain 
types of error conditions more quickly than hardware but also to respond more 
intelligently, thereby avoiding a potentially hazardous state. The increased 
reliance on software means that the safety and reliability of the software become 
vital components in a safe system [11]. 

The system safety program plan should adequately describe interfaces within 
the assurance disciplines as weil as the other project disciplines. It is the 
responsibility of tbe SQA organization not only to identify the safety critical 
software components but also to ensure the appropriate processes are correctly 
followed. All analyses and tasks should be complementary and supportive 
regardless ofwhich group (development or assurance) has the responsibility. The 
analyses and tasks rnay be shared between the groups and, within each discipline, 
according to the resources and expertise of the project personnel. Coordination of 
teams and establishing priorities is, of course, the prerogative of management. 

12.2.9.2 Reliability 

IEEE defmes software reliability as ''the prob ability that software will not cause 
the faHure of a system for a specified time under specified conditions. The 
probability is a function of the inputs to and use of the system, as weil as a 
function of the existence of faults in the software" [7]. Using this definition, 
expectations of reliability must be based on how the system is to be used and for 
what length of time. At NASA, many of our satellites fly for several years -



www.manaraa.com

264 Rosenberg 

often beyond their originally intended life spans. Thus reliability of software must 
support the expected lifetime plus any extensions. The condition under which 
software is expected to perform is dictated by the satellite's stated mission. 

IEEE continues by defining software reliability management as ''the process of 
optimizing the reliability of software through a program that emphasizes software 
error prevention, fault protection and removal, and the use of measurements to 
maximize reliability in light of project constraints such as resources, schedule and 
performance" [7]. This deftnition puts the burden of reliability not just on the 
testing phase, but on the entire life cycle, to ensure that errors are prevented 
starting in the requirements phase by determining the quality of such attributes as 
phrasing, completeness, and clarity. Throughout the life cycle, errors should be 
detected and removed using such techniques as code walkthroughs and 
inspections. Relevant measurements should be used at all phases to ensure the 
effectiveness of all assurance activities. In the testing phase, reliability can be 
evaluated using one ofthe many reliability models. These models, however, must 
be applied with very strict rigor to ensure accuracy. 

Thus, another of SQA's responsibilities is to ensure that considerations of 
software reliahility are continuously promoted and evaluated throughout the life 
cycle. At each life-cycle phase, SQA needs to monitor the processes that are being 
employed, thereby ensuring the greatest number of errors are detected and 
removed as early as possible within the life cycle. Many techniques and models 
are used in conjunction with reliability, and it is the responsibility of the SQA 
organization to ensure that they are applied correctly. 

Just as YOll cannot test quality into a product, neither can you do so with 
reliability. You must build it in from the start. Reliability also impacts safety, and 
a system cannot be deemed safe if it is not also reliable. NASA is working with 
reliability experts to determine how these concepts can be appropriately adapted 
and applied in a cost-effective manner on our space missions. 

12.2.10 Lesson 10: Independent Verification and Validation (IV & V) is an 
Important Tool within SQA 

Independent veriftcation and validation (IV & V) is defined by three components: it 
must be independent technically, managerially, and financially from both the 
development organization and the project's chain of command. IV&V must 
prioritize its own efforts, identifying where to focus its activities. It must have 
access to and a means of reporting information to the program management, and 
the budget for these efforts must be allocated and controlled by the program. 
Control must remain independent of the development organization to avoid 
limiting its effectiveness and to eliminate any conflicts of interest. 

Veriftcation is the process of determining whether or not the products of a 
given phase of the software development cycle fulfill conditions that were set by 
the previous phase. Other considerations include whether or not a product is 
intemally complete, consistent, and correct enough to support the next phase. 
Validation is the process of evaluating software throughout its development 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 265 

process to ensure compliance with agreed-upon software requirements. When 
asked "Are we building the product right?" we are talking about verification; 
whereas the question "Are we building the right product?" is really addressing 
validation. 

At NASA, software IV & V is defined as a systems engineering process 
employing rigorous methodologies for evaluating the correctness and quality of 
the software product throughout the software life cycle. Without SQA, IV&V is 
expensive and somewhat less effective. Where SQA is a broad "blanket" across 
the project and oversees all ongoing process and product activities, IV & V focuses 
on only those processes and products determined to have the highest risk. 
Therefore, IV & V teams should conduct in-depth evaluations of very specific and 
select areas. IV&V is not required on all projects. Rather, it is another tool to be 
utilized when appropriate - one that can provide a high value added when used 
properly [13]. 

12.2.11 Lesson 11: Hardware * Software! 

The influence of hardware quality assurance is evident in the community of SQA 
practitioners. Not only do hardware-intensive systems and hardware-related 
concerns predominate, but also hardware-based thinking and assumptions. Two 
such hardware mindsets relate to time and operating conditions. Software, 
however, is built with different constraints and considerations. NASA has 
grappled with these differences and the best approach for managing them while 
implementing very similar versions of hardware and software quality assurance. 
At GSFC as weIl as other NASA centers, these two activities reside in one 
department, which allows the two groups to work together in a more integrated 
fashion. 

The major difference between hardware and software quality assurance has to 
do with the differences in their fundamental natures and the way in which each 
manifests failure. Experience shows that hardware generally fails from 
manufacturing defects, from poor quality of materials or fabrication, overload, 
physical deterioration and wearing out, fatigue, or burn out. 

Software, unlike hardware, does not wear out. Generally, it fails because of 
unrecognized design problems, lack of testing, or changes in the operating 
environment. Software presents different behavior with respect to fault and error 
identification rates. In this case, the error rate is at its highest level at integration 
and test. As testing progresses, errors are identified and removed. Detection and 
removal continues at a slower rate during its operational use. The total number of 
latent system errors continually decreases. This representation assumes, however, 
that no new errors are introduced while attempting to fix others. 

Even though software has no moving parts and does not physically wear out as 
does hardware, it does outlive its usefulness and becomes obsolete [2]. What is 
clear is that the hardware approach to reliability must be different from the 
approach needed for software reliability. 



www.manaraa.com

266 Rosenberg 

NASA has learned that quality assurance engineers for hardware should not 
perfonn SQA. The tools, techniques, focus and knowledge required are very 
different. Unfortunately, it is often assumed that the disciplines are 
interchangeable. This results in poor, if any, SQA. GSFC employs both software 
and hardware assurance engineers who work together on missions and projects for 
their success. 

12.2.12 Lesson 12: Risk Management is NOT Optional 

Risk is a daily reality on all projects, and continuous risk management should 
become just as routine. It should be ongoing and comfortable, and neither imposed 
nor forgotten. Like any good habit, it should fit seamlessly into the daily work. 
NASA worked with the US Navy and the Software Engineering Institute at 
Carnegie Mellon University to develop a process-based risk management course 
for government use. NASA then incorporated specific aspects into its aerospace 
projects. 

Ouring the course taught at NASA, various tools and methods are demonstrated 
that work for any project. The key is to adhere to the prineiples, perfonn the 
funetions, and adapt the practiee to fit the project's needs. As with so many other 
practiees, eontinuous risk management is not a "one size fits all" solution, and 
NASA projects are encouraged to tailor the risk management in order to maximize 
effectiveness. By tailoring, organizations adapt the processes and seleet the 
methods and tools that best fit their project management practice and their 
organizational eulture based on experiences with previous projects. 

Software risk management is important because it helps avoid disasters, 
rework, and overkill, but, more important, beeause it stimulates win - win 
situations. The objeetives of software risk management are to identify, address, 
and eliminate software risk items before they beeome threats to suecess or major 
sourees of rework. At NASA, good project managers are of neeessity good 
managers of risk. 

There are a number of definitions and uses for the tenn risk. In fact, no single 
definition is universally accepted. However, what all definitions have in eommon 
is agreement that risk has two eharacteristies: uncertainty: an event may or may 
not happen; loss: an event has unwanted eonsequenees or losses. Therefore, risk 
involves the likelihood that an undesirable event will occur, and the severity ofthe 
eonsequences ofthe event, should it oeeur. 

At NASA, we focus on continuous risk management that ean be applied to any 
development proeess: hardware, software, systems, and so on [13]. It provides a 
disciplined environment for proactive decision making to: 

• Assess eontinually what could go wrong (risks) 
• Determine which risks are important 
• Implement strategies to deal with those risks 
• Assure and measure the effectiveness of the implemented strategies 



www.manaraa.com

12 Lessons Learned in Software Quality Assurance 267 

Risk management procedures must not be allowed to become "shelfware". To 
be effective, processes must become part of regularly scheduled product 
management. It requires identifying and managing risks routinely throughout all 
phases of the project's life. The result is a cost-effective implementation within 
the project [13]. 

12.3 Conclusion 

SQA is faced with many challenges, starting with adefinition of quality for 
software. There needs to be a common understanding as to what high quality 
software rea11y iso The fmal definition is most usually influenced by the 
environment of the software usage. There are many aspects of SQA, from those 
within the phases of the software development life cycle to those that span 
multiple phases, i.e., safety, reliability, and IV&V. SQA must pay special attention 
to the beginning of a project - the requirements phase - and ensure that SQA 
does not become a synonym for testing. They are not the same things. Metrlcs 
should be a key tool for quality assurance engineers with which to evaluate the 
quality of the products. Finally, risk management is required on all projects; 
however, it is not the responsibility of SQA to manage the risks. Rather, SQA 
must ensure that everyone on the project is identifying and managing them. At 
NASA, SQA is applied to all projects at levels deemed appropriate and cost 
effective based on experience from previous missions and projects. 

References 

1. Department of Defense (2001) Practical software and systems management V 4.2, 
http://www.psmsc.coml(accessed 21st April, 2003) 

2. Gillies A.C. (1997) Software quality, theory and management. International Thomson 
computer press, London, UK 

3. Hammer T., Huffinan L., Rosenberg L. (1999) Doing requirements right the first time. 
Cross Talk, 12: 20-25 

4. International Committee on Software Engineering Standards (SPICE) (1992) Software 
process assessment. JTC l/SC7, http://www.sqi.gu.edu.aulspice/suite/ (accessed 21st 
April, 2003) 

5. IEEE Std 610.12-1990 (1990) Glossary ofsoftware engineering terminology. Institute 
ofElectrlcal and Electronics Engineers 

6. IEEE Std 730 (1998) Standard for software quality assurance plans. Institute of 
Electrical and Electronics Engineers 

7. IEEE Std 982.2-1988 (1988) Guide for the use of standard dictionary of measures to 
produce reliable software. Institute ofElectrical and Electronics Engineers 

8. ISO 9003-3-1991 (1991) Quality management and quality assurance standards - Part 3: 
Guidelines for the application of ISO 9001 to the development, supply and 
maintenance of software. International standards organization, www.iso.ch (accessed 
21st April, 2003) 



www.manaraa.com

268 Rosenberg 

9. Kitchenham B., Pfleeger S.L. (1996) Software quality: the eIusive target. IEEE 
Software 13: 12-21 

10. NASA-SID 7l20.5, Program and project management processes and requirements, 
NASA 

11. NASA-SID-8719.13A (2001) NASA software safety standard. NASA 
12. Rosenberg L., Gallo A., McCoy J. (2001) Generating high quality requirements. AIAA 

Aerospace conference, San Jose, CA 
13. Rosenberg L., Gallo A. (2002) Software quality assurance at NASA. In: Proceedings 

ofIEEE Aerospace conference, Big Sky, Montana 
14. Rosenberg L., Hyatt L. (1996) Developing a successful metrics program. In: CD-ROM 

Proceedings of the 8th annual software technology conference, Salt Lake city, Utah, 
http://satc.gsfc.nasa.gov/supportJICSE_NOV97/iasted.htm (accessed 21 st April, 2003) 

15. Rosenberg L., Godfrey S. (2002) Implementing CMMl at NASA's Goddard space 
flight center. In: Proceedings of the software engineering process conference, Denver, 
CO,USA 

16. Schulmeyer G.G., McManus J.1. (1998) Handbook of software quality assurance. 
Prentice Hall PRI, NJ, USA 

17. Software Engineering Institute (SEI) (1991) Capability maturity model. Carnegie 
Mellon University, USA 

18. Wilson W., Rosenberg L., Hyatt L. (1996) Automated quality analysis of natural 
language requirement specifications. In Proceedings of 14th annual Pacific Northwest 
software quality conference, Portland, Oregon, USA, pp. 140-151 

Author Biogrllphy 

Dr. Linda H. Rosenberg serves as the Chief Scientist for Software Assurance for 
Goddard Space Flight Center, NASA in the Office of Systems Safety and Mission 
Assurance Directorate and is the former division chief of the Software Assurance 
Technology Office. Dr. Rosenberg is a recognized international expert in the areas 
of assurance, metrics, requirements, and reliability and serves on IEEE program 
committees in these areas. She has presented papers/tutorials and chaired sessions 
at many international conferences and also serves as a reviewer. Dr. Rosenberg is 
an adjunct professor at University ofMaryland, Baltimore in the Masters/Doctoral 
Program. Dr. Rosenberg holds a Ph.D. in computer science, an M.E.S. in 
computer science, and a B.S. in mathematics. 



www.manaraa.com

13 Making Software Engineering Competence 
Development Sustained through Systematic Experience 
Management 

Klaus-Dieter Althoff and Dietmar Pfahl 

Abstract: Applying systematic experience management to innovative e-learning 
approaches provides means for more efficient and effective competence 
development of software professionals - on-the-job, on-demand, and 
geographically distributed. Adequately packaged experience provides the starting 
point for the preparation and design of learning resources and for efficient reuse. 
Systematic evaluation during usage helps improve the quality of learning 
resources and identify best practice use cases, which then can be exploited to 
proactively offer best-matching learning resources in a given learning setting. By 
improving e-Iearning through integrated experience management, eventually 
qualification programs for the software workforce will develop longer lasting 
effects and thus will be considered more sustained by the responsible management 
levels. Inspired by an innovative system for collaborative learning in software 
organizations (CORONET) in this chapter, we extend a state-of-the-art experience 
factory scenario for learning software organizations suggesting the so-ca1led "3P 
integration" concept. This integration concept considers for context modeling not 
only processes and projects (2P integration), but also the involved persons. This 
chapter is directed at software practitioners who are interested in innovative e
learning and experience management approaches, and researchers who aim at 
integrating the potentialities ofboth fields. 

Keywords: CORONET, DISER, E-Learning, Experience factory, Experience 
management, Knowledge management 

13.1 Introduction and Background 

Success of software development projects Iargely depends on the quality of the 
workforce. Therefore, competence development of the peopie involved is a crucial 
issue for any software organization. Systematic competence development can be 
supported by knowiedge management (KM) and e-Iearning (EL). During the last 
decade, both KM and EL have experienced many innovations (Sects. 13.1.1 and 
13.1.2) but are stilliargely unconnected. 

In this chapter, we propose the integration of collaborative EL with KM based 
on concepts of the well-known experience factory (EF) approach [11]. The 
starting point for our proposal is a recently developed, working example of an 
innovative EL system for collaborative learning in software organizations, 
CORONET, that integrates KM elements (Sect. 13.2). The CORONET system 



www.manaraa.com

270 Althoff and Pfahl 

provides funetionality for knowledge sharing, on-the-fly ereation of new learning 
resourees during learning sessions, and the ereation of learning networks [26] that 
establish sustained interpersonal relationships and thus intereonneet individual 
learning with group learning. Although CORONET supports all elements of the 
knowledge ereation and delivery cycle [44], Le., knowledge identification, 
evaluation, storage, strueturing, and dissemination, CORONET is still too limited. 
In particular, there is no systematie methodologieal guidanee of learners and 
knowledge providers on how to perform experience learning. In other words, there 
is a high risk that software eompetenee development, which in CORONET is 
mainly based upon the establishment of long-Iasting interpersonal relationships, is 
not yet as effective as it could be if experience management (EM) methods and 
tools were integrated. In Seet. 13.3, we present proven effeetive and efficient EM 
eoneepts that, when integrated with the CORONET system, will make eompetenee 
development more sustained. That is, EL systems like CORONET will ereate a 
longer lasting impact of learning by systematieally evaluating the effectiveness of 
learning resourees in various eontexts, and by proaetively offering efficient 
guidanee on how to provide and how to seleet best-matehing learning materials. 
Taking the EF framework as a starting point, we illustrate how innovative EL that 
yet partly integrates KM methods and tools ean be further enhaneed through 
extended EM (Seet. 13.4). This is exemplified in the vision ofthe 3P integration 
approach for software proeess learning, an important scenario for systematie 
software process improvement (SPI). Traditionally, EM-based software proeess 
learning within an EF organization is eharaeterized by packaging and reusing 
knowledge and experience about process and project information (2P integration). 
By adding a third dimension, the people dimension, software proeess learning 
becomes more: flexible because of personalization, and eventually proactive 
provision of ne:eded learning resourees to individual software engineers in specifie 
learning situations. 

The following sections are direeted towards both software practitioners who are 
interested in irmovative EL and EM approaches, and researchers who desire to 
integrate the potential of both fields. Sections 13.2 and 13.3 present recent 
developments and proven concepts in EL and EM, while Seet. 13.4 presents the 
vision ofintegrating state-of-the-art approaches in EL and EM. Finally, Seet. 13.5 
concludes with a discussion of the value of the proposed integration for KM 
research in general. 

13.1.1 The State-of-the-Art in Experience Management 

EM is becorning an increasingly important subdomain of KM. It defines and 
develops methods for structuring and handling experience of experts on a 
partieular subjeet. Software engineering is a highly dynamie fieId in terms of 
research and knowledge, and it depends heavily upon the experience of experts for 
the deve10pment and advancement of its methods, tools, and techniques. For 
example, the tendeney to define and describe "best practices" or "lessons learned" 
is quite distinetive in the literature [2] (Chap. 12 by Rosenberg in this book for 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 271 

typical representations oflessons learned [48]). As a consequence, in the software 
engineering field the EF was introduced that was explicitly responsible to 
systematically deal with experience. An EF is a logical or physical infrastructure 
for continuous learning from experience and includes an experience base (EB) for 
the storage and reuse of knowledge. The EF approach was invented in the mid 
1980s [10]. As practice shows, it is substantial for the support of organizational 
learning that the project organization and the learning organization are 
separated [11]. 

The initial example of an operating EF was the NASA Software Engineering 
Laboratory (SEL) [46]. EF applications have been developed in the USA and in 
Europe [4, 56]. The large number ofsuccessful EF applications gave rise to study 
learning software organizations, in order to improve the methodology of building 
and running an EF [49]. This also includes the definition of related processes, 
roles, and responsibilities and, last but not least, the technical realization. The 
most detailed methodology for the build-up of an EFIEB on project knowledge 
also for the presentation ofthe according processes is given in [56]. 

EF is increasingly emerging towards a generic approach for EM as an 
organizational structure for reuse of knowledge and especially experience. This 
also includes applications that are independent from the software engineering 
domain. Examples of this include supporting the continuous improvement process 
in hospitals [5], the field of help-desk and service support [55], and the 
management of ''non-software'' projects [15]. Future trends in the scope of EF 
include detailing of all necessary policies, validation, and empirical evaluation 
[13, 56], gaining experience with the technical realization of huge EFs [45], 
integration with the according business processes [6], and the operation of 
EFs [41]. 

In the areas of cognitive science and artificial intelligence, case-based 
reasoning (CBR) emerged in the late 1970s and early 1980s as a model for human 
problem solving and learning [50, 51]. In artificial intelligence, this led to a focus 
of knowledge-based systems on experience (experience knowledge, case-specific 
knowledge) in the late 1980s and early 1990s, mostly in the form of problem
solution cases [9]. For the last several years there has been a strong tendency in 
the CBR community [3] to develop methods for dealing with more complex 
applications. One example is the use of CBR for KM [1], another is its use for 
software engineering (Chap. 9 by Shepperd in this book [52]). A very important 
issue here is the integration of CBR with EFs: Since the mid 1990s CBR has been 
used both on the organizational EF process level and the technical EB 
implementation level [7, 35, 57]. This approach has become more and more 
established [3, 14,36]. 

In the 1980s and 1990s, various approaches in economic and social sciences as 
weH as in business information systems, which explicitly dealt with knowledge as 
a resource ofincreasing importance, merged under the notion ofKM [39, 47]. In 
spite of the high number of approaches and their heterogeneity, two main 
categories can be identified. On one hand, there are process-oriented approaches, 
which are based mainly on communication and collaboration; on the other hand 
product-oriented approaches, which are based on documentation, storage, and 



www.manaraa.com

272 Althoflf and Pfahl 

reuse of enterprise knowledge. While the former use techniques from computer 
supported collaborative work and workflow management, the latter build on 
information tel~hnology tools for documenting knowledge. These include database 
systems, repository systems, hypertext systems, document management systems, 
process modeling systems, knowledge-based systems, case-based reasoning 
systems, and so on [55]. From a more general perspective, it can be stated that 
product- and process-oriented approaches are still not integrated. Usually they are 
used independently from each other, or as alternatives. As a first step forward, 
deep integration (that is one that has foundation in cognitive sciences) of EF and 
CßR approach es has been achieved [3, 56]. 

13.1.2 State-·of-the-Art in E-Learning 

Computer-supported learning and teaching can be traced back to the theory of 
behaviorism initiated by Thorndike, and its first practical implementation in the 
form of so-called "programmed instruction" in the early 1950s [54]. Derived from 
this original work and its extensions, e.g., the inclusion of decisions, and thus the 
possibility of multiple paths instead of simple "linear programs" [19], computer 
aided instruction (CAI) emerged in the 1970s. Important for the success of CAI 
was the ability to separate learning methods (practice and examination, tutoring, 
simulation, etc.) from the subject matter contents. This separation allowed for 
transferring similar learning methods to various contents. The modular structure of 
CAI systems, c:onsisting of a presentation module and separate modules for learner 
response analysis, learning method, and data administration, facilitated the flexible 
combination of these modules into so-called computer based training (CBT) 
systems. Not advantageous, however, was the strict hierarchical structuring of 
learning units and the limitations this implies on the workflow of alearner. Most 
current CßT systems still rely on the old concepts and thus can only be 
successfully applied when restricted knowledge about subject matter facts and 
methods is to be trained. 

Traditional CßT systems have neither an ''understanding'' of the contents to be 
delivered to the learners, nor do they have information about the varying levels of 
knowledge and training progress of the learners. The first reaction to these 
limitations was the attempt in the early 1980s to rely on artificial intelligence 
approaches. This led to the concepts of intelligent computer aided instruction 
(lCAI) and intelligent tutoring systems [17, 53]. The main achievement ofICAI 
consisted in adding an expert module to the training system, which derives correct 
solutions to given problems and compares them to the answers supplied by the 
learner. The re:sults of these comparisons are stored in a learner model and are 
analyzed in order to derive the individual behavior and knowledge accumulation 
of the learners. ßased on these data, individually customized learning strategies 
can be selected for each learner. 

Modern concepts for organizing and representing complex knowledge for the 
purpose of leaming and training have their origins in the 1970s when the first 
hypertext media were developed. The hypertext idea is based in work done during 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 273 

the early 1940s when infonnation units ("cards") were assembled into "knowledge 
maps" [16]. Well-known computer-based systems were NoteCards [25] or 
Hypercard [21]. A card can be accessed through its name or a link in another card. 
The hypertext approach strictly distinguishes between structure and content: a 
hypertext machine administers the cards and their relationships, and a database 
administers the contents of the cards. Unfortunately, the development of 
"hypennedia networks" turned out to be difficult consuming and for a long time 
no adequate authoring systems were available. On the other band, the usage of 
established hypertext systems was quite successful and became very quickly 
supported by browsers that provide search and presentation functionality for 
hypertext information. By adding audio and video functionality hypertext systems 
were quickly enhanced to hypennedia systems. Today, hypertext and hypennedia 
fonn the basis of the World Wide Web (WWW), which provides a common 
platfonn for practically all modem e-Iearning systems. 

The possibilities of the new hypennedia (virtual) learning spaces otTer new 
opportunities for leaming. Learning can happen at any time and at any place, 
synchronouslyand asynchronously, in a self-Iearning mode or in cooperation and 
collaboration with peers, in a self-driven (constructive) mode, or guided by tutors 
and predefined curricula. These new possibilities are of particular importance for 
the concept of lifelong learning, where the border between private and 
professional competence and skill development becomes fuzzy. 

The new technologies that facilitate and support lifelong learning threaten the 
traditional distinetion between producers of learning contents and consumers of 
learning contents. In the knowledge-sharing information society every leamer can 
evolve from an information consumer to an information producer, by producing 
new infonnation otTers that others can consume. E-commerce is one of the new 
business areas where this idea has been most fruitful. In addition, the new 
educational systems - either public or private - will be deeply affected by the 
overlapping of production and consumption of learning contents. The traditional 
roles of learners and teachers will eventually disappear [23]. For industrial 
organizations this translates into the following vision of professional lifelong 
learning: 

1. Everybody is a knowledge worker, i.e., everybody consumes and produces 
knowledge. 

2. The various learning processes of knowledge workers - both self-directed or 
guided by others - are deeply supported by constantly evolving knowledge 
networks. 

3. For individual knowledge workers it becomes less important to privately 
"store" professional subject matter-related knowledge. The possibility to access 
repositories of leaming resources (people and content - from simple files to 
sophisticated, adaptive courseware ) makes this obsolete. 

4. The emergence of so-called communities of practice [58] will become crucial 
because they guarantee that new knowledge is transfonned into content and that 
existing knowledge (and associated contents ) is continuously updated 
according to the needs of professionallife [4]. 



www.manaraa.com

274 Althoff and Pfahl 

In order to adequately support content producers, state-of-the-art EL systems 
must offer functionality that supports selection, structuring, adaptation, 
personalization, and improvement of learning contents. In particular, this requires 
the ability to give detailed and adequate description of contents with metadata, 
modularization of contents, and generation of content variants with various 
instructional strategies. It also includes development of (self-)tests for learners, 
provision of feedback from the learners to the content providers, for instance, in 
the form of annotations, and provision of complex semantic structures that help to 
reuse and (semi-)automatically integrate existing content modules into larger 
content structures such as learning courses. 

In order to adequately support content consumers (Le., learners), a state-of-the
art EL system needs to provide powerful communication and personalization 
tools. In particular, this includes functionality that facilitates synchronous (chats) 
and asynchronous (discussion forums) interaction among learners and between 
learners and teachers. In addition, it includes functionality for annotating and 
linking learning resources in private or public workspaces. 

All in all, it has become clear during the last years that modularization, 
annotation, information retrieval, and the combination of synchronous and 
asynchronous communication require the extensive application of KM techniques 
and methods to EL systems [20]. In particular, automatic and semiautomatic 
retrieval of information for problem solving, and the proactive offering oflearning 
contents for preparation for new tasks can be addressed with innovative 
techniques and methods stemming from EM research. In the next section, we 
present arecent research prototype, the CORONET system [8, 43], which offers 
many KM features that a state-of-the-art EL system should possess. 

13.2 Towards Integrating E-Learning and Knowledge 
Management 

The essence of the e-learning system CORONET is its focus on collaborative 
methods that aim to improve the competence development of software engineers 
and managers. The CORONET system promotes and supports the development of 
sustained interpersonal relationships in combination with comprehensive 
functionality for creating, accessing, annotating, extending, and exploiting 
knowledge assets, sharing knowledge for use and reuse, and learning from others 
and with others. In this way, CORONET helps to establish learning networks in 
which people of equal and different competence levels practice both individual 
and group learning, experience-based learning, learning with multiple activities 
and resources, and knowledge sharing. 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 275 

13.2.1 Tbe E-Learning Metbodology CORONET-Train 

Collaborative learning is generally characterized by the goal of augmenting and 
optimizing the shared knowledge of a group or community, but it is also meant to 
support individual knowledge development. This is reached by cooperatively 
working on a project, negotiating on the learning goals and problem definitions, 
and collectively constructing knowledge in the group. To realize collaborative 
learning processes, a learning community has to be established. Learning 
communities are characterized by four factors: an individual and collective 
learning process, experienced-based learning, learning with multiple activities and 
resources in the group, and sharing of knowledge. A learning culture is practiced 
that is focused on the active participation of every group member. In this context, 
the group members are not alliearning the same contents at the same time; rather, 
they are developing their knowledge and skills according to their own needs and 
interests, but in a way that the whole group can profit from afterwards. So, 
different learning interests and the development of different kinds of expertise are 
accepted and actively supported. 

CORONET -Train offers three c1asses of methods, each method consisting of a 
set of processes and activities: 

I. Learning methods: Five methods (case-based learning, theme-based learning, 
Web-based training, Web-based tutoring, and knowledge sharing) define 
learning processes 1 and activities that are adequately tailored to specific 
learning situations and learning needs of software engineers. 

2. Knowledge transfer methods: Three methods (training, tutoring, mentoring) 
defme processes and activities that subject matter experts can apply in order to 
disseminate their know-how and help software engineers satisfy their learning 
needs. 

3. Knowledge engineering methods: Four methods (authoring, structuring, 
administration, management) define processes and activities that are needed to 
develop, structure, and maintain learning resources, to setup and maintain the 
software infrastructure, to adrninister the users of the infrastructure, and to 
introduce and manage the learning environment. 

A learning scenario is an implementation of one or more CORONET -Train 
methods or parts of them (Le., processes and their activities). In a learning 
scenario, processes and activities are adapted to a particular learning situation and 
supporting software infrastructure. The purpose of learning scenarios is to 
organize and maintain relationships among individuals involved in a learning 
situation by defining the sequence of tasks and their associated actions, which 
have to be performed in order to reach a learning objective. 

1 In CORONET-Train, the term "learning process" defines a sequence oflearning activities. 
This differs from the usage of the term "learning process" in educational science, where 
it refers to the internal processing ofinformation by alearner. 



www.manaraa.com

276 Althoff and Pfahl 

13.2.2 The ]~-Learning Infrastructure WBT-Master 

The platform WBT-Master provides CORONET users with the adequate 
functionality needed to perform selected learning scenarios, including: 

1. E-learning (EL) functionality: learning courses; learning goals; structured 
discussion forums; virtual c1assrooms; brainstorming sessions; mentoring 
sessions; progress tracking, testing and certification. 

2. Knowledge management (KM) functionality: knowledge cards; knowledge 
domains; personal desktop; content taxonomies. 

Conventional Web-based training (WBT) systems utilize HTML documents as 
learning resources. Ordinary Internet hyperlinks (references) are used to create 
such navigable data structures as courses, chapters, books, and so on. Typically, 
various WBT tools such as annotations, e-mail, discussion forums, and personal 
bookmarks are used to add additional value to the basic documents published on 
the WWW. WBT-Master considerably extends this state-of-the-practice 
technology [29] in the following way. 

1. In addition to existing data structures based on hypermedia links, it introduces 
composite learning resources such as learning units, learning goals, knowledge 
cards, mentoring sessions, knowledge domains and more. 

2. WBT -Master enables synchronous and asynchronous communication and 
collaboratiolll between distributed teams and team members. This includes 
discussion forums, brainstorming sessions, chats, annotation facilities, and so 
forth. 

3. In addition to especially prepared training materials, anything that is part of the 
stored organizational knowledge, such as technical documents, presentations, or 
the experience of employees, can be used as learning resources via the Internet 
or intranet. The system essentially supports the involvement of human subject 
matter experts as learning resources. 

4. Since all information services operate with unified data structures, results of 
any collaboration (discussion sessions, brainstorming sessions, annotations, 
question - answer dialogues, etc.) can be seen as new training material and can 
be reused by others. 

13.2.2.1 Collaborative Learning with WBT -Master 

By using WBT-Master, knowledge workers (learners) in a software organization 
can perform a broad range of collaborative learning scenarios as described by the 
methodology CORONET -Train. 

1. Web-based training: An experienced knowledge worker acting as a trainer 
conducts training sessions on a regular basis. In collaboration with a 
courseware author the trainer develops a learning course related to a specific 
subject mattl~r and makes an announcement on the WBT-Master server [24]. 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 277 

Potential learners may access the announcement board and subscribe to a 
particular training session. 

2. Web-based tutoring: This scenario is similar to the Web-based training 
scenario. The principal difference is that after having analyzed the subject 
matter, the tutor or trainer does not trigger the development of courseware, but 
instead collects a number of heterogeneous documents (text files, slide 
presentations, simulations, etc.), which can be used for the training session. The 
tutor uploads the documents to the WBT-Master server and defines a special 
training schedule recommending which document should be accessed at each 
particular stage of the training session, and what actions are expected from a 
learner working with the document. 

3. Web-based mentoring: The starting point of this scenario is that knowledge 
workers (individuallearners or a group of learners) need to solve a particular 
problem. The learners have a stable partnership with an experienced knowledge 
worker who can act as amentor. The mentor is supposed to help the learners 
acquire new knowledge in the related subject matter area. The mentor can 
access the server to initiate a special one-to-many synchronous 
communicational session (a so-called mentoring session) with interested 
learners [30]. The mentor explains the problem solution by guiding the 
mentoring session. The mentor may select a document which is automatically 
visualized on the learners' screens, provide an explanation (audio or video) 
attached to the document, or request the learners to perform an action that may 
be monitored from the mentor's screen. Similarly, the learners may provide 
comments on the shared document or ask questions related to it. 

4. Web-based knowledge mining: Knowledge workers need learning material on a 
particular subject matter to acquire additional knowledge. They are aware of a 
knowledge network supported by the WBT -Master server, containing relevant 
information about documents or subject matter experts. The information is 
structured by means of knowledge cards, which can be used by the knowledge 
workers to find relevant leaming resources, work through relevant materials, 
and communicate with experts and with others working on similar materials. 

5. Web-based knowledge delivery: Knowledge workers need to acquire 
knowledge on a particular subject matter in a long-term perspective. They are 
aware of a WBT -Master server that contains relevant information and is 
periodically updated by the subject matter experts' The knowledge workers 
access the server to configure their personal profiles in such a way that relevant 
learning resources are automatically delivered to their personal desktops and 
they are automatically notified about new learning resources. Communication 
with subject matter experts and peers working on similar learning resources is 
possible via the desktop. 

6. Web-based collaborative problem solving: A number of knowledge workers 
need to solve a particular problem. They are aware that the WBT -Master server 
can facilitate a so-called "brainstorming session". A moderator is selected to 
initiate and organize the brainstorming session to elaborate a solution to the 
problem. Other knowledge workers that join later can catch up with the 
problem solving process asynchronously from the recorded session. 



www.manaraa.com

278 Althoff and Pfahl 

7. Web-based gathering and integration of personal knowledge: An experienced 
knowledge worker needs to gather know-how and experience from other 
experts on a particular topic (e.g., a specifie software proeess), and would like 
to present this knowledge in the form of a training resouree. Typical examples 
of this applieation are eollaborative document writing or cooperative 
courseware authoring [22, 34]. The expert group seleets a moderator and 
discusses the topie via a structured diseussion forum, and works cooperatively 
to develop relevant documents through shared folders. The subjeet matter 
experts write eontributions, attach documents from their loeal drives, or provide 
references to relevant documents available from the Internet. Finally, the 
structured diseussion (or seleeted eomponents of it) is converted into a 
homogeneous HTML doeument or a new learning unit. 

8. Web-based virtual c1assroom: A virtual elassroom is used for highly interactive 
and intense training courses in which a trainer/tutor wants to retain the human 
element of interaction while relying upon an IT infrastrueture. The Virtual 
Classroom ean be seen as a working place for the trainers/tutors in which they 
prepare training sessions for a group of trainees. For each training session, a 
trainer/tutor ereates a new classroom library by seleeting the neeessary learning 
resources and moves them to the trainees' computers. Trainers/tutors can also 
deseribe the learning paths to be followed by the trainees in setting up a 
elassroom curriculum. 

13.2.2.2 Knowledge Management witb WBT -Master 

The eorporate memory, or experienee base (EB), of a software organization may 
be seen as a combination of resourees and operations applieable to such resourees. 
The operations allow users to aecess and create new resources, or to add an 
additional value to existing resources. The WBT-Master platform works with the 
corpora te memory by offering the possibility to aceess and proeess huge 
collections of doeuments, portals, on-the-fly material (i.e., annotations to 
doeuments, eontributions to diseussions, question - answer dialogues, and so on) 
and personal knowledge of individuals in the organization. The resourees of the 
corporate memory ean be seen as basic learning resourees. Basic learning 
resourees may be organized into eomposite structures that serve to aceomplish a 
partieular learning or problem-solving task. Learning resourees eombined into a 
eomposite structure may be seen as a new learning resource. In other words, 
learning resourees may always be reused by a member wise inelusion of these 
resourees into other ones. 

WBT-Master Content Structuring Paradigms 
WBT-Master supports a hierarchy of content structuring paradigms, and is based 
on sound prineiples of multilevel data modeling [28]. The overall eontent 
structuring model is defined as three levels of content abstraction: 

1. Basic elements or indivisible chunks of multimedia information (documents, 
portals, questionnaires): Basic elements can be seen as actual pieces of 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 279 

information presented in intemationally recognized data-encoding formats. For 
example, basic elements can be HTML documents, WinWord or PDF files, 
PowerPoint presentations, plain GIF images, and so on. No interdocument 
relationship is supposed to be defined on this level. 

2. Logical composites (learning units, leaming goals, discussion threads): Logical 
composites combine a collection ofbasic elements and other logical composites 
into a navigable structure. It can be primitively seen as a collection of 
hypermedia links that are separated from a document content and combined as 
a new entity called a logical composite. It should be noted that such composites 
deal with interdocument relationships and cannot affect a document content. 

3. Semantic composites (i.e., Knowledge Cards, Knowledge Domains, Content 
Taxonomies): Semantic Composites provide a semantic structuring of server 
content as such. For example, any basic element and logical composite can be 
attached to special knowledge cards. In this case, materials get a special 
meaning defined by the card and can be inferred as so-called best-match 
training resources for users interested in this or another related topic [32]. 
Similarly, basic elements and logical composites may be put into a number of 
content taxonomy folders and accessed by browsing the semantic net [33]. 

Document Repositories 
Alternatively to logical and semantic content structures supported by WBT -Master 
all basic elements and 10gical composites are stored as files into so-called physical 
repositories on the server. A particular repository is created by the server file 
management system as a directory possibly containing files and other 
subdirectories. While WBT -Master logical and semantic composites may be 
accessed only by means of the system tools, the WBT -Master repository may be 
accessed as ordinary directories by means of content management tools (say, for 
example, by means of a file browser locally or by means of an FTP client 
remotely). 

WBT-Master supports five types of repositories: shared files (public level), 
group resources (restricted to defmed groups of knowledge workers), on-the-fly 
material (group level), personal files, and personal bookmarks. 

Knowledge Cards 
Knowledge cards offer a simple but practical way of accessing preferred learning 
resourees. A knowledge card is the description of a specific concept. For example, 
a semantic entity ''requirements inspection" may be seen as a knowledge card. 
knowledge cards may be combined into a semantic network using just one type of 
relationship: "is apart of' (the inverse relationship may be called "consists of'). 
For example, the knowledge card "perspective based reading" (PBR) [12] may be 
related as "is a part of' to the knowledge card "requirements inspection". 

The semantic relationships essentially define a graph structure (as opposed to 
just a hierarchy). For example, the same knowledge card "PBR" may be defined 
as a part of "quality assurance", "verification techniques", etc. Moreover, there 
may be knowledge cards defining areas of personal interest, say "expertise of 
Mr./Ms. XY" which may also refer to the previously mentioned card PBR etc. 



www.manaraa.com

280 Althoff and Pfahl 

Each knowledge eard may provide aeeess to a number of associated learning 
resourees. For example, a learning course "PBR teehniques" may be assoeiated 
with the knowledge eard "PBR", other learning units, learning goals, diseussion 
forums, documents, ete. may be associated with the same knowledge eard. 
Moreover, WBT-Master eonsiders other users (''peer helpers") to be learning 
resourees. Tbus, people may be assoeiated with a knowledge eard, too. 

Whenever eontent providers eontribute to the server with new materials, they 
are supposed to assoeiate them with one or more knowledge cards or ereate a new 
knowledge card and place it into a proper position within the semantie network. 
Tbis eould also be done by a speeially designated role, i.e., the knowledge 
engineer. 

Tbe semantie net deflned by the set ofknowledge eards offers the possibility to 
infer learning resourees using semantie relationships. Whenever a user accesses a 
knowledge eard, the system infers all learning resourees that are assoeiated with 
this partieular knowledge eard and with knowledge eards related to it. Tbe 
advantage is that knowledge workers are not supposed to browse through 
countless learning resourees but ean simply browse the semantie net consisting of 
previously defined knowledge eards. 

Knowledge Domains 
Tbe main purpose of knowledge domains is to create and maintain well-structured 
repositories. Tbe knowledge domain eoneept allows for imposing different types 
of data struetures on top of existing eollections of learning resources, or - seen 
from another point of view - for reusing learning resources in different contexts 
[31]. 

A knowledge domain ean be deflned as a set of documents belonging to a 
number of predefined semantic categories, where each semantic category is linked 
to a set oflearning resourees that are instances ofthe category. Tbe definition ofa 
semantic category ineludes the definition of a number of attributes, which are 
properties of instanees of the semantie eategory. An attribute is a standard key
value pair. A value of an attribute is defined to be of a specified type, i.e., a value 
may be a string, a number, or a selection from a list of possible values. For 
example, the category "author" may have two associated attributes: name (string) 
and e-mail address (string). Similarly, the eategory ''module'' may have just one 
associated attribute - programming language (selection from a list oflanguages). 

The knowledge domain schema deflnes eommon properties of all the eategory 
instances. Any resouree may be inserted (stored) into a partieular knowledge 
domain as an instanee of a predeflned category. For example, if a new instance of 
the category "module" is ereated, the system automatically requests to select a 
programming language (attribute predefmed for the category), and to provide 
referenees to the module author and a partieular projeet (relationships predeflned 
for the eategory). 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 281 

13.2.3 Open Issues with CORONET 

As we have shown above, the EL system CORONET supports to a certain extent 
all elements of the knowledge creation and delivery cycle, from knowledge 
identiflcation via knowledge structuring to knowledge dissemination. However, as 
evaluations have demonstrated [43], there is not sufficiently effective guidance of 
learners and knowledge providers for efficient reuse of existing learning 
resources, and in particular for capitalizing upon experience from using learning 
resources in various contexts, i.e., experience learning. In the next section, we 
present proven innovative EM methods and tools that, if integrated with EL 
systems such as CORONET, will make software competence development more 
sustained by creating a longer lasting impact of Web-based training at the 
workplace and (collaborative) learning on the job. 

13.3 Recent Innovations in Experience Management 

Several methodologies have been introduced that can be used for developing 
experience management (EM) applications [14,56], also called experience based 
information systems (EBIS). The most detailed methodology for the build-up and 
operation of EBIS is design and implementation of software engineering 
repositories DISER. It consists ofthe following nine main steps (Fig 13.1): 

1. Developing avision for the EBIS 
2. Setting goals 
3. Setting subject areas 
4. Defining usage and fllling scenarios 
5. Modeling the experience ontology 
6. Implementing the EBIS 
7. Going onIine with the EBIS 
8. Maintaining the EBIS 
2:.... Integrating existing and generating new knowledge 

DISER usua1ly starts with developing avision for the EBIS. This means going 
through all the following eight steps on a rather abstract level. Such avision 
explicates in particular, where the experience transfer can be supported by the 
EBIS. Based on the vision, concrete goals are deflned that are to be achieved. This 
occurs with consideration of the interests of the stakeholders. With each of these 
goals appropriate success criteria are associated that allow a measurement of the 
progress concerning the goals. By vision and goals, in the next step, relevant 
topics, which can contribute to achieving the objectives, are identifled and 
selected. As soon as objectives and relevant topics are known, the acquisition and 
use of experience can be described by scenarios. Through the scenarios, the need 
for information is captured in more detail. This allows for the development of a 
representation pattern for experience (ontology), which is usually implemented 
based on a rapid application development approach. Based on the prototype 



www.manaraa.com

282 Althoff and Pfahl 

system the continuous operation of the EBIS is prepared, including business 
process integration, evaluation, and maintenance, as weIl as the integration of 
available knowledge. DISER includes the creation of a top-down rationale for the 
implementation (pattern and knowledge acquisition plan). Tbis rationale 
contributes to the understandability of the EBIS by ensuring tractability from the 
components of the ontology and its related knowledge acquisition plan over 
scenarios and relevant topics to the objectives of the EBIS. 

~ion I Reference Model; (2) Prototype; (3). Operation 

Fig. 13.1. Development and operation of experience management applications 

In the following seetions we focus our presentation on two steps of the DISER 
methodology, that is, the scenario of software process learning and the ftamework 
for experience base (EB) maintenance. Both elements were only recently 
described in full detail. If applied, they cOnSiderably improve the current stateof 
the practice of EM. More importantly, both elements are ideal candidates for 
resolving the open issues ofthe e-Iearning (EL) system CORONET. Tbe process 
learning scenario, if implemented in CORONET, provides guidance on how to 
systematically deal with experience captured by the various knowledge 
engineering fimctions implemented in WBT-Master. Tbe EB maintenance 
framework will help to keep under control the continuously growing repository of 
documentedknowledge and experience, that is learning resources (LRs) in the 
form of learning courses, learning goals, and so on, and lessons learned (LLs) in 
the form of discussion tbreads and annotations. 

13.3.1 Experience-Based Process Learning 

One important characteristic of experience is that it is to a high degree context 
dependent [56]. In software engineering a very natural context is that of the 
project in which the respective software is developed. Tbus, experience can be 
captured while such a project is running or, for example, during project wrap-up. 
F or this kind of experience the context, that is, the characteristics of the respective 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 283 

project, also has to be documented [15], because clues are required where to reuse 
the stored experience. 

Another kind of context of special importance for software organizations is the 
respective business process an experience can be associated with. Examples for 
such business processes at Fraunhofer lESE are "industrial project acquisition", 
"conference participation planning", or ''project performance". As a consequence, 
captured experiences are associated with the project(s) they occurred in as weIl as 
with the respective business process. This reflects the current state of the art in 
EM [6, 56]. We also call this kind of experience modeling the 2P-integration 
approach of EM. 

As with projects, specific management is required for a software organization's 
business processes. With process leaming we denote the activity of an 
organization to leam about its processes and process modeling techniques. Process 
leaming includes creating and sustaining process models that are accepted by an 
organization's members, adapted to organizational changes on demand, and 
continuously enriched with experience from the operating business of the 
organization. Thus, process leaming offers a natural opportunity for experience 
capture. We denote this combination as experience-based process learning. 

In practice, experience-based process learning can be implemented using an 
electronic discussion forum. It offers a software organization's members an 
opportunity to participate in discourses about the respective process models. 
Completed discourses and comments are analyzed and summarized to improve the 
discussed process models and to capture lessons leamed from the participants. 
This approach can be supported using text-mining techniques, as currently done in 
the indiGo project [4]. 

13.3.2 Experien.:e Base Maintenan.:e 

This seetion presents the DISER framework for EB maintenance and explains how 
it is handled within an EBIS. The following, broad definition of maintenance is 
used: The goal of maintenance is to preserve and/or improve the value of an EBIS 
for the respective organization [41]. The main driving force ofmaintenance is the 
experience factory (EF) team. The EF team either performs the maintenance 
activities themselves or distributes them among other organization members. 

Compared to a dedicated, fulI-time organizational unit performing 
maintenance, the distribution of maintenance and the often part-time basis of the 
EF team demand both increased coordination and tracking of the execution of 
maintenance activities and capture of the knowledge needed during maintenance. 
The second point also allows delegation of parts of the maintenance activities to 
lower ranking members of an organization. In the long run, the effects of 
personnel turnover in the EF team are minimized. However, one needs to take the 
different forms of maintenance knowledge into account: quality knowledge, 
maintenance process/procedure knowledge, and maintenance decision knowledge. 

Quality knowledge describes how the quality of the EBIS is measured and the 
current status of the system with respect to quality as weIl as the rationale for the 



www.manaraa.com

284 Althoff and Pfahl 

definition of quality [40]. Quality knowledge deals with quality aspects of the 
EBIS as a whole, that is, the EB's content and conceptuaI model and the retrieval 
mechanisms, usability of the user interface, and so on. An example of content
related quality knowledge is a definition of measures for the utility or value of 
single experiences (cases) [42]. There are several types of quality knowledge that 
are related as folIows: The measures defme what data is collected. The data 
collection is performed automatically or manually by respective data collection 
procedures. The collected data is analyzed using predefmed models or procedures. 
The results of the analyses can be used for justifying an EB and as input for 
decisions about maintenance [41,42]. 

Maintenance process and procedure knowledge defme how the actual 
maintenance activities are performed. The actuaI maintenance can be performed as 
a mix of automatically and manually performed activities. For the automatically 
performed activities (maintenance procedures), tool support by components of a 
case-based reasoning (CBR) system or separate tools is required. The remaining 
activities have to be performed manually (maintenance processes). To improve 
guidance for the maintainers, descriptions of these processes are provided (e.g., 
detailed description of the acquisition of new cases through collecting cases, 
reviewing these cases, and publishing them in the case base, see DISER [56] and 
INRECA methodology [14] for examples). To combine manual and automatic 
maintenance, 11 maintenance process can have automated subprocesses or steps, 
which use input from or provide input for manually performed steps. 

Maintenance decision knowledge links the quality knowledge with the 
maintenance process knowledge. It describes the circumstances under 
maintenance processeslprocedures should be executed or checked for execution. 
Such maintenance knowledge can be described in an informal manner as 
maintenance policies [38], which define when, why, and how maintenance is 
performed for an EBIS. The ''why'' addresses not only the reason for maintenance 
but also the expected benefits of the maintenance operation, which should be 
related to the objectives ofthe EBIS or to the general goal ofmaintenance (i.e., to 
preserve and improve the EB's value [41]). Since these objectives are typica1ly 
very highlevel, it is not very meaningful to address the EB objectives directly. 
Instead, we use a refinement of the objectives: the quality criteria from the 
evaluation program or the recording methods. The "how" is a combination of 
maintenance processes and procedures with additional steps as "glue". 

One solution to coordinating experience and capturing the relevant maintenance 
knowledge is the evaluation and maintenance of software engineering repositories 
(EMSIG), which is a subpart of the DISER framework [41]. This framework 
includes a method and a technical infrastructure and is currently being developed 
and employed tor various EBISs. The evaluation component supports analysis of 
the content and usage of services, and is responsible for the quality and value 
issues and deals with the ''why'' of maintenance. The results of these analyses 
provide the basis and input for making maintenance decisions. The maintenance 
assistance component supports the decision-making task by exploiting the 
evaluation in order to propose change requests (Le., basic maintenance activities to 
be done). This deals mainly with knowledge issues and the ''what'' of maintenance 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 285 

("what" to do for "what" knowledge/experience) and has to consider the "why" 
Gustification from evaluation in the form of expected benefits versus expected 
maintenance effort). To support the task of learning about maintenance, typical 
tasks or patterns of maintenance activities are identified and captured ("distill 
maintenance guidelines"). These maintenance guidelines can be used for 
generating change requests automatically. The maintenance management 
component supports the task of organizing maintenance and, thus, is responsible 
for handling the change requests in an appropriate order. When a change request is 
executed, the maintenance primitives component provides the methods, 
techniques, and/or tools to perform the basic maintenance activities as demanded 
by the change request. 

13.4 Integrating Experience Management with E-Leaming 

In this section we present our vision on how state-of-the-art e-leaming (EL) 
systems like CORONET can be further improved by applying systematic 
experience management (EM) using the innovative DISER methodology. In 
particular, the process leaming scenario and the experience base (EB) 
maintenance frarnework described in Sects. 13.3.1 and 13.3.2, respectively, are 
well-suited to resolve open issues of CORONET. These include lack of guidance 
on how to efficiently and effectively capitalize upon feedback and experience, and 
lack of control over the continuously growing repositories of leaming resources 
(LRs) and lessons learned (LLs). 

But we will go even one step further than simply transferring the 2P-integration 
approach ofprocess leaming to CORONET. In the 2P-integration approach a two
dimensional context (project and process information) is used to determine the 
best-matching resources to be offered to a knowledge worker in a specific (work 
or learning) situation. However, not every software engineer has the same 
qualifications, interests, and needs. Therefore, a third context dimension, the 
"person" dimension needs to be considered. Based on this insight, and since EL 
quite natura1ly puts its main focus on the people in a software organization, we 
extend the 2P-integration approach to a 3P-integration approach, capturing the 
project, process, and person dimensions of software development. 

13.4.1 The 3P-Integration Approach 

Using effective and efficient software project management as the subject matter, 
Fig. 13.2 offers a scenario that illustrates the 3P-integration approach to 
experience-based working and learning. 



www.manaraa.com

286 Althoff and Pfahl 

Context Content 

Projed 
Project (P1) Process (P2) Person (P3) LLPI ,P2.P3 LR PI.I'2,P3 

Initialise 

~ I.--------r--------+--------+--~----~--~ 

Perfonn 

PI, P2, P3 

Wrap-u 

maintain repositories 

Legend: 
PI = project dimension, P2 = process dimension, P3 = person dimension 
Context Repository: 
ProjD = project descriptions (characteristics such as duration, effort, type, etc.), 
ProcD = process descriptions (textual and graphical representations ofprocess models), 
PersD = person description (business card with contact details, experience, role, status, 

expertise etc.) 
Content Re osito : LL = lesson leamed, LR = learnin resource 

Fig. 13.2. The 3P-integration approach 

In the scenario, we differentiate between three phases: project initiaIization, 
project perfonnance, and project wrap-up. We consider two types of content 
(experiences or LL and LR) and three types of context (project (PI), process (P2), 
and person (P3» . The scenario describes how these types of content and context 
can be used to satisfy infonnation and learning needs of the project initialization 
phase, problem-solving needs of the project perfonnance phase, and packaging 
needs ofthe project wrap-up phase. This nicely exemplifies how an integrated EM 
and EL approach can support management of software projects and learning about 
(and for) software project management. 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 287 

13.4.1.1 Project Initialization 

At project start, software engineers may have two types of needs: information 
needs and learning needs. 

In order to satisfY their information needs, involved roles: that is project 
manager (PM) retrieve all relevant information, such as: 

1. Descriptions of similar projects: Similarity is based on current project (attribute 
PI); example: Publicly funded EU project with research partners X, Y, Z, and 
industry partners A, B, C, 

2. Descriptions of related processes: Relationship is based on current project 
(attribute PI) and process (attribute P2); example: Process for detailed 
planning, which might vary according to project type 

3. Descriptions ("business cards") ofrelated persons (e.g., subject matter experts): 
Relationship is based on current project (attribute PI), process (attribute P2), 
and person (attribute P3); example: All experts for detailed planning with 
experience in similar projects. Since PM is an expert in CPM and PERT, no 
expertise is needed on that, but since PM has no experience with cost 
estimation, expertise on that is needed. 

In order to satisfY their learning needs, involved roles (i.e., PM) may: 

1. Retrieve all related LLs (e.g., offering guidelines, tips and tricks, and so on). 
2. Retrieve all related LRs (e.g., offering short Web-based training courses and 

explanations with an adequate instructionaI design). It should be noted that the 
presentation of the LRs depends on the personal characteristics of the PM, e.g., 
learning style and competence level. If adequate LRs are not available as-is, 
they can be generated either (semi-)automatically [18] or by "authoring in-the
small" [22]. 

13.4.1.2 Project Performance 

While the project is running, information and learning needs can be satisfied since 
they occur in the same way as during project initiaIization. When problems occur 
that cannot be resolved by reading the process description, there are three 
possibilities to get help: 

1. Retrieval of a solution to the same or similar problems that occurred in the past 
(LL) 

2. Retrieval of related learning materials (LR), suited to the context and the 
personallearning style 

3. Retrieval of contact information to relevant experts (PersD) 

The prioritization of the retrieved information is based on a set of mIes, for 
instance, generally experts should not be bothered with questions if the problem 
can be solved by consulting an LL or a by refreshing the knowledge by self
learning with an LR. 



www.manaraa.com

288 Althoff and Pfahl 

13.4.1.2 Project Wrap-Up 

At the end of the project, a new project description (ProjD) and a set of lessons 
learned (LLs) are generated. In a simple setting, the LLs are derived from wrap-up 
interviews. In a more advanced setting, they can be (partly) derived from 
annotations on project descriptions, process descriptions, person descriptions, LLs, 
and LRs (see also Sect. 13.3.1). Based on the analysis ofthe LLs, existing ProDs, 
PersDs, and LRs are updated, and/or new ProcDs, PersDs, and LRs are created. 

13.4.2 Secondary Considerations and Outlook 

To base competence development of software engineers exclusively on reading 
the related process documentation and learning from experience of previous 
(similar) experience (e.g., packaged into tips and tricks) is not always sufficient. 
There are two reasons for that: 

1. Complexity: Processes, methods, or tools are sometimes very complex and thus 
difficult to apply correctly from the beginning; thus, in order to avoid mistakes 
during application (e.g., from misunderstanding) some sort of initial practice in 
a training situation can be beneficial. 

2. Motivation: Theoretical knowledge about processes, methods, and tools is often 
too boring to be acquired by simple reading of the related documentation; thus, 
in order to avoid mistakes during execution (e.g., from omission) some sort of 
motivational training that activates the learner can be beneficial. 

Thus, it is not sufficient to only offer best-matching LLs in real work situations, 
but it is actually necessary to provide adequate LRs at the right time and with little 
search effort. In order to do so, the following research problems have to be 
tackled: 

1. Which parts ofa process description (and associated methods and tools) need to 
be trained/taught before their first application? 

2. How must the training material be prepared in order to be most effective? 
3. Howand when do training materials have to be delivered to be most effective? 
4. How can learning materials (Le., their content, their presentation, and their 

delivery) be adequately adapted to the personal profiles (previous knowledge, 
preferred learning style, etc.) of software engineers? 

Even though pure EM without EL is insufficient - as we have argued 
above - we believe that most of these questions can be answered by 
systematically applying the 3P-integration approach. Once the problems have been 
resolved, new LRs can be generated by reusing authentie project experience (as 
captured in LLs), for instance, real application examples, typical mistakes, tips 
and tricks, and enriching them with didactically relevant enhancements (e.g., 
explanations. exercises, tests). As soon as an initial set of LRs has been defined 
and stored in a learning resource base (LRB), the LRs associated with a particular 
process description can be treated in the same way as the process description 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 289 

itself, that is, they can undergo the same maintenance cyc1e of packaging, 
evaluation, selection, and processing as LLs that are stored in an EB. 

Work Process 

Skill t 
Profile 

SE Knowledge Map 
Process Models 

Product Modets 

Resource Models 

Goal 

leaming: 
• process-integrated 
• process..arlented 

leaming Materials ~ I 
Curricula L.....--JIl 
Tacit Knowledge (Experts & Peers) 

Fig. 13.3. Active guidance of software engineers through e-coaching 

Eventually, experience-based EL systems like CORONET, will switch from 
reactive to proactive [27]; that is, instead of requesting a software engineer to 
retrieve adequate LRs as a learning need occurs (puIl strategy, process-oriented 
learning), the EL environment automatically offers adequate LRs as soon as it 
detects a potential need during the perfonnance of a particular development 
proeess by the software engineer (push strategy, proeess-integrated learning). The 
automatie offering ofadequate LRs as the need occurs ean be called "e-coaching". 
Fig. 13.3 visualizes the interplay between proeess-oriented and process-integrated 
learning as weIl as the use of a eombined EB and LRB to support e-eoaehing. 

13.5 Summary and Conclusion 

Integrating experienee manageinent (EM) and e-learning (EL) provides a 
eombination of eontinuous learning and problem solving with experience-based 
preparation, usage, and improvement of learning resourees (LRs). Packaged 
experience in the form oflessons learned (LLs) provides the starting point for the 
design ofLRs. Systematic EM aecording to the DISER method provides guidance 
on how to incorporate and maintain LRs in an experience-based information 
system. The combination ofEM and EL offers several benefits for the user: 



www.manaraa.com

290 Althoff and Pfahl 

I. First, there is no need for the user to decide on one approach or the other, since 
both can be used in an integrated fashion. 

2. From the EL perspective, LRs can be based on already available experience. In 
addition to reusing LRs and collecting feedback on them, a continuous 
improvement process can be established, thus yielding a longer-Iasting and 
deeper learning effect (sustained learning). 

3. From the lEM perspective, a new type of content (LRs) can be offered to 
support software engineers in their professional work. The LRs supplement the 
packaged work experience (LLs), and thus further strengthen case-based, 
situated, and authentie learning [37]. 

Acknowledgement 

The work priesented in this chapter was partly supported by the European 
Commission (EU Project CORONET, Grant No. IST-I 999-11 634) and the 
German Ministry of Education and Science (BMBF Project indigo, Grant No. 
0IAK95IA). 

References 

1. Aha D.W., Becerra-Fernandez 1., Maurer F., Munoz-Avila H. (Eds.) (1999) Exploring 
synergies of knowledge management and case-based reasoning. In: Papers from the 
AAAI 1999 workshop (Tech. Report WS-99-10), AAAI Press, Menlo Park 

2. Aha D., Weber R., (eds.) (2000) Proceedings of the workshop on intelligent lessons 
learned systems at 17th national conference on AI (AAAI-OO). American association 
for artificial intelligence, Menlo Park, CA, WE-00-03, ISBN 1-57735-118-5 

3. Althoff K.·D. (2001) Case-based reasoning. In: Chang, S.K. (Ed.), Handbook on 
software engineering and knowledge engineering. Vol. 1 "Fundamentals", World 
scientific, Singapore, pp. 549-588 

4. AlthoffK.-D., Becker-Kornstaedt U., Decker B., Klotz A., Leopold E., Rech J., Voss 
A. (2002) The indiGo project: enhancement of experience management and process 
learning with moderated discourses. In: Perner, P. (Ed.), Data mining in e-commerce, 
medicine and knowledge management, Springer, Berlin Heidelberg, New York 

5. AlthoffK.-D., Bomarius F., Müller W., Nick M. (1999) Using a case-based reasoning 
for supporting continuous improvement processes. In: Proceedings of German 
workshop on machine learning, Technical report, Institute for image processing and 
applied informatics, Leipzig, Germany 

6. Althoff K.-D., Decker B., Hartkopf S., Jedlitschka A., Nick M., Rech J. (2001) 
Experience management: The Fraunhofer lESE experience factory. In: Proceedings of 
industrial conference on data mining, Institut für Bildverarbeitung und angewandte 
Informatik Leipzig 

7. Althoff K.-D., Wilke W. (1997) Potential uses of case-based reasoning in the 
experience-based construction of software systems. In: Bergmann R., W. Wilke W. 
(Eds.), Proc:eedings of the 5th German workshop in case-based reasoning, Center for 
learning systems and applications, University ofKaiserslautern, Germany 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 291 

8. Angkasaputra N., Pfahl D. (2002) Tbe CORONET system: a methodology-driven 
infrastructure for collaborative learning at the workplace. In: Proceedings of LLA'02: 
workshop week of special interest groups machine learning, intelligent tutorial 
systems, and adaptivity and user modeling in interactive systems of the GI (German 
Computer Society). Hannover, Germany, pp. 20-26 

9. Bartsch-Spörl B. (1987) Ansätze zur behandlung von fallorientiertem 
erfahrungswissen in expertensystemen. Kl, 4: 32-36 

10. Basili V.R. (1985) Quantitative evaluation of software methodology. In: Proceedings 
ofthe First Pan-Pacific computer conference, Melbourne, Austra1ia, Key note address 

11. Basili V.R., Caldiera G., Rombach H.D. (2001) Tbe experience factory. In: Marciniak 
lJ. (Ed.), Encyclopedia of software engineering, voLl John Wiley and Sons, New 
York, pp. 511-519 

12. Basili V.R., Green S., Laitenberger 0., Lanubile F., Shull F., Sorumgard S., Zelkowitz 
M. V. (1996) Tbe empirical investigation of perspective-based reading. In: Empirical 
software engineering 1: 133-164 

13. Basili V.R., Shull F., Lanubile F. (1999) Building knowledge through families of 
experiments. IEEE transactions on software engineering, 25: 456-473 

14. Bergmann R., Breen S., Göker M., Littich M., Manago M., Traphöner R. (2003) 
Developing industrial case-based reasoning applications: the INRECA methodology. 
In: State ofart survey, LNAI series, 1612, Springer, Berlin Heidelberg, New York 

15. Brandt M., Ehrenberg D., Althoff K.-D., Nick M. (2001) Ein fallbasierter ansatz für 
die computergestützte Nutzung von Erfahrungswissen bei der Projektarbeit. In: Buhl 
H.U., Huther A., Reitwiesner B. (Eds.), Information age economy, Procedings of 5th 
internationale tagung wirtschaftsinformatik, Heidelberg, Physica, pp. 251-264 

16. Bush V. (1945) As we may think. In: Atlantic monthly, pp.lOl-l08 
17. CarboneIl lR. (1970) AI in CAI: An artificial intelligent approach to computer 

assisted instruction. In: IEEE transactions on man machine systems 4: 190 ff. 
18. Caumanns 1 (2000) Automatisierte komposition von wissensvermittelnden 

dokumenten für das World Wide Web. Ph.D. thesis. Cottbus technical university, 
Germany 

19. Crowder N.A. (1959) Automatie tutoring by intrinsic programming. In: Lumsdane 
A.A., Glaser R. (Eds), Teaching machines and programmed learning, National 
education association, Washington D.C., USA 

20. Dietinger Th., Gütl Ch., Maurer H., Pivec M., Schmaranz K. (1998) Intelligent 
knowledge gathering and management as new ways of an improved learning process. 
In Proceedings ofWebNet 98, Charlottesville, USA, pp. 244-249 

21. Goodman D. (1987) Tbe complete hypercard handbook. Bantam Books, New York, 
N.Y.,USA 

22. Grützner 1., Angkasaputra N., Pfahl D. (2002) A systematic approach to produce small 
courseware modules for combined learning and knowledge management environments. 
In: Proceedings of 14th international conference on software engineering and 
knowledge engineering, New York, pp. 533-539 

23. Gunzenhäuser R., Herczeg M. (2001) Lehren und Lernen im Zeitalter der neuen 
digitalen Medien. In: i-com, 012001, Germany 

24. Grützner 1., Pfahl D., Ruhe G. (2002) Systematic courseware development using an 
integrated engineering style method. In: Natural and artificial intelligence systems 
organization: networked learning in a global environment, challenges and solutions for 
virtual education. World congress proceedings, Millet, ICSC-NAISO academic press 



www.manaraa.com

292 Althoff and Pfahl 

25. Halasz F.G. (1988) Reflections on notecards: seven issues for the next generation of 
hypermedia systems. Communications ofthe ACM, 31: 836-852 

26. Harasim L., Hiltz S.R., Teles L., TuroffM. (1995) Learning networks: a field guide to 
teaching and learning onIine. MIT press, Cambridge 

27. Heinrich E., Maurer H. (2000) Active documents: concepts, implementation and 
applications. Journal ofuniversal computer science 6: 1197-1202 

28. HeIic D., MaglajIic S., Scherbakov N. (1999) Educational materials on the WEB: data 
modeling approach. In: Proceedings of 22nd international symposium on multimedia 
and hypermedia systems, Rijeka, Croatioa, pp. 139-142 

29. HeIic D., Maurer H., Lennon 1., Scherbakov N. (2001) Aspects of a modern WBT 
system. In: Proceedings of international conference on advances in infrastructure for 
electronic business. Education, science, and medicine on the Internet, SSGRR 2001, 
CD-ROM pubIication {ISBN: 88-85280-61-7), paper 38 

30. HeIic D., Maurer H., Scherbakov N. (2001) Mentoring sessions: increasing the 
influence oftutors on the learning process in WBT Systems. In: Proceedings ofWorld 
conference ofthe Web society, Charlottesville, USA, pp. 515-519 

31. HeIic D., Maurer H., Scherbakov N. (2001) Knowledge domains: Aglobal structuring 
mechanism for learning resources in WBT systems. In Proceedings of world 
conference ofthe Web society Charlottesville, USA, pp. 509-514 

32. HeIic D., Maurer H., Scherbakov N. (2001) Accessing best-match learning resources 
in WBT environments. In Proceedings of world conference on educational multimedia 
and hypermedia, Charlottesville, USA, pp. 206-212 

33. HeIic D., Maurer H., Scherbakov N. (2001) Creating and maintaining semantic nets of 
learning resources in a WBT environment In: Proceedings of 24th international 
symposium on multimedia and hypermedia systems, Rijeka, Croatia, pp. 136-143 

34. Helic, D., Maurer H., Scherbakov N. (2002) Aspects of collaborative authoring in 
WBT systems. In: Proceedings of the international conference on advances in 
infrastructure for electronic business, Education, science, and medicine on the Internet, 
SSGRR 2002w. CD-ROM publication (ISBN 88-85280-62-5) 

35. Henninger S. (1995) Developing domain knowledge through the reuse of project 
experiences. In: Samadzadeh M. (Ed.), Proceedings of the IEEE European design 
automation conference, Brighton, Andleterre, pp. 186-195 

36. Kalfoglou Y., Menzies T., AlthoffK.-D., Motta E. (2000) Meta-knowledge in systems 
engineering: panacea or undelivered promise? The knowledge engineering review 
15: 381-404 

37. Kearsley G., Shneiderman B.(1999) Engagement theory: A framework for technology
based teaching and learning. URL http://home.sprynet.coml-gkearsley/engage.htm 
(accessed 20th April, 2003) 

38. Leake D., Wilson D. (1998) Categorizing case-base maintenance: dimensions and 
directions. In: Smyth B., Cunningham P. (Eds.) Advances in case-based reasoning 
LNAI, Springer, Berlin, Heidelberg, New York, pp. 196-207 

39. Lehner F. (2000) Organizational memory-Konzepte und Systeme für das 
organisatorische Lernen und das Wissensmanagement. Carl Hanser Verlag 

40. Menzies T. (1998) Knowledge maintenance: the state of the art. The knowledge 
engineering review, 14: 1-46 

41. Nick M., Althoff K.-D., Tautz C. (2001) Systematic maintenance for corporate 
experience repositories. Computational intelligence 17: 364-386 



www.manaraa.com

13 Making Software Engineering Competence Development Sustained 293 

42. Nick M., Feldmann R. (2000) Guidelines for evaluation and improvement ofreuse and 
experience repository systems through measurement programs. In: Proceedings of the 
3rd European conference on software measurement, Madrid, Spain, 1-11 

43. Pfahl D., Trapp S., de Teresa J., Oliveira J., Stupperich M., Rathert N., Molu R., 
Scherbakov N., D' Ambra J. (2002) CORONET final report. Fraunhofer lESE, 
Technical Report no. 045.02/E. URL: http://www.iese.thg.deJcoronetJ (accessed 20th 
April, 2003) 

44. Probst G., Romhardt K. (1998) The components of knowledge management - a 
practical approach (German). URL: www.cck.uni-kl.de/wmk/papers/publicIBausteineJ 
(accessed 20th April, 2003) 

45. Rech J., Decker B., Althoff K.-D (2001) Using knowledge discovery technology in 
experience management systems. In: Proceedings of the workshop on Maschinelles 
Lernen (FGMLO I), GI-workshop Lernen-Lehren-Wissen-Adaptivität (LL WAOI), 
Universität Dortmund, 8.-12. Okt. 2001 

46. Rombach H.D., Ulery B.D. (1989) Establishing a measurement based maintenance 
improvement program: lessons learned in the SEL. In: Proceedings of the conference 
on software maintenance, New York, USA, pp. 50-57 

47. Romhardt K. (1998) Die Organisation aus der Wissensperspektive - Möglichkeiten und 
Grenzen der Intervention. Wiesbaden: Gabler Verlag 

48. Rosenberg. L.H. (2003) Lessons learned in software quality assurance. In: Aurum A., 
Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge. 
Springer, Berlin Heidelberg New York 

49. Ruhe G., Bomarius F. (Eds.) (2000) Learning software organizations - methodology 
and applications. Springer, Berlin Heidelberg New York, LNCS 1756 

50. Schank R.C. (1982) Dynamic memory: a theory oflearning in computers and people. 
Cambridge university press, Cambridge, UK 

51. Schank R.C., Abelson R. (1977) Scripts, plans, goals, and understanding. Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, USA 

52. Shepperd M. (2003) Case-based reasoning and software engineering. In: Aurum, A. 
Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge, 
Springer, Berlin Heidelberg, New York 

53. Sleeman D., Brown J.S. (1982) Intelligent tutoring systems. Academic press, 
London, UK 

54. Skinner B.F. (1954) Science of learning and the art of teaching. In: Harvard 
educational review, 2: 86-97 

55. Stolpmann M., Wess S. (1998) Optimierung der Kundenbeziehungen mit CBR 
systemen-Intelligente Systeme für E-Commerce und support, Addison Wesley 
Longmann (Business and Computing), Bonn, Germany 

56. Tautz C. (2000) Customizing software engineering experience management systems to 
organizational needs. Ph.D. thesis, University of Kaiserslautern, Stuttgart, Fraunhofer 
IRB Verlag. 

57. Tautz C., Althoff K.-D. (1997) Using case-based reasoning for reusing software 
knowledge. In: Leake D., Plaza E. (Eds.), Case-based reasoning research and 
development, Second international conference on case-based reasoning (ICCBR97), 
Springer, Berlin Heidelberg New York, pp. 156-165 

58. Wenger E. (1998) Communities of practice: learning, meaning, and identity. 
Cambridge university press, New York, USA 



www.manaraa.com

294 Althoff and Pfahl 

Author Biography 

Dr. Klaus-Dieter Althoff received his diploma in mathematics and operations 
research from Aachen University of Technology, his Ph.D. in computer science 
and his Habilitation (post-doctoral degree) in computer science both from the 
University of Kaiserslautern. His past and current research interests include 
learning organization, organizational memory, experience factory, systematic 
improvement, knowledge acquisition, modeling, management, maintenance, 
evaluation, machine learning, case-based reasoning, data mining, and knowledge 
discovery. He was involved in a number of international and German events on 
learning software organization, case-based reasoning, knowledge acquisition and 
management, and machine learning as a co-chair, program committee member, 
and co-organizer. Currently he is competence manager for Systematic Learning 
and Improvement at Fraunhofer lESE. 

Dr. Dietmar Pfahl heads the Certifiable Education and Training (CET) department 
of the Fraunhofer Institute for Experimental Software Engineering (lESE), 
Kaiserslautern, Germany. His past and current research interests include software 
process improvement, change management, simulation-based learning, 
collaborative learning, and the integration of e-learning with knowledge 
management. Before joining Fraunhofer lESE in 1996, he was a research staff 
member with the German Aerospace Research Establishment (DLR), and a 
software engineering consultant with Siemens Corporate Research. Dr. Pfahl 
received a M.Sc. in applied mathematics and economics from the University of 
Ulm, and a Ph.D. in computer science from the University ofKaiserslautern. 



www.manaraa.com

Part 4 
Practical Guidelines for Managing Software 
Engineering Knowledge 

Ross Jeffery 

This part of the book concerns the last part of the technology infusion process
that of taking the processes, tools, or techniques and using them in an industrial 
setting. Few organizations have documented significant experience with explicit 
knowledge management in the software engineering domain. Those that have 
experience have not necessarily revealed the elements that provided positive 
returns and those that did not. 

To illustrate the difficulties in this area we discuss recent experience in 
Australia. Some four years ago we constructed an approach to managing 
electronic documents in a software R&D organization [1]. In this project we 
developed the databases and search tools to allow software developers in the 
organization to search all electronic documents and e-mails for relevant 
experiences that would assist in their current tasks. The feedback from users of the 
facility was positive, with comments indicating that advantages of the 
environment included saved time and the ability to fmd documents that previously 
had been unIocatable. Despite this, the facility was disabled. We believe this was 
because the system was not supported by senior management in the organization 
rather than because of lack of support at the lower organizational levels. 
Regardless of the reason, the experiment must be considered a failure, as the 
system did not survive. Practical guidelines for managing software engineering 
knowledge need to include technical, sociological, and organizational issues if we 
are to understand the criteria for industrial success. In Part 4 we begin the 
necessary broad-ranging discussion of these various aspects of knowledge 
management in software engineering. 

Part 4 includes four chapters founded on industrial experience with software 
engineering knowledge management. It is obvious that in these four chapters we 
are not able to address all of the technical, organizational and social issues that 
will be confronted in industry. Rather, we provide experience that exists at this 
point in time and that may inspire further investigation of the issues in other 
organizations. 

In order to provide a more general framework for the chapters in this part of the 
book, we first provide an outline of a software engineering experience repository 
that has been established over the last two years within a small software 
development organization in Sydney. We use this example because the experience 
repository developments within this organization have been driven by the needs of 
the organization and its staff and as such, the example provides insights into both 
needs and solutions for the particular context described. It is a possible framework 
within which we can position the following chapters. The experience repository is 



www.manaraa.com

296 Jeffery 

used regularly in this organization and provides a positive return on investment 
This is not to say, of course, that the experience could be successfully transferred 
to other organizations without change. 

AHette Systems is a small software organization with 20 to 30 employees 
developing Web applications for customer organizations (not simple web sites) 
and also doing text markup for electronic database creation of large text databases. 
This example concerns the system development side of the business but not the 
markup side. As a part of a general process improvement initiative within the 
company work began several years ago in assessing their processes and suggesting 
necessary changes. Early recommendations resulted in the establishment of a time 
recoding system to improve the cost identification and cost recovery aspects ofthe 
business. Once this was established a more general investigation of the software 
processes revealed a need to improve the documentation process within the 
organization. This improvement aspect was addressed by creating a descriptive 
process model of the software process in use. A custom-built generator was then 
used to create HTML, which generates a web-based desktop process model for 
task guidance. The next element added to this was the use of a tool (pageseeder 
from Weborganic, see www.allette.com.au). which facilitated comment and 
discussion on the content ofthe process model. Finally, the structure was added to 
allow experiences, checklists, templates and examples to be added to the system. 
Thus at this point in time the organization has a defined process, the ability to 
store comments and experiences with this process, examples of documents, code 
and other lifecycle artifacts, and templates of documents needed during the 
process. Usage data coHected on the repository and interviews with staff indicate 
consistent use of the repository, especially code fragments, and a high level of 
user satisfaction with the facility. 

However, the approach taken in the Allette example is different from that taken 
in the "experience factory" work. The assumption at Allette is that organizational 
participants will provide relevant experiences if provided with an appropriate 
storage and retrieval structure. The structure provided in this instance is the 
process model framework rather than a database and search facility framework, as 
was the case in the R&D organization [1]. There is no formal experience 
management or experience organization. We have no knowledge though on how 
this would scale up to larger organizations. 

The objective of Part 4 is to provide a selection of articles presenting practical 
experience with knowledge management in software engineering. The chapters 
provide illustrations of how the challenges of knowledge management have been 
addressed in a number of organizations and in different contexts within those 
organizations. 

There are four chapters in Part 4. In Chap. 14, "Practical Guidelines for 
Learning-based Software Product Development", Rini van Solingen, Rob Kusters 
and Jos Trienekens address the issue of establishing learning in an ever-changing 
software development environment. They argue that since the software 
development processes and products evolve at a fairly rapid pace it is necessary to 
facilitate learning through the use of control loops and feedback. In this way 



www.manaraa.com

Part 4 Practical Guidelines for Managing Software Engineering 297 

people can correct mistakes and be supported in learning from their own 
experience. They propose three types of loops: 

I. A product quality loop, which provides feedback to the individual on 
compliance oftheir product with use demands 

2. A process quality loop, which compares expected and actual process 
performance 

3. A process - product loop that analyses the ability of the selected process to 
produce the required product quality 

They then consider what needs to be done to establish these loops, but leave the 
question of how to establish them up to the particular context. In this way the 
practical questions such as how to measure product quality goals or how to model 
costiqUality tradeoffs can be implemented based on the specific needs within the 
usage context. 

In Chap. 15, "In-project Learning by Goal-oriented Measuremenf', Rini van 
Solingen considers the goal question metric paradigm in the context of in project 
learning. Readers are probably familiar with his earlier GQM book [2] which 
documents the industrial application of GQM. In this paper he outlines the GQM 
approach to measurement, describes how knowledge acquisition is used in 
defming the measurement program, how feedback to the developers is facilitated 
through the measurement process, and then provides an industrial example of the 
use of GQM and its place in learning. 

Chapter 16, "e-R&D: EfIectively Managing and Using R&D Knowledge" by, 
Christof Ebert, Jozef De Man and Fariba Schelenz describes the process 
improvement initiative at Alcatel and how it supports knowledge dissemination in 
Alcatel. They describe, through examples from Alcatel, how explicit and tacit 
knowledge can be shared and the use of both team management and knowledge 
management. 

In Chap. 17, "Knowledge Infrastructure for Project Management", Pankaj 
Jalote discusses how Infosys Technologies encodes and captures project 
experience for use on future projects. The process infrastructure, including 
templates and checklists is created and measurement is used to capture data on 
prior projects. Experience from people is also captured in the "body of 
knowledge" and stored in a database. This chapter describes a system with 
similarities to that of Allette as outlined above. 

References 

l. Jeffery R., Koenneker A., Low G. (1999) Lessons learned from the failure of an 
experience base initiative using a bottom-up development paradigrn. In: Proceedings of 
NASA software engineering workshop, December, Greenbelt, Maryland, USA 

2. Solingen R. van Berghou, E.W. (1999) The goal/questionJmetric method: a practical 
guide for quality improvement. McGraw-HiII, Spain, ISBN 0077095537 



www.manaraa.com

298 Jeffery 

Editor Biography 

Ross Jeffery is Professor of Software Engineering in the School of Computer 
Science and Engineering at University ofNew South Wales (UNSW) and Director 
ofthe Centre for Advanced Software Engineering Research (CAESER) at UNSW. 
He is the founding chairman of the Australian Software Metrics Association 
(ASMA). He was also instrumental in creating the Australian Conference on 
Information Systems. He has served on the editorial board of IEEE Transactions 
on Software Engineering, and he is associate editor of the Journal 0/ Empirical 
Software Engineering. He has also been on the steering committee of the IEEE 
and ACM International Conference on Software Engineering. He is a founding 
member ofthe International Software Engineering Research Network (ISERN). 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 
Product Development 

Rini van Solingen, Rob Kusters and Jos Trienekens 

Abstract: Software products are developed in environments that are far from 
stable. People, processes and technology are continuously changing and renewed. 
As such, it is important to make learning an integrated part of software 
development in order to get a grip on such continuous changes. Integrating 
learning activities and processes into the daily practice of software product 
development is, however, not easy. In this chapter it is proposed that such learning 
can be facilitated by means of control loops. With such control loops, software 
development teams receive feedback on their own performance, which enables 
them to correct mistakes, control their output, and thus enables learning on their 
working processes. In this chapter a model of controlloops is presented that works 
with embedded software product development. Practical guidelines are presented 
to facilitate in-practice learning with these loops. 

Keywords: RPM model, Requirements engineering, Process engineering, 
Measurement engineering, Controlloops, Feedback 

14.1 Introduction 

Life today is heavily dependent on software. Examples of software applications 
include word processors, spreadsheets, e-mail and Internet applications. There is, 
however, also a large amount of software incorporated in electronic products. 
Such products include mechanical, hydraulic and electronic machinery with 
processors and embedded memory chips. These chips contain certain control 
instructions, which are termed "software". Software for such products is 
commonly known as embedded software' and the product is termed an "embedded 
product". Examples of embedded products include cellular phones, televisions, 
microwave ovens, petrol-pumps, cars and payment terminals. Embedded products 
range from single products to mass-produced items, one dollar products to one 
million dollar products, single-user to thousand-user products, product life times 
of three months to several decades, single input and output to multiple input and 
output products. The role of software in embedded products and services is 
increasing tremendously. Software development is becoming the most effort
consuming task during the development of embedded products. For the example 
of a television set, the effort spent to develop a new generation of televisions has 
been shown to account for more than 70% of software development resources 
[23]. Or consider cellular phones: research has indicated that the software in 
cellular phones shows an increase by a factor 10,000 over the last 12 years [17]. 



www.manaraa.com

300 Solingc~n, Kusters and Trienekens 

The increase in software application in embedded products implies a rigorous 
change in the development of these products. There is a shift happening from 
mainly hardware product development to mainly software product development. 
This change has a high impact on organizations that develop embedded products. 
Past knowledge ofhardware development is becoming obsolete, while knowledge 
of software development is found lacking. 

The quality of embedded products is arelevant topic as more and more 
embedded software is incorporated in life-vital applications. In order to achieve 
quality software, the emphasis on embedded product quality is often refocused 
onto its development process. This is because quality is neither something that 
happens by accident, nor can it be brought in afterwards [11, 15]. 

In order to keep up with the trend of ever-increasing amounts of software in 
embedded products with the increasing demand for better software in shorter 
cycles, the embedded software industry needs to increase their development 
capabilities to keep up with these demands. Increasing embedded software 
development capabilities can be done in three ways: 

1. Increasing professionalism by adopting best practices from other organizations 
and market domains. An example of such an approach is the Capability 
Maturity Model [15], which is a collection of industrial best practices for 
software management. 

2. Hiring better skilled people. This is especially relevant in periods of economic 
downturn when highly skilIed people become available. 

3. Increasing learning skills by installing organizational learning processes that 
support bottom-up learning from project to project. The embedded product 
industry can leam to manage the new situation by increasing their focus on 
learning to improve and be successful. 

The first and second strategies are described in many other publications and are 
therefore not addressed in this chapter. This chapter focuses on the third strategy: 
learning from one's own practices. 

14.2 Learning During Embedded Product Development 

Recent research has indicated that learning is crucial to survive in the embedded 
software product development market [28]. Integrating practicallearning activities 
and learning processes into daily practice is not easy. This is caused by the fact 
that learning is just a secondary objective during product development. First 
priority is given to day-to-day activities such as matching customer demands, 
meeting deadlines, producing deliverables, responding to change requests, and so 
on. Learning can, however, become part ofthe normal process by ensuring that the 
appropriate information is provided at appropriate events, to the appropriate 
persons. 

In order to do this, it is proposed that group learning within embedded software 
development teams can be facilitated by means of controlloops. With such control 



www.manaraa.com

14 Practical Guidelines for Leaming-Based Software 301 

loops, development teams receive feedback on their own performance, which 
enables them to correct mistakes, control their output, and as such enables them to 
leam from their own work. Controlloops are powernd mechanisms for integrating 
learning into software development. It is, however, important to make sure that the 
right control loops are instalied. Software product developers should receive the 
right feedback, on the right activities, at the right time and in the right way. 

The main three controlloops addressed in this chapter are [28]: 

• Loop 1: The product quality loop, which enables control over software product 
quality. This is achieved by analyzing the difIerence between required product 
quality and actual product quality. This controlloop ensures that developers 
receive feedback on whether the product they have made complies with user 
demands. 

• Loop 2: The process quality loop, which enables control over process 
efIectiveness. This is achieved by analyzing the difIerence between expected 
process performance and actua1 process performance. This controlloop ensures 
that developers receive feedback on the efIectiveness of the actions they take in 
their process. 

• Loop 3: The process - product loop, which analyses the ability of the selected 
development process in achieving the required level of product quality. This 
controlloop ensures that the selected software development process (and the 
actions chosen in this process) results in a product that complies with its 
requirements. As such, early feedback is provided on the effectiveness of the 
development process with respect to the final product. This last loop facilitates 
a negotiation process between the required product quality and the feasible 
product quality within the selected process, duration, cost, risk, and so on. 

Please note that there is a distinction between a control loop and a feedback 
loop. A controlloop provides a means to take action and to have control of certain 
events. A feedback loop provides information on certain activities and therefore 
information from which to leam. In this model we address controlloops; however, 
feedback is an important means to gain control. The learning efIects are, however, 
on the controllevel ("single-Ioop leaming" [1]). High-Ievellearning ("double-Ioop 
learning" [1]) is not directly triggered by these controlloops, although it might 
happen. 

These three control loops can only be implemented if certain activities or 
processes are in place to enable information flow to function as a feedback cycle. 
For embedded software product development this means installing at least the 
following three engineering processes [28]: software product requirements 
engineering (SPRE), software development process engineering (SDPE) and 
software measurement program engineering (SMPE). This is visualized in 
Fig.14.1. The arrows in this figure show the direction of the processes SPRE, 
SDPE, SMPE and their outcomes. 

• SP RE: Software product requirements engineering is the process of collecting 
the wishes of software product stakeholders and transforming these wishes into 



www.manaraa.com

302 Soling,~n, Kusters and Trienekens 

a product quality specification. The outcome of SPRE is a product quality 
specification . 

• SDPE: Software development process engineering is the design of a 
measurable development process model for the development of a specific 
software product fulfilling the product quality specification. The outcome of 
SDPE is a software development process model. 

• SMP E: Software measurement program engineering is the design and 
implementation of a set of process, product and resource metrics, used to 
evaluate software product quality and process - product relationships. The 
output of SMPE is a set of product and process measurements. 

~ Product& Process 
~ ~ Measurements 

~ 
Fig.14.1. Model for embedded product development controlloops 

These three processes and control loops imply that an embedded product 
development organization will at least: 

1. Ensure that it specifies what product quality actually means 
2. Make a detailed project plan that includes all detailed actions taken 
3. Use measurement to evaluate whether actions had intended effects 

The activities listed in Fig. 14.1 are not uncommon for embedded product 
development. Mostly, product requirements are documented, project plans are 
made, and several measurements are made. AB such it may mean that parts of the 
proposed control processes are already instalied in practice. However, often the 
required level of detail is not instalied, meaning that adaptations and expansions 
need to be made. Product quality requirements have to be specified in an 
unambiguous and measurable way, the project plan should describe the specific 
actions taken with their intended effects, and the measurements made should 
enable evaluations of the product and the process. 

For each of these three processes, SPRE, SDPR, and SMPE, a set of ten 
practical guidelines is presented. These guidelines were developed over aperiod 
of several years in both scientific, and industrial research projects (see e.g. [28,31, 
22]). This set of 30 guidelines supports embedded industry by the implementation 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 303 

of learning activities in their projects. These learning activities directly contribute 
to the product under development because they instali the controlloops. 

14.3 Guidelines for Model Application in Practice 

A conceptual model was presented in the previous section on the control of 
embedded product quality through the implementation of three controlloops that 
enable learning. Additional support is required to facilitate the use of this model in 
practice. This support is provided through a set of guidelines for each of the three 
processes. These guidelines originate from multiple sources, inc1uding literature 
and experience from applying the conceptual model in industrial projects. 

The guidelines mainly focus on the three engineering processes with less 
emphasis on the controlloops. This is because if the guidelines are followed, the 
loops will be implemented automatically, and the three processes are linked to 
each other and use each other's outputs as input. 

The guidelines in this chapter mainly describe 'what' should be done and point 
to the tasks and activities that are part of each of the engineering processes. These 
guidelines do not present 'how' this should be done, because it is assumed that 
"how guidelines" largely depend on the specific context in which they are applied. 
These guidelines have been validated in a set of case studies; for details on the 
validation, experiences and costlbenefit analysis see [28]. 

14.3.1 Guidelines for Software Product Requirements Engineering 

Software product requirements engineering (SPRE) is the process of collecting the 
wishes of product stakeholders and transforming these wishes into a product 
quality specification. The product quality specification is used for two purposes: 

• To design a development process that will produce the specified product quality 
within the constraints ofthe development project 

• To evaluate compliance ofthe fmal product to the product quality requirements 

The guidelines for software product requirements engineering are: 

R.t.Identify all stakeholders for the product, and involve each stakeholder in the 
requirements engineering process. 

R.2. Let stakeholders state their product quality wishes in their "own 
terminology", and transfer those wishes into (standard) engineering quality 
terminology. 

R.3. Use experience with a similar type or older version ofthe product that already 
exists as input to the creation of a product quality specification. 

R.4. Make a distinction between essential, stringent and additional wishes. 
R.5. Requirements engineering should be considered a negotiation process during 

which decisions are made on the level of satisfying product quality wishes. 



www.manaraa.com

304 Solingen, Kusters and Trienekens 

This negotiation process should discuss both functional and nonfunctional 
product wishes. 

R.6. Communicate rejection or selection of a product quality wish to the 
stakeholders. 

R. 7. Handle the abstract concept of product quality by subdividing quality into 
operational attributes. 

R.8. Specify the (relative) importance of product quality attributes for a new 
product, and visualize this in a product quality profile (PQP). 

R.9. Specify product quality requirements in measurable terms. 
R.I0. Show the trade-offbetween quality demands and the costleffort incurred to 

realize these demands. 

These guidelines are described in detail in the next section. 

R-l: Identify All Stakeholders for the Product, and Involve Each Stakeholder 
in the Requirements Engineering Process 

Each product goes through several stages as it is designed, produced, transported 
to the customer, instalied, used, repaired and recycled. For each ofthese stages in 
the product life-cycle, different 'users' of the product can be distinguished. 
However, the way in which the product is used and its related quality needs will 
differ depending on the users. We propose a modeling technique, which 
distinguishes product users as being 'stakeholders' , with every stakeholder 
possessing one or more responsibilities (roles) [20, 21]. For each product, a model 
can be made that identifies the stakeholders and their interrelationships. This 
guideline is based on the assumption that making a quality product implies 
addressing the specific needs of specific stakeholders. 

A stakeholder is defmed as an identifiable person, or homogeneous group of 
people that has a legitimate interest in the degree of quality of the product. A role 
is defined as an area ofresponsibility of a stakeholder, determining the view ofthe 
type and degree of quality required [20]. Ideally each stakeholder is involved in 
the process of requirements engineering. The way in which the stakeholders are 
consulted can be different, depending on the best way to capture their knowledge. 

R-2: Let Stakeholders State Their Product Quality Wishes in Their 'Own 
Terminology', and Transfer Those Wishes into Standard Terminology 

Stakeholders have implicit ideas and needs for product quality. In order to prevent 
formulation problems, it is recommended that stakeholders express their product 
quality wishes in their own language. This has several benefits. First, stakeholders 
can express their implicit needs more easily. Second, many stakeholders have 
neither experience with standard quality terminology, nor are they always willing 
to learn it. Furthermore, it prevents stakeholders from having their own 
interpretations of a standard terminology, and mistakes are prevented. However, 
when stakeholders state their wishes in their own terms, these wishes have to be 
transferred to engineering quality terminology, such as ISO 9126 [16], that can be 
understood by software developers. 



www.manaraa.com

14 Practieal Guidelines for Learning-Based Software 305 

R-3: Use Experience with a Similar Type or Older Version of the Product as 
Input for the Creation of a Product Quality Specitication 

If an older version of the product or a similar type of product is already used in 
practice, experienee with this produet ean be a valuable reference for requirements 
engineering ("anchoring and adjustment" [5]). This guideline resembles the 
eoncept of "product families" (see e.g. [7]), which is based on the notion that the 
next generations of produets have a elose resemblance and are based on previous 
generations. 

Such experiences can lead to expressions such as "reliability should be equal to 
the previous version", "usability needs to be higher" and "the functionality was 
fair but needs some specifie expansions". Such references make it clear what 
developers need to focus on. Experienees with older versions of a product are also 
an excellent source to fmd out the way in whieh a stakeholder uses the product. 

R-4: Distinct between Essential, Stringent and Additional Wishes 
Not every product quality wish is equally strong. It is reeommended to make a 
distinction between: 

• Essential wishes that must be addressed by the product. Without addressing 
these strong demands the product will be useless 

• Stringent wishes, for which it is highly recommended that they are addressed. 
However, under eertain conditions it is possible to ignore such wishes 

• Additional wishes that are neither essential nor stringent, but it ean be 
beneficial ifthey are addressed 

This distinction supports requirements engineering because it indicates the level 
of negotiation that is possible for each wish. To support the selection of stringent 
and additional wishes, it is recommended that their relative importance be made 
explicit through assigning priorities and noting the arguments for these priorities. 

R-5: Requirements Engineering Should Be Considered as a Negotiation 
Process During Which Decisions Are Made on the Level of Satisfying 
Product Quality Wishes. This Negotiation Process Should Discuss Both 
Functional and NonFunctional Product Wishes 

Based on the total set of stakeholder product quality wishes, a selection will be 
made from this set. The deeision to which extent a eertain product quality wish 
will be satisfied is a complex negotiation process. Criteria that playa role in the 
acceptance or rejection of a wish inelude costs, benefits, technological feasibility, 
effort involved, time to market, level of contradiction with other wishes, or risks. 
It is advisable not to limit this negotiation only to the quality aspeets of a product. 
The functional demands also need to be discussed, because functional and 
nonfunetional wishes are related. This negotiation process also addresses 
investment issues, because decisions need to be made as to where to invest 
resourees for the product. 

This negotiation process alone is not part of requirements engineering. It is 
done iteratively with process engineering, beeause process engineering provides 



www.manaraa.com

306 Solingen, Kusters and Trienekens 

insights on the costs and time issues for each specific product quality requirement. 
This negotiation process goes on continuously throughout a project. When 
additional requirements are formulated, which is the case for aImost every 
software development project, again trade-offs and negotiations will be made. 
Ideally, a product quality specification is made once and never changed, but this is 
rarely the case in practice. 

R-6: Communicate Rejection or Selection of a Product Quality Wish to the 
Stakeholders 

Given that there is a process during which all product quality wishes are evaluated 
and adecision is taken to accept or reject a wish, the outcome of this decision 
process must be communicated. The main reason for this is that our approach 
addresses product quality explicitly. The decisions taken should therefore also be 
made explicit and communicated to the people involved. 

Furthermore, this communication is necessary to manage the expectations of 
stakeholders. Stakeholders implicitly expect that wishes be fulfilled once they 
have been stated. This creates high expectations. If the product is delivered and 
does not comply with these wishes, stakeholders will be disappointed and perceive 
the product as being of low quality. If the decisions on the level of satisfaction 
required of a certain product's quality are communicated, a stakeholder has the 
opportunity to adapt expectations, early on in the product development process. 

R-7: Handle the Abstract Concept ofProduct Quality by Subdividing Quality 
into Operational Attributes 

Quality has many dimensions. These dimensions are termed 'quality attributes' 
when considering a product. In order to make the abstract concept of quality more 
operational, it should be specified in terms of operational quality attributes. Even 
though these attributes might have multiple meanings, they are at least more 
concrete than the general term 'quality'. For software product quality, the ISO 
9126 standard for the division of product quality into the attributes of 
functionality, reliability, usability, efficiency, maintainability and portability is 
suggested [16]. 

R-8: Specify the (Relative) Importance of Product Quality Attributes for a 
Product, and Visualize This in a Product QuaUty Profile (PQP) 

If product quality is specified in terms of product quality attributes, it is 
recommended that these be visualized in a product quality profile (PQP). A PQP 
visualizes the product quality along with the product quality attributes. The sum of 
all quality wishes belonging to a specific c1ass indicates the maximum level of 
quality. If the product complies to all wishes, it is experienced as high-level 
quality by all stakeholders. The subset of wishes that is selected during the 
tradeoff with other conditions is specified in the product quality profile. A PQP 
visualizes which targets are set, but does not indicate priorities. Setting priorities is 
done during the negotiation process and is carried out iteratively with process 
engineering. 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 307 

R-9: Specify Product Quality Requirements in Measurable Terms 
Ideally, product quality targets are specified as objectively as possible; therefore it 
is recommended that product quality be specified in measurable terms [2, 11]. By 
specifying requirements measurably, explicit goals become available, and the 
performance gap between target and actual quality can be monitored. The benefit 
of this is that the way in which these targets are fulfilled is left open, creating 
possibilities for variation and control by the developers. After all, requirements 
engineering specifies 'what' to build, and not 'how'. 

R-I0: Show the Trade-OtT between Quality Demands and the CostlEtTorts 
Incurred to Realize Those Demands 

The results of the trade-off of quality to cost and effort should be made explicit 
and communicated. The highest level of quality is often not the objective for 
embedded products. High quality costs money and often only a few customers 
require that high level and are therefore willing to pay for it. Making a trade-off 
means investigating, each wish, how it can be addressed it and what it costs. This 
involves looking at the process and the available resources capable of addressing 
each wish. Furthermore, addressing certain wishes may have impacts on time to 
market, Le. development duration. Balancing wishes with the costs incurred 
involves an iterative process between requirements and process engineering. 

14.3.2 Guidelines for Software Development Process Engineering (SDPE) 

Software development process engineering is the design of a measurable 
development process for the development of a specific product that complies to 
the product's quality specification. A development process consists of a set of 
actions with explicit expected effects on product quality. During process 
engineering a set of process actions are selected that contribute to the required 
product quality. These process actions are then assembled into a product-specific 
development process model. A process action is an action taken to achieve an 
explicit expected effect. Process engineering can also be seen as configuring and 
tuning a situated software development process, based on the product quality 
specification. The guidelines for software development process engineering are: 

P.1.0nly start with process engineering if the stakeholders' wishes for product 
quality are made explicit. 

P.2. Make explicit the set of essential process actions and the set of supplementary 
process actions. 

P.3. File the expected effect of process actions on product quality in an experience 
base. 

P.4. For each specific product, develop aseparate development process model that 
makes explicit the set ofprocess actions taken to control product quality. 

P.S. Consider that the effects of a specific process action can be both positive and 
negative, and that they can be different for different projects because context 
factors vary. 



www.manaraa.com

308 Solingen, Kusters and Trienekens 

P.6. Estimate whether the selected set of process actions is capable of complying 
to the product quality targets. 

P.7. Use the information in the experience base for the selection of process 
actions. 

P.8. In order to improve and leam, innovate by introducing new process actions 
with which no experiences exist. 

P.9. Make explicit the learning objectives for the application of certain process 
actions. 

P.I O.Revise the development process model when significant changes occur. 

P-l: Only Start with Process Engineering If the Stakeholders' Wishes for 
Produet Quality Are Made Explicit 

The main objective of process engineering is to configure a product specific 
development process. This can only be done if the implicit needs from the 
stakeholders are made explicit and process engineering depends on the results of 
requirements engineering. The exact product quality targets are, however, set 
iteratively with requirements engineering because deciding on the targets is 
always a trade-offbetween aspects such as feasibility, time to market, effort, costs, 
and so on. Process engineering enables estimation of what product quality will be 
when using a certain process within certain conditions. Completed iteratively with 
requirements engineering, a development process is designed and the product 
quality targets are set. 

P-2: Make Explicit the Set of Essential Process Actions and the Set of 
Supplementary Process Actions 

Configuring a development process for a specific product never starts from 
scratch. Every organization has its own "standard way" of doing projects and its 
own 'standard' set of processes. This set of essential process actions is always 
taken in development projects and must be made explicit. In addition to this it 
must be made explicit what the experiences (expectations) are of the impact of 
each process action on product quality. 

Besides a set of essential process actions that are always taken, there is also a 
set of supplementary process actions that can be taken if the specific situations 
dernand it. This supplementary set must also be made explicit, together with the 
expected effects on product quality. 

P-3: File the Expeeted EtJeet ofProcess Actions on Produet Quality in an 
Experience Base 

The essential and supplementary process actions that people in the organization 
use and the effects of these process actions on product quality should be modeled 
explicitly and stored in an experience base. This experience base is a dynamic and 
evolving storage medium in which new experiences and measurements with 
effects of process actions can be stored and adapted based on new insights. The 
experience base is also consulted to support decision making during process 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 309 

engineering. For the set up of such an experience base and how it can be 
structured, we refer to the literature [2, 10, 13,14]. 

P-4: For Each Specific Product, Develop aSeparate Development Process 
Model that Makes Explicit the Set of Process Actions Taken to Control 
Product Quality 

The presented approach is based on the assumption that there is no one best way 
of making a quality product, because product quality depends on the specific 
needs of all stakeholders and the context in which it is being developed and used. 
In line with this assumption, every product requires its own development process 
to achieve the specific product quality. This process needs to be made explicit. 

Process actions need to be made explicit at several different moments of 
development, e.g. during project planning when the intended set of process actions 
is defined, during project execution if certain process actions are omitted or added, 
and after project finalization when it becomes clearer what the right set of process 
actions should have been. Making these process actions explicit means 
identifying, for each process action, the time when it should be taken, how these 
should be taken, using which technique, by whom, with what expected effect, and 
so on. 

Practical experiences identified that process engineering resembles what is 
done in practice during 'project planning', although implicitly. Ouring project 
planning, project managers define a development process with deliverables, 
deadlines and resources, that is intended to result in a product that fulfils the 
project targets. However, this process rarely addresses product quality explicitly. 
The recommendation is therefore to bring process engineering in line with the 
project planning work. 

P-5: Consider That the EtTects of a Specific Process Action Can Be Both 
Positive and Negative, and That They Can Be Different for Different 
Projects, Because Context Factors Vary 

Process actions that influence a specific goal in one area might decrease the 
effectiveness ofthe development process in another. This is often overlooked. It is 
recommended to always consider the multiple effects of process actions. 00 not 
only focus on the product quality attribute that requires improvement, but also 
consider the effects on the other product quality attributes. This ensures that an 
increase of product quality in one attribute does not imply a decrease in another. It 
is recommended to consult the development tearn for conditions in the project that 
bad a clear influence on the effects ofthe process action [14, 4]. 

P-6: Estimate Whether the Selected Set of Process Actions Is Capable of 
Complying to the Product Quality Targets 

Making an estimate of the product quality that a certain development process is 
likely to deliver is recommended. This estimated product quality can be compared 
with the product quality targets to identify whether the selected set of process 
actions is sufficient, or whether corrective action should be taken. This corrective 



www.manaraa.com

310 Solingen, Kusters and Trienekens 

action could be changing the set of process actions, changing the product quality 
targets, or both. Expected effects for this set of process actions can be retrieved 
and final product quality can be estimated. 

P-7: Use the Information in the Experience Base for the Selection ofProcess 
Actions 

If a change has to be made to the selected set of process actions, the experience 
base can be consulted to find those process actions that address the specific quality 
attribute. These changes can be twofold: additional process actions will need to be 
selected, or selected process actions will need to be omitted. It should therefore be 
possible to consult the experience base to find process actions that have a positive 
or negative impact on a specific quality attribute. 

P-8: In Order to Improve and Learn, Innovate by Introducing New Process 
Actions with Which No Experiences Exist 

The experience base, with models of process product relationships needs to be 
expanded with information on new process actions. Not every project will be 
suitable for experimenting with innovative process actions on which hardly any 
knowledge is available. For example, a product with high product performance 
requirements will not necessarily be favorable for experimenting with a new 
technique that focuses on product efficiency. This has to do with the risk involved 
in learning [24]. It is recommended that every project be assessed for the 
possibility of experimenting with new process actions to learn their effects on 
product quality. 

P-9: Make Explicit the Learning Objectives for the Application of Certain 
Process Actions 

It has been identified that learning should be a direct objective in process 
improvement programs. For process engineering, this implies that the learning 
objectives are stated explicitly and defmed for specific process actions. On these 
process actions the objective can be, for example, to identify what the effects are 
on product quality, what the conditions are under which these effects occur, or to 
monitor whether the intended effects occur and what the reasons for discrepancies 
are. 

P-IO: Revise the Development Process Model When Significant Changes 
Occur 

The main product of process engineering is a development process model that 
indicates which process actions are taken, at what time, with what amount of 
effort and by whom. This development process model is the main deliverable that 
ensures that the development process is capable of addressing the product quality 
targets. It should therefore be complete, correct and consistent with the work 
carried out in the development process. This process model is not static, as it 
evolves over time, based on changes in the project. As the development process 
model makes explicit 'how' the product is developed, it is essential to keep this 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 311 

model up to date during project execution, especially since measurement prograrn 
engineering depends on this process model. 

14.3.3 Guidelines for Software Measurement Program Engineering (SMPE) 

Measurement prograrn engineering is the design and implementation of a set of 
process, product and resource metrics to evaluate product quality and process -
product relationships. During measurement program engineering, metrics are 
defined, collected and analyzed for two purposes: 

• To evaluate the compliance of embedded product quality with the stated 
product quality targets 

• To evaluate the effects of a certain process action on product quality, when 
used within a specific context in a specific way 

Measurement prograrn engineering can also be seen as the process that provides 
feedback on the effectiveness of the process actions, and therefore facilitates 
learning. The guidelines for software measurement program engineering are: 

M.l. Prepare developers for participating in measurement programs. 
M.2. Know what the product quality targets, process model and learning 

objectives are before starting measurement prograrn engineering. 
M.3. Measurement program engineering should be goal-oriented to ensure that a 

limited but relevant set of measurements is collected. 
M.4. Specify expectations (hypothesis). 
M.5. Analyze and interpret measurement data regularly, which is preferably 

done by those people wHo performed the actua1 measurements. 
M.6. Focus analysis and interpretation of the measurement data on a specific 

process action, the overall process or to the product quality targets, but not 
on the performance of individuals. 

M.7. Assign dedicated resources to support the development team in 
measurement program engineering. 

M.8. Evaluate the differences between actua1 and target product quality. 
M.9. Evaluate the effects ofprocess actions. 
M.IO. Store in the experience base the knowledge of the effects of a process 

action within a specific situation. 

M-l: Prepare Developers for Participating in Measurement Programs 
Measurement of software processes and products is not something that can be 
irnmediately done. Experiences has shown that to carry out software measurement 
successfully, the development context including the developers should be prepared 
[2, 12, 8, 29]. This is a finding from the software engineering field and from 
learning literature, which clearly emphasizes the establishment of a learning 
environment before learning occurs [25, 9, 26, 27]. 

While both software engineering and learning literature recornmend the 
preparation of an organization and its people for measurement programs, neither 



www.manaraa.com

312 Solingen, Kusters and Trienekens 

field states explicitly what this preparation consists of. During the application of 
these ideas in industry, this has been done by presenting the benefits of 
measurement in other environments, and by making the exact impact of 
measurement for the developers explicit. The developers are told up front what 
their involvement will look like, what they need to prepare and carry out, the time 
it will take and what benefits it will bring. Furthermore, it is arranged that the 
developers are always in control of the work and direction of the improvement 
program. 

M-2: Have Product Quality Targets, Proeess Model and Learning Objectives 
Available When Starting Measurement Program Engineering 

Measurement program engineering can only start whenever the measurement 
goals are defined. These goals are stated in the product quality targets and learning 
objectives that result from both requirements and process engineering. With 
product quality targets, it is possible to measure the conformance of the actual 
product quality with targets during product development. The learning objectives 
specify which process actions need to be measured and the purpose of these 
measurements. The process model specifies the process actions taken and the 
sequence of activities in the project. 

M-3: Measurement Program Engineering should be Goal-Oriented, to 
Ensure That a Limited but Relevant Set of Measurements is Collected 

Measurement should be driven by goals [2]. This has the benefits that 
measurements are only collected toward an explicit stated purpose and that only 
necessary measurements are taken. This limits the costs (and burden) of 
measurement and help measurement on only those process and product aspects of 
interest. Refining goals into metrics is a difficult process, but specitYing an 
intermediate level of questions can facilitate this, which simultaneously provides a 
framework for the interpretation of these measurements [3]. Operational support 
for using goal-oriented measurement (GQM) is described in the literature [29]. 

M-4: Specify Expectations (IIypothesis) 
In order to increase the learning effects of measurement, it is necessary to make 
explicit what the expectations for the measurements are. These hypotheses need to 
be defined before the measurements are taken. Discrepancies between hypotheses 
and actual values trigger causal analysis of such differences and support in 
learning the effects of process actions [6, 2, 30]. Without the specification of 
hypotheses, learning effects tend to be much lower. 

M-5: Analyze and Interpret Measurement Data Regularly, which is 
Preferably Done by Those People who Performed the Measurements 

Measurement data should be interpreted in context [2]. This means that those 
people who have knowledge ofthe context in which the data was collected, ideally 
those who actually collected the data, should carry out the analysis of 
measurements. In order to support the group learning aspect of measurement, 



www.manaraa.com

14 Practical Guidelines for Learning -Based Software 313 

analyzing and interpretation of measurement data should be done in groups. A 
way in which this can be implemented is organizing so-called feedback sessions in 
which the measurements are presented to the development team, who then draw 
conclusions about the measurements, make decisions or take action [18, 19, 29]. 

As developers tend to have a positivistic attitude and people have the general 
tendency to look for the first plausible interpretation, the opposite interpretation is 
often overlooked. It is therefore useful that someone takes the devil's advocate 
role during the interpretation of measurements and challenges the interpretations 
from opposite viewpoints [30]. 

M-6: Focus Analysis and Interpretation oftbe Measurement Data on: 
A Speeific Process Action, tbe Overall Process, or on tbe Product 
Quality Targets, But Not on tbe Performance ofIndividuals 

Interpretation should also be done toward the measurement goals. If the 
intermediate level of questions is used this interpretation is much easier, because 
the measurement data should provide answers to these questions [29]. The 
measurements are always taken to support a learning process. As such, these 
measurements may not be used to judge people [15, 12, 30], because this will 
directly block the learning process of the people, and as a consequence the 
complete improvement program might fail. 

M-7: Assign Dedicated Resources to Support the Development Team in 
Measurement Program Engineering 

The development team will have both project and learning objectives. The project 
objectives are often much more concrete, and attainment of these objectives is 
possible in shorter time. In the case of deadlines or project pressure, there is a risk 
that the learning objectives will be put on hold. To tackle this risk, it is 
recommended that the effort of the development team be limited to involvement 
only in those elements of measurement program engineering that add to the 
learning process. The non-learning tasks can be performed in parallel by other 
dedicated resources. 

M-8: Evaluate DitTerences Between Actual and Target Product Quality 
One of the reasons that measurement program engineering is carried out is to 
evaluate the conformance of the final product with product quality targets. The 
product is therefore measured and evaluated to see whether differences between 
the actual and target quality of the product exist. 

If it is indicated during measurement program engineering that there is a 
negative gap between actua1 and expected effects of a set of measures, corrective 
action should be taken. This corrective action can be: 

• Taking additional actions to influence the speciflc quality attributes 
• Altering the product quality targets to the current product quality 

This last option should not be overlooked. Product quality is always a tradeoff 
decision between time and cost. In many situations it might be acceptable not to 



www.manaraa.com

314 Solingen, Kusters and Trienekens 

spend time and money to make improvements when the product quality level is 
lower than the target. This depends on the market situation, competition, or 
financial situation. The only recommendation is to make this decision an explicit 
one, and to analyze the consequences of not improving product quality toward the 
targets. 

M-9: Evaluate the EtJects of Process Actions 
The other purpose of measurement program engineering is to identify and leam 
the effects ofprocess actions on product quality. Process actions are taken with an 
explicit purpose in mind; however, it cannot always be guaranteed that these 
effects actually occur, because these effects depend on several (possibly unknown) 
conditions. In cases where there is a high dependency on the effectiveness of a 
process action, it can be decided that measurements are required to monitor its 
results. These measurement results have to be analyzed and compared with the 
expected results (hypothesis). In the case of discrepancies, it is necessary to 
identify the causes (conditions) for these flaws. When it is clear that a certain 
process action does not give the intended effect, or produces unexpected side 
effects, corrective action can be taken. 

M-IO: Store in the Experience Base the Knowledge ofthe Effects ofa Process 
Action within a Specific Situation 

When the goals of a measurement program are attained, a great deal of leaming 
has occurred. Such knowledge must be stored [24] in the experience base of 
process - product relationship models. Besides the effects of a certain process 
action on product quality, context information also needs to be stored in the 
experience base. Context information includes information on the specific 
situation in which the effects occurred. Such information is necessary for future 
decision making, because it helps in making an estimation of the likelihood that a 
process action will give a certain effect, and therefore supports in the estimation of 
product quality during process engineering. If context factors largely resemble a 
past situation, it is more likely that the same effects will occur then when all 
context factors are different. This context information is equally as important as 
the information on the effects on product quality themselves. 

14.4 Conclusions 

Leaming is to be a key skin in software engineering as it is performed in ever
changing innovative situations. Therefore, individual and group leaming seems is 
vital for successful software development. In this chapter an approach has been 
introduced that enables learning during embedded product development by the 
implementation of three control loops. Practical guidelines are presented and 
described in detail, outlining how each of these approaches can be instalied in 
practice. For experiences with industrial application and validation of the 
presented approach and guidelines, we refer to [28]. So far, experiences have been 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 315 

positive, though further work should be done to continue developing guidelines 
for increased learning during product development. The work presented in this 
chapter has been developed for embedded systems environments. Some of the 
concepts and guidelines could also be relevant for non-embedded domains; but 
this has yet to be investigated. 

RefereDl~es 

1. Argyris C. Schön D.A. (1978) Organizationallearning: a theory ofaction perspective, 
Addison-Wesley, Harlow, UK 

2. Basili V.R., Rombach H.D. (1988) The TAME project: towards improvement oriented 
software environments. IEEE transactions on software engineering, 14: 758-773 

3. Basili V.R., Weiss D.M. (1984) A methodology for collecting valid software 
engineering data. IEEE transactions on software engineering, SE-I0: :728 -738 

4. Birk A., J1lrvinen J., Solingen R. van, (1999) A validation approach for product
focused process improvement. In: Proceedings of the 1st PROFES conference, Oulu, 
Finland, pp. 22-24 

5. Davis G.B. (1982) Strategies for information requirements determination. IBM 
systems journal, 21: 4-30 

6. Entwistle N. (1981) Styles of learning and teaching. John Wiley and Sons, West 
Sussex, UK 

7. Erens F.J. (1996) The synthesis of variety: developing product families. Ph.D. thesis, 
Eindhoven University ofTechnology, Netherlands 

8. Fenton N.E., Pfleeger S.L. (1996) Software metrics: a rigorous and practical approach. 
Thomson Computer Press, London, UK 

9. Garvin D.A. (1993) Building a learning organization. Harvard business review, 
pp. 81-91. 

10. Genuchten M. van (1991) Towards a software factory. Ph.D. thesis, Eindhoven 
University ofTechnology, The Netherlands 

11. Gilb T. (1994) Principles of software engineering management. Addison-Wesley, 
Harlow, UK 

12. Goodman P. (1993) Practical implementation of software metrics. McGraw-Hill, 
London 

13. Hamann D., J1lrvinen J., Birk A., Pfahl D. (1998) A product process dependency 
definition method. In: Proceedings of the Euromicro 98 workshop on software process 
and product improvement, Västeräs, Sweden 

14. Hamann D., J1lrvinen J., Oivo M., Pfahl D. (1998) Experience with explicit modeling 
of relationships between process and product quality. In: Proceedings of the 4th 
European software process improvement conference, Monte Carlo 

15. Humphrey W.S. (1989) Managing the software process. SEI series in software 
engineering, Addison-Wesley, Harlow, UK 

16. ISO 9126, Information Technology, Software product evaluation: quality 
characteristics and guidelines for their use, ISO, 1991 and Part I: Quality model, 
International organization for standardization, FCD 1998 

17. Karjalainen J., Makarainen M., Komi-Sirvio S., Seppanen V. (1996) Practical process 
improvement for embedded real-time software. Quality engineering, 8: 565-573 



www.manaraa.com

316 Solingen, Kusters and Trienekens 

18. Latum F. van Oivo M., Hoisl B., Ruhe G. (1996) No improvement without feedback: 
experiences from goal oriented measurement at SchIumberger. In: Proceedings of the 
5th European workshop on software process Technology, Lecture notes in computer 
science, Springer, Berlin Heidelberg New York, 1149: 167-182 

19. Latum F. Solingen R. van, Oivo M., Rombach D. H., Hoisl B., Ruhe G. (1998) 
Adopting GQM-based measurement in an industrial environment. IEEE Software, 
15: 78-86 

20. Kusters, R.J., Solingen R. van, Trienekens, J.J.M. (1997) User-perceptions of 
embedded software quality. In: Proceedings of the Eighth international workshop on 
software technology and engineering practice, London, UK, pp. 184-197 

21. Kusters RJ., Solingen R. van, Trienekens, J.J.M. (1999) Identifying embedded 
software quality: two approaches. Quality and reliability engineering international, 
15: 485-492 

22. PROFES (1999): Various Authors, PROFES User Manual, User Manual of the 
PROFES improvementmethodology, ISBN 3-8167-5535-6 

23. Rooijmans J., Aerts H., Genuchten M. van, (1996) Software quality in consumer 
electronic products. IEEE Software, 15: 55-64 

24. Schneider K., Hunnius J.P. von, Basili V.R (2002) Experience in implementing a 
learning software organization. IEEE Software, 19: 46-49 

25. Senge P.M. (1990) Tbe leader's new work: Building learning organizations. Sloan 
management review, 3: 7-23 

26. Senge P.M. (1990) Tbe fifth discipline: Tbe art and practice of the learning 
organization. New York, Doubleday books, ISBN: 0385260954 

27. Senge P.M., Roberts C., Ross R.B., Smith BJ., Kleiner A. (1994) Tbe fifth discipline 
fieldbook: Strategies and tools for building a learning organization, NB-publishing, 
London,UK 

28. Solingen R. van (2000) Product focused software process improvement: SPI in the 
embedded software domain. BETA Research Series, Nr. 32, Downloadable from: 
http://alexandria.tue.nVextra2/200000702.pdf, Eindhoven University of Technology, 
(accessed 20th April, 2003) 

29. Solingen R van, Berghout E.W. (1999) Tbe goaVquestionimetric method: a practica1 
guide for quality improvement of software development. McGraw-Hill, Spain, ISBN 
0077095537 

30. Solingen R. van, Berghout E., Kooiman E. (1997) Assessing feedback ofmeasurement 
data: relating schlumberger RPS practice to learning theory. In: Proceedings ofthe 4th 
international software metrics symposium, Albuquerque, Canada, pp. 152-164 

31. Trienekens J.J.M., Kusters RJ., Solingen R. van (2001) Product focused software 
process improvement: concepts and experiences from industry. Software quality 
journal, 9: 269-281 

Author Biography 

Dr. Ir. Rini van Solingen is a principal consultant at CMG, a worldwide software 
product and service supplier. Within this role, he has specialized in software 
product and process Improvement. He has been a senior quality engineer at 
Schlumbergerffokheim and was head of the Quality and Process Engineering 
department at the Fraunhofer lESE. Dr. van Solingen has over 100 publications, is 



www.manaraa.com

14 Practical Guidelines for Learning-Based Software 317 

a frequent speaker at international conferences and is author of the software 
measurement book: The GoallQuestion/Metric method (http://www.gqm.nl/). 

Prof. Dr. Rob Kusters is professor of ICT and Business Processes at the Dutch 
Open University in Heerlen where he is responsible for the master program 
Business process and ICT. He is also an associate professor of IT Enabled 
business process redesign at Eindhoven University of Technology, where he is 
responsible for a section of the program in management engineering and is an 
associate member of the research school BETA, which focuses on operations 
management issues. His interests include enterprise modeling, software quality 
and management. 

Dr. Ir. Jos Trienekens is an associate professor at TU Eindhoven (TUE) in the area 
of ICT systems development and a senior researcher at Kema Registered Quality 
in the Netherlands. At TUE he is responsible for a research program, on ICT
driven business performance. He is also an associate member of the research 
school BETA at TUE which focuses on operations management issues. 
Dr. Trienekens has published various papers in books, journals and international 
conference proceedings, has joined several international conferences as a PC 
member and as organization committee member, and has experience as project 
partner in several European projects. 



www.manaraa.com

15 In-Project Learning by Goal-oriented 
Measurement 

Rini van Solingen 

Abstract: Measurement is often advocated as a means to get a better grip on 
software development. Measurement implements a method to gain knowledge of 
what is happening, and therefore is in fact a learning process. The most common 
method for software measurement is the GoallQuestionIMetric approach (GQM). 
In the GQM method a systematic approach is represented for tailoring and 
integrating goals to models of the software processes, products, and quality 
perspectives of interest, based upon the specific needs of the project and the 
organization. By using GQM, metrics are defmed from a top-down perspective, 
and analyzed, and interpreted from the bottom up. This interpretation process is a 
group learning process. GQM trees of goals, questions, and metrics are buHt on 
knowledge of the experts in the organization: the developers. Knowledge 
acquisition techniques are used to capture the implicit models of the developers 
buHt during years of experience. Those implicit models give valuable input to the 
measurement program and are often more important than the available explicit 
process models. By measuring daHy practices of software development, GQM 
supports learning processes within software projects. 

Keywords: GQM, GoallQuestionIMetric, Measurement, Industrial experience, 
Management 

15.1 Introduction 

As with any engineering discipline, software engineering requires a measurement 
mechanism for feedback and learning. It is rarely recognized that the main 
objective of software development is in fact learning. To support and control 
software development, it is often advocated to use measurement. By measuring 
events and entities, information becomes available to control quality, development 
time, cost, and so on. Measurement is used as a source of information to gain 
knowledge, which is in fact also nothing more than learning. 

Measurement supports the creation of a corporate memory and helps to answer 
of practical questions during software projects. It helps in project planning (e.g., 
How much will this project cost?), determining strengths and weaknesses (e.g., 
What is the frequency of severe failures?), providing a rationale for technology 
evaluation (e.g., What is the impact of UML on project duration?) and evaluating 
quality of processes and products (e.g., What is the reliability of this system in the 
field?). During a project, measurement assists to assess progress, to take corrective 
actions, and to evaluate the effectiveness of such actions. 



www.manaraa.com

320 Solingen 

In order to be effective measurement must be [16] 

1. Focused on specific goals 
2. Applied to alllife-cycle products, processes, and resources 
3. Interpreted based on characterization and understanding of the organizational 

context, environment, and goals 

This implies that measurement must be defmed from the top down. It must be 
focused, based on goals and models, and serve a certain specific interest. A solely 
metric-driven, bottom-up approach will not work because there are many 
observable characteristics in software (e.g., time, number of defects, complexity, 
lines of code, severity offailures, effort, productivity, and defect density). Without 
a goal-oriented focus established in advance, there is a chance that wrong 
interpretations will be made since important issues influencing conclusions have 
not been measured. Therefore, it is important to defme beforehand what will be 
done with measurements, which goals are focused on, and which specific 
measurements need to be available to allow the drawing of conclusions. A 
context-specific selection of metrics and guidelines on how to use and interpret 
these metrics should be made, based on the models and goals of that environment. 
This chapter introduces practical examples on how to perform measurement 
within software development projects, and how to instalI software measurement 
feedback processes that maximize learning effects. 

15.2 The Goal Question Metric Approach 

The most common and popular mechanism for goal-oriented software 
measurement is the Goal Question Metric (GQM) approach [3, 4, 6, 15]. This 
approach is based upon the assumption that an organization must first specify the 
goals for itself and its projects, to allow measurement in a purposeful way. It must 
then trace those goals to the data that is needed to attain those goals operationally, 
and finally, but most important, it must provide a framework for interpreting the 
data with respect to the stated goals. Thus it is important to make clear what 
informational needs the organization has, so that these information needs can be 
quantified if possible and be analyzed toward the goals. 

GQM defines a certain goal, refines this goal into questions, and defmes 
metrics that should provide the information to answer these questions. By 
answering the questions, the measured data defines the goals operationally, which 
can be analyzed to identify whether or not the goals are attained. Thus, GQM 
defines metrics from a top-down perspective and analyses and interprets the 
measurement data from the bottom up, as shown in Fig. 15.1. Since the metrics 
were defmed with an explicit goal in mind, the information provided by the 
metrics should be interpreted to answer the questions and comPare these answers 
with the stated hypotheses. Finally, when all questions are answered it can be 
analyzed whether or not the measurement goal is attained. 



www.manaraa.com

15 In-Project Leaming by Goal-oriented Measurement 321 

The result of the application of the GQM approach is the specification of a 
measurement environment targeting a particular set of issues and a set of rules for 
the interpretation of the measurement data The resulting measurement model has 
three levels: the conceptuallevel, the operationallevel, and the data level. 

c 
o 
E 
c 
'; 
o 

M1 

Goal 

M2 M3 M4 

Fig. 15.1. The GQM paradigm [3] 

15.2.1 Conceptual Level 

M5 M6 

A measurement goal can be defined for several objects, for a variety of reasons, 
with respect to various models of quality, and from various points ofview, relative 
to a particular environment. Measurement goals should be defmed in an 
understandable wayand should be clearly structured. For this purpose, templates 
are available that support the definition of measurement goals by specifying 
purpose (what object and why), perspective (what aspect and who), and context 
characteristics [16]. One such template is illustrated in Fig. 15.2. 

Analyze The object under measurement 
For the purpose of Understanding, controlling, or improving the 

object 
With respect to The quality focus of the object that the 

measurement focuses on 
From the viewpoint of The peo~le that measure the obiect 
In the context of The environment in which measurement takes 

place 

Fig. 15.2. GQM goal definition template [16] 

Objects of measurement can be classified into three groups [8]: 



www.manaraa.com

322 Solingen 

• Products: Artifacts, deliverables, and documents that are produced during the 
system life cyc1e; e.g., architectural specifications, code, or test suites. 

• Processes: Software-related activities normally associated with time; 
requirements process, testing, interviewing, and so on. 

• Resources: Items used by processes in order to produce their outputs such as 
software developers, project managers, hardware, software, and office space. 

The defmition of formal measurement goals is the first step in the definition of 
a measurement program. These measurement goals should be derived from the 
improvement goals that are assumed to be available. All people participating in 
the measurement program should be involved in the definition of measurement 
goals. Without this involvement, people's commitment to the measurement 
program is at risk, as it may no longer be c1ear to them why measurement is 
applied. 

A distinction is made between ''measurement goals" and "improvement goals". 
GQM specifies and supports measurement goals. These are goals that specify the 
objective of the measurement program. These goals can and should be derived 
from and based on improvement goals. Improvement goals address clear 
objectives to change certain aspects in an organization, for example, quality 
increase, cost reduction, reduced time to market, and risk reduction. Measurement 
goals in themselves do not increase quality or reduce development effort. They do, 
however, support in providing the required knowledge and information to take 
direct action toward these objectives. GQM supports learning about software 
development in an organization, and therefore supports learning "how" and 
''where'' to improve. GQM programs provide support in integrating learning 
activities into the daily software process. 

15.2.2 Operational Level 

A set of questions is used to re fine a goal into more detail by explicitly defining 
information and knowledge requirements for attaining such a goal. Questions try 
to characterize the object of measurement (product, proeess, resouree) with respect 
to aselected topic and from the selected viewpoint. 

It is important to specify an expected answer for each question. These so-called 
"hypotheses" retlect the current implicit models of the people in the measurement 
program. Comparison of real measurements with these hypotheses creates deep 
understandings of implicit knowledge and assumptions, and therefore greatly 
contributes to the learning effects of GQM. Without the specification of these 
hypotheses, learning effects ofmeasurement are largely reduced [17]. 

15.2.3 Data Level 

A set of metrics is related to every question in order to answer it quantitatively. 
Measurement data can be 



www.manaraa.com

15 In-Project Learning by Goal-oriented Measurement 323 

• Objective: Measurements depend only on the object that is being measured and 
not on the viewpoint from which they are taken, e.g., the number of versions of 
a document, or staff hours spent on a task, or the size of a program. 

• Subjective: Measurements depend on both the object that is being measured and 
the viewpoint from which they are taken, e.g., readability of a text, or level of 
user satisfaction. 

15.2.4 Acquiring Knowledge for Building Measurement Programs 

GQM trees of goals, questions and metrics are buHt on the knowledge of the 
people in an organization. Consequently, these people need to be involved in 
setting up GQM programs, which inc1ude capturing knowledge of software 
engineers and other representatives. Therefore, knowledge acquisition techniques 
applied to make the implicit models of the developers buHt during years of 
experience need to be made explicit. Those implicit models can then give valuable 
input into the measurement program. 

To support making these implicit models more explicit, one can use so-called 
abstraction sheets [11]. The use of abstraction sheets during interviews provides a 
structured approach to focus on relevant issues regarding the measurement goal 
and to prevent issues from being overlooked. An abstraction sheet summarizes the 
main issues and dependencies of a goal as described in a GQM plan and is 
subdivided into four sections. The four sections of an abstraction sheet are [11]: 

• Quality [ocus: What are possible metrics to measure an object of a goal, 
according to the project members? 

• Baseline hypothesis: What is the project member's current knowledge with 
respect to these metrics? His or her expectations are documented as baseline 
hypotheses of the metrics. 

• Variation Jactors: Which (environmental) factors does a project member expect 
to be of influence on the metrics? 

• Impact on baseline hypothesis: How could these variation factors influence the 
actual measurements? What kind of dependencies between the metrics and 
influencing factors are assumed? 
An example of an abstraction sheet is given in Fig. 15.3. Hypotheses are 

grouped in the two lower sections of the abstraction sheet and are related to the 
corresponding questions in the other sections. The four seetions can be checked 
for consistency and completeness, because mutual relations between the sections 
exist. For example, for every quality focus, there should be at least one baseline 
hypothesis, and possibly some variation factors. Also, for every variation factor 
there should be at least one Impact on the hypothesis. These variation factors are 
explicitly important since they focus on those issues that influence the object 
under measurement. This prevents wrong conc1usions from being drawn due to 
events occurring outside the scope of measurement. 



www.manaraa.com

324 Solingl;ln 

Object ~ QualjW Focus Vie!mQint 

Delivered Understanding Reliability and Project Team 
Product its causes 

Qualiw Focus Variaügn Fi!gg!! 
Number of failures: 
• by severity Level of reviewing 

• by detection group 
• number of faults 
• bymodule 

Bglllni HvoothesU (DIimates) Iml!i!S Qf Varii!llon Faggrs 
Distribution of failures: 
• Byseverity: The higher the level of reviewing, the 

• Minor60% fewer minor failures will be detected 

• Major 30% after release 

• Fatal 10% 

Fig.15.3. Example abstraction sheet [16] 

15.3 Feedback of Software Measurement Results 

Feedback of measurement data and the associated analysis of this data by the 
software engineers is done in so-ca1led feedback sessions [10]. Feedback sessions 
are meetings of all software development team members and GQM team members 
in which the measurement results are discussed. Outcomes of a feedback session 
are interpretations, conclusions, decisions, and actions. Feedback sessions are 
typically carried out in industrial measurement programs through the following 
steps: 

• Preparing a feedback session: Preparing feedback sessions concerns the 
processing of collected data into presentable and interpretable material. Tbe 
GQM plan provides the basis for preparing feedback sessions. That is feedback 
material should support answering the questions as defmed in the GQM plan, 
and based on these answers, one should be able to conclude whether the 
defined measurement goals are attained. Tbe GQM team primarily carries out 
the preparation for feedback sessions. 

• Holding a feedback session: Feedback sessions are held approximately every 
six to eight weeks. Tbey typically last about 1.5 to 2 hours, but no more than 3 
hours. Sessions that are any longer are seen as counter productive. This time is 
sufficient to discuss some 15 to 20 slides (containing graphs and tables) [15]. In 
principal, a software development team should run a feedback session alone. 
Tbey analyze, interpret, and draw conclusions regarding the measurements, and 
translate their conclusions into action points. After all, they are the experts with 
respect to the object under measurement. Tbe software development team 
should focus on evaluating action points from earlier sessions, interpreting 
measurement data with respect to the questions and goals as defmed in the 



www.manaraa.com

15 In-Project Learning by Goal-oriented Measurement 325 

GQM plan, and translating interpretations into conclusions and action points. 
The GQM team should avoid interpreting the data themselves. Their role is to 
challenge a software development team, for example, by offering alternative 
interpretations [17]. Furthermore, the GQM team provides support and may, for 
example, provide meeting reports. Feedback sessions are a delicate phase in a 
measurement program since mutual trust among all participants is, an essential 
element of a feedback session. Through focusing on identified goals, questions, 
and metrics, the discussion will start on the basis of facts. 

• Documenting results of a feedback session: After the feedback session, the 
GQM team writes a meeting report containing all relevant observations, 
interpretations, conclusions and action points that were formulated during the 
session. It is advised to follow the rule that the software development team 
'owns' the measurement data and therefore decides on distribution ofboth data 
and reports to, for example, management. When the GQM team wants to 
inform higher management, the GQM team only uses particular, often 
aggregated results and asks for permission to do so. In order to reuse 
measurement results and experiences in future measurement programs, the 
results of a measurement program should be documented in such a way that 
they are easily accessible and understandable. 

The concept of organizational support for GQM measurement programs 
distinguishes a software development team and a GQM team [16]. This GQM 
team supports a software development team by carrying out all tasks in a 
measurement program that do not need to be performed by the software engineers. 
As such, the engineers only provide their input and participation when necessary, 
leaving their workload in measurement relatively low. Our research indicates that 
the amount of time spent by a software development team on a measurement 
program is limited to 2% of their time, and is even reduced to less than 1 % for 
teams with GQM measurement experience [5]. Beside the benefits limiting the 
participation effort of the software engineers, the other benefit of measurement is 
that this two-team structure facilitates continuation. Both teams depend on and 
trigger each other, which results in a continuous process. The software 
development team triggers the GQM team with data and requests for aggregated 
results. Likewise, the GQM team triggers the software development team with 
requests for measurement data and interpretations of feedback material. 

The second point is the observation that the main purpose and outcome of 
measurement programs is learning [17]. Measurement programs are performed to 
increase understanding and control, and to optimize practices [2]. This is all 
centered on collecting information to increase knowledge, which is nothing more 
than leaming. Considering that improvement and measurement should be leaming 
processes, this immediately leads to the recommendation of exploring learning 
theory to identify how measurements can be performed better through increasing 
the leaming effects. In the past few years we have performed research and 
explored learning theory and formulated practical guidelines on increasing 
measurement leaming effectiveness [17]. Measurement pro grams can only be 
successful when the participants actually leam [18]. Realizing that leaming is an 



www.manaraa.com

326 Solingc~n 

important objective of measurement, learning theory is explored in order to 
understand how learning takes place within industrial measurement programs and 
how this learning can be encouraged. Learning deals with expanding knowledge 
and changing behavior [9]. Elements of learning theories were also included in 
feedback sessions and led to two particular fmdings: model ofthe learning process 
between software development team and GQM team, and a list of learning 
enablers that stimulate group learning within measurement programs. These two 
products are elaborated upon in the following sections. 

15.3.1 Learning Model for Development Team and GQM Team Interaction 

In this section we position the guidelines from learning theory into a model of 
feedback sessions. Based on learning theory of student - teacher interactions [7], a 
model is proposed regarding development - GQM team interaction. This model is 
depicted in Fig. 15.4 and describes the learning process that a software 
development team and GQM team go through. The model illustrates that the 
results of a feedback session are significantly influenced by the organization of the 
feedback process. 

The model of feedback sessions contains two loops. One loop represents the 
learning process of the software development team, the other the learning process 
of the GQM team. Both loops contain two types of impact: short-term and long
term changes. A GQM team possesses specific characteristics that define the 
feedback. The software development team (also with specific characteristics) has a 
particular perception of this feedback. The results of a feedback session are 
improvements that are made explicit through interpretations, conclusions, and 
action points. These improvements influence the software development team and 
GQM team, as weIl as the short-term and long-term changes. A more detailed 
description of this model is given in [17]. Multiple case studies have been carried 
out to validate this model. 

The previous knowledge of the software development team with respect to the 
measured process is captured by building the measurement program based their 
knowledge of the process, and through interviews for the definition of the GQM. 
Measurement data is normaIly of great concern to software engineers since this 
information is often accessible to other departments and represents their 
performance. 

The GQM team members provide the feedback: they process the data and 
prepare it for analysis and interpretation. Also, they guide the feedback process 
and assist software engineers in their analysis and interpretation of the data. An 
important requirement that needs to be fuIfiIled to succeed in the measurement 
program is that a high level of mutual trust and cooperation between the two teams 
must exist. Therefore, it is argued that a GQM team should be independent of the 
software development team and have no interest in the data that a software 
development team gathers. To be able to guide and support the measurement 
program, the GQM team needs to have an adequate level of background 



www.manaraa.com

15 In-Project Learning by Goal-oriented Measurement 327 

knowledge of the processes and products that are heing measured. This is an 
important prerequisite if this team is to question and challenge the interpretations 
made by the software development team. It is also aprerequisite in the sense that 
respect from the software development team is required. The GQM team should 
regard themselves as facilita10rs of leaming and be improvement-oriented in 
guiding the measurement programs. If they are, they not only assist in improving 
the processes of the software development team, but also leam how to improve 
their own work. Enthusiasm for the measurement programs is required to create a 
good atmosphere during the definition of the GQM plan as weIl as during the 
feedback process. 

Lang-tenn cbanges 

! 
sw Dnelo_t. Team Perception 01 Short-tenn changes 
provious knowlcdll" 

roodbock - .. \cvance 
inteDootualskills -,.. ....... 
motivation impmance AppreaclllStyh Procea 
expecIatiooo difflCulty -.. ---.Ilmprmggbl---+-
BDXioty - dcop attention to owrolIproccos 

lCceptmco sud ... link to ptovious know1cdll" 

mponse 
aclive aItcntion to mcallRDlCDls 

t 
pasive !datius 10 implicatioos 

acbievement -tegic 

GQM TeamMe ......... FoedbKk Short-tenn cbanges 
in ..... ~ cmten .. 
bookgrouad knowlcdll" mcthodor 
lapeoI pn:ocntalioo impro--- JOqUiJOments 
mdwsiasm 
COIpOCIatiou 
c:hoiceaorr.cdbook 

t 
Lang-tenn changes 

Fig. 15.4. Conceptual model oflearning in a feedback session [17] 

The following elements are pertinent to the feedback process. The contents of 
the feedback sessions should be based on the measurement results and the GQM 
plan. Presented material should be limited in quantity and provided regularly. The 
concept of relating new knowledge to available knowledge is an integral part of 
GQM measurement. The emphasis on relating· new and existing knowledge is a 
fundamental prerequisite for the interpretation of measurement data. During the 
presentation, much attention needs to he given to these aspects. In presenting 
results, they should be related to the goals and questions and also 10 their recorded 
expectations (hypotheses). Learning through feedback is primarily achieved 
through discussion of the data presented. This way, it is an explicit conversation 
between people. Although it is c1ear that this statement is primarily aimed at 
educational environments, it applies equally weIl to the material that is presented 



www.manaraa.com

328 Solingen 

in the feedback process. Relevance is primarily determined by a measurement 
process and a correct refinement of goals into questions and metrics. When the 
right processes are measured (those that require improvement according to a 
software development team), and the right data is gathered that indicates possible 
improvements, the relevance of the measurement program is normally high. 

Carrying out a measurement program with a eentral role for the software 
development team also implies that the software development team guards the 
relevance. The relevance of feedback is primarily the GQM team's responsibility 
as the GQM team is expected to process the data and prepare it for interpretation. 
This relevance can be achieved by relating the processed data back to the GQM 
plan, in which the objects that are considered relevant by the software 
development team are stated. The perception of the interest of the feedback itself 
is considered equally important: it is important for the GQM team to convince the 
software development team of the importance of feedback and of the software 
development team's contributions to the feedback process. The importance ofthe 
feedback process lies in the fact that the knowledge of the software engineers is 
shared and used to improve the processes. This gives the members themselves an 
opportunity to improve the processes in a way they consider effective. 

15.3.2 Leaming Enablers for Feedback Sessions 

Based on learning theory, the most prominent learning enabling factors for 
feedback have been identified. This paper does not have sufficient space to 
describe the complete analysis of these enablers as described in [9, 12, 13]. For 
this analysis we refer to [14]. The learning enablers will be subsequently 
described, together with what the enabler means within the context of software 
development. These enablers are: 

• Climate o[ openness: A climate of openness addresses the establishment of an 
environment in which there is free flow of information, open communication, 
sharing problems and lessons learned, and open debate of ways to solve 
problems. Such a c1imate or "Iearning culture" could seem a simple coneept, 
however, it is difficult to establish in practiee. Research has indicated that 
current structures for control and management in organizations tend to disable 
such climates of openness and thus decrease the commitment oftheir people [I, 
14]. The intrinsic motivation of people is especially crucial for establishing a 
creative and learning-oriented environment. Practical actions that managers can 
take to increase the intrinsic motivation of people are grouped in terms of 
challenge, freedom, resourees, work group feature, supervisory encouragement, 
and organizational support [14]. A climate of openness appears to be one of the 
most crucial prerequisites for organizationallearning. This requires a context in 
which people are willing to learn from their mistakes and discuss underlying 
causes and models for these mistakes. 

• Scanning tor knowledge: In the broadest sense, this means that there should be 
a continuous search for knowledge that could be relevant or applicable in the 



www.manaraa.com

15 In-Project Leaming by Goal-oriented Measurement 329 

specific leaming situation. Scanning for knowledge from previous products, 
competitors' products, similar products, or new methods is an important input 
to the requirements phase of a software project. Preferably, software product 
requirements should not be built from scratch. Carrying-out a post-mortem 
analysis to fmd out whether a certain used process model was adequate is also a 
good source ofknowledge (to increase leaming effects). 

• Information on context and current state of the system: Learning adds 
knowledge to an existing situation and can be influenced by extemal factors. 
Information is needed on the context and current state to leam appropriately 
and to select the best-suited additions. Here, the retrieval of information on the 
context and the current state ofthe product and the project is essential. Making 
processes explicit, measuring the performance of processes, or the current state 
ofthe product and its quality is useful to enable leaming. 

• Team learning: Team leaming is an important part of an organizationallearning 
process. Leaming is established within groups that work together toward a 
shared vision and mutual objectives. Joint formulation of learning objectives, 
information sharing, discussion, and drawing of conclusions takes place within 
team leaming. Team leaming can be used to fmd out a good way in which 
product requirements need to be specified so that the fmal product complies 
with them. It is also important that software development teams learn the 
behavior of different development processes. Measurement is a powerful 
mechanism to enable this group learning. 

• Modeling of the system under control: In order to control a system, a model 
needs to be created from tbis system and its influencing factors. This can be 
done through process modeling, and the modeling of relationship between the 
product requirements and process. 

• Possibilities for control: In order to steer a process toward the required 
outcomes, possibilities for control should be available. This means that during a 
software project (corrective) action can be taken whenever necessary. 

• Involved leadership: Managers should articulate vision, take part in the 
implementation of ideas, and be actively involved in the leaming processes. 
The role of a manager for the establishment of organizational learning, and 
motivating the people in the organization is crucial. In a leaming organization, 
managers and their roles are largely different to traditional management styles. 
The largest differences are that the manager is a designer of the learning 
organization, a teacher ofthe view on reality, and asteward for the people [13]. 

• Explicit goal definition: In order to have c1ear targets toward learning, 
particular goals should be defined and made explicit. Learning processes are of 
benefit if it is clear what the goals are and in which area leaming is required to 
attain such goals. Expectations (hypotheses ) must be explicitly specified with 
regards to the attainment of these learning goals, because expectations can be 
compared to actual values and reasons for differences can be identified. 

• Monitoring performance gap: Monitoring the difference between target and 
actual situations is an important prerequisite for learning. It supports the 
identification of what is going weH, and what needs improvement. Through this 



www.manaraa.com

330 Solingen 

perfonnance monitoring, people get feedback on their way of working and 
leam where to improve. Monitoring a possible perfonnance gap is not only 
done for the product, hut also forthe development process. The perfonnance of 
process actions should be monitored, and if differences exist between expected 
and real effects of process actions, corrective action can be taken. 

Fig.15.5. Phases ofGQM application [15] 

15.4 Application of the GQM Approach in Practice 

In this section, the application of GQM is clarified through the presentation of an 
industrial project. The industrial project used as the example developed both 
software and hardware for areal-time low-end cashing system in an international 
company. This company develops and services systems for retail petrol stations. 
This project was a second (incremental) release of a system, so a considerable part 
of the software was reused from an earlier release. At the end of the project, the 
cashing system contained over 70,000 source lines of C-code. The software 
development team consisted of a project leader, two hardware engineers, and two 
software engineers. This project spanned a total of two years. For more 
infonnation or details on this specific measurement program see Fig. 15.5 [15]. 
The approach used for implementing GQM in this project was the GQM method, 
which is a practical set of steps, over four phases [15]; 

1. The planning phase, during which a project for measurement application is 
selected, defined, characterized, and planned, resulting in a project plan. 

2. The definition phase, during which the measurement program is defmed (goal, 
questions, metrics, and hypotheses are defmed) and documented. 

3. The data collection phase, during which actual data collection takes place, 
4. The interpretation phase, during which collected data is processed with respect 

to defmed metrics and turned into measurement results, which provide answers 
to the defined questions. After this goal attainment can be evaluated. 



www.manaraa.com

15 In-Project Learning by Goal-oriented Measurement 331 

The planning phase is performed to arrange all prerequisites to make a GQM 
measurement program a success, by focusing on training, management 
involvement, and project planning. During the second phase, the deftnition phase, 
all GQM deliverables are created, based on input from the project and 
organization. This input is collected by means of structured interviews, reading 
documentation or other knowledge acquisition techniques. During the defmition 
phase the measurement goal, all questions, related metrics, and expectations 
(hypotheses) of the measurements are made explicit and documented in a set of 
reports. When all deftnition activities are completed, actual measurement can start. 
During this data collection phase measurements are collected and stored in a 
measurement database. Then the ''real work" can start using the measurement data 
in the interpretation phase. During the interpretation phase, the measurements are 
used to answer the stated questions, and these answers are again used to see 
whether the stated goals have been attained. Comparisons between hypotheses and 
actual results facilitate deep learning [14]. 

The &st step in the defmition process is the defmition of a measurement goal. 
The people participating in the measurement program should be involved in the 
defmition of these measurement goals. Without this involvement, people's 
commitment to the measurement program is at risk, as it may no longer be clear to 
them why measurement is applied, and motivation is negatively influenced. In this 
project the above-introduced measurement goal template was ftlled out, which is 
depicted below. The measurement pro gram goal on product and process reliability 
[15] was to 

- Analyze the: 
- for the purpose of: 
- with respect to: 
- from the viewpoint of: 
- in the following context: 

delivered product and development process 
understanding 
reliability and its causes 
the software development team 
the cashing system project 

Based upon this goal, the following set of questions and measurements were 
specifted in c10se cooperation with the speciftc software development team. It may 
appear that certain questions or metrics are not in line with what some readers 
might expect. This is because a measurement program is deftned and matched to 
the speciftc information and knowledge requirements of the speciftc team. As 
such, questions and metrics are always different from one environment to the 
other. The learning effects, however, match exactly to the current level of 
knowledge. 

• Q 1 : What is the distribution of failures after delivery? 
- MI: Number of faHures per calendar month 

• Q2: What is the distribution offailures across severity c1asses? 
- M2: For each failure: severity c1ass (fatal, major, minor) 

• Q3: What is the distribution offaults after delivery? 
- M3: Number offaults per module 
- M4: Number ofKSLOC per module 

• Q4: What is the relation between module reuse and reliability? 



www.manaraa.com

332 Solinge:n 

- M3: Number offaults per module 
- M4: Number ofKSLOC per module 
- M5: For each module: amount ofreuse (100%, <20%, >20%, 0%) 

• Q5: What is the relation between module complexity and reliability? 
- M3: Number offaults per module 
- M4: Number ofKSLOC per module 
- M8: Cyclomatic complexity per module 

• Q6: What is the detection effectiveness of internal groups? 
- MI: Number of faHures per calendar month 
- M9: Percentage of faHures per internal groups that fmd defects 

• Q7: What is the distribution offailure handling effort? 
- MIO: Effort per faHure for fmding the underlying fault 
- MII: Effort per fault for repair and testing 
- M12: Process phase in which the fault was introduced 

For three ofthe above questions (QI, Q2, and Q4) detailed measurements results 
will be presented and elaborated in the way they were presented and discussed in 
several feedback sessions [16]. 

15.4.1 Question 1: What is the Distribution of Failures after Delivery? 

Figure 15.6 illustrates the amount offailures reported by the project. The number 
of failure reports on this product approached zero towards the end of development. 
Achart like this not only indicates reliability of the product, but also shows effects 
of detection events. For example, in April ofthe frrst year a novice user test was 
performed, and the number of failure reports was high. Without this test, the 
number of failures would probably be lower; however, they were likely to be 
found in later stages. Another peak is shown in November, when the first field 
release was prepared. During the integration phase several failures were detected. 
The relatively low number offailures during July and August ofyear I reflect the 
summer holidays. 

Note that therefore the software development team can only interpret such 
charts, as an outsider might have conc1uded that the product was becoming 
reliable. This is a general rule: only the people in the software development team 
can interpret measurement data, as they have all the knowledge of what happened. 
Someone outside the project can of course prepare such charts, as long as this 
person does not draw any conclusions. 



www.manaraa.com

e 
.:! 
:! 
-g 
t: 
0 
D-
CD .. -0 

Gi 
..Q 

E 
:::J z 

125 

100 

75 

50 

25 

0 

;;: 
c: 
(\l ...., 

15 In-Project Learning by Goal-oriented Measurement 333 

.. .1 11 •• la .... 1 .. 
~ 
D
(I) 

cn 

N 

~ o 
Z 

Fig. 15.6. Number of failure reports on product under development 

15.4.2 Question 2: What is the Distribution of Failures over Severity 
Classes? 

The software development team considered the severity of a failure as an 
important aspect of reliability. The more fatal a failure, the more negatively it 
impacts reliability. For example, it is not acceptable to find fatal failures after the 
release of a system to the field, while some minor faHures may be acceptable (for 
tbis project). Therefore, the GQM plan contained a "severity" classification for 
failures, wbich defmed three classes for severity of a failure: 

• Fatal failures: For example, the system failed, executed wrong transactions, or 
lost transactions 

• Major failures : For example, the system refused legitimate transactions, or 
produced redundant outputs with small impact on performance 

• Minor failures: For example, aesthetic problems such as rnisspelling or output 
formatting problems 

Figure 15.7 illustrates the distribution of failures over time based on severity 
category. The hypotheses as the software development team stated them in 
February ofyear 1 are also presented in tbis chart. The percentage offatal failures 
stabilized at around 25%, wbile the expected number of fatal failures was 10%. 
The software development team bad learned how failures were distributed by 
severity, and this knowledge could be used in future projects. These numbers 
could also be used in future projects to plan faHure repair. 



www.manaraa.com

334 Solingen 

70%~------------------------------------

60% 
~ 60%+--------- -------------------------.. 
Ql 
> 
GI 
(/J 50% +---------
~ 
:rl 40% :s 
~ -30% 0 
GI 
C) 

B 20% c 
GI 
U 
Gi 10% c.. 

0% 
Minor Major 

Fig. 15.7. Number of faHures perseverity category 

Fatal 

IIISep-Y1 

11 Nov-Y1 

• Jan-Y2 

[31 Mar-Y2 

• Apr-Y2 

• Hypothesis 

15.4.3 Question 3: What is the Relation between Reuse and Reliability? 

Tbe software developed in this project was largely reused from a previous release. 
Figure 15.8 shows that the fault density (number of faults per thousand source 
lines of code) decreased linearly as the amount of reuse increased. Distinctions 
were made between existing faults and new faults. New faults were introduced 
during changes or additional development, whereas existing faults were already in 
the software before it was reused. The number of newly introduced faults 
decreased when the amount of reuse increased. When more than 20% of the code 
was reused this resulted in five time fewer new faults compared to complete new 
development In all completely reused modules, no faults were identified. The 
software development team learned that it was beneficial to reuse (parts of) 
modules during development. Reusing only the structure of an existing module 
also resulted in increased reliability. 

Conclusions on reuse drawn by the software development team were 

• Reuse is a useable method for fault prevention and detection. This is a 
remarkable learning point by the project, since by reusing they also detected 
faults still included in other systems. So, not only did the current system 
become more reliable, but other systems also became more reliable. . 

• Most of the faults in partially reused modules are detected before release. This 
is caused by the lower confidence level of engineers in partially reused modules 
than in personally developed modules. This is a remarkable social learning 



www.manaraa.com

15 In-Project Learning by Goal-oriented Measurement 335 

aspect. The team conc1uded that they were much more critical testers toward 
reused software than to their own developed software, which resulted in even 
higher reliability of the reused modules . 

• Reuse results in lower fault density. The measurements c1early showed a strong 
impact on reliability by means of reuse. The software development team 
advocated an increase in the amount of reuse strongly after that, both in their 
own as weH as in other projects, as a means of improving reliability. 

60 ,---------------..,. 2,5 

50+----------------~~~ 

.l9 
'3 40 +--------7'f 
J! 
Ö 30+------~~~ 
.8 
§ 20+-----~~----
z 
10+---~r_-------

o +--<r-""'T"-
100% reuse More than Less than No reuse 

20% 20% 

Amount of reuse 

Fig. 15.8. Fault densities of modules categorized by amount of reuse 

c:=:::J New faults 

Reused faults 

-0-Fault density 
(#FaultsfKsloc) 

These measurement results were used to convince managers and engineers of 
the effectiveness of reuse, and could also be used to promote reuse elsewhere in 
the organization. Productivity improvements caused by reuse were not considered 
in this measurement prograrn on purpose. The reliability increase caused by reuse 
was leamed from this measurement program, so other projects did not have to 
leam this again. 

15.5 Conclusion 

The GQM approach is a mechanism for defining and interpreting operational and 
measurable software engineering goals. It can be used in isolation or, better still, 
within the context of a more general approach to software quality improvement. 
GQM has evolved in the past years to become the de facto standard for the set-up 
of software measurement programs. The GQM approach combines in itself most 
of the current approaches to measurement and generalizes them to incorporate 



www.manaraa.com

336 Solingen 

processes and resources as weIl as products. This makes it adaptable to different 
environments, as confirmed by the fact that it has been applied in many 
organizations [15, 16]. 

Although rarely explicitly considered in industry, the main objective of 
software measurement is in fact learning. Without learning, there will be no 
increased understanding and therefore no improvement. In this chapter, learning 
theory was used to identify possibilities of increasing the learning effectiveness of 
feedback sessions. The outcome of this investigation was presented in a model of 
a software development team - GQM team interaction that describes both the 
learning processes of a software development team and a GQM team. 
Furthermore, several enablers were introduced that support learning in 
measurement programs. 

References 

1. Amabile T.M. (1998) How to kill creativity. Harvard business review, 76: 77-87 
2. Banker R., Slaughter S. (1997) A field study of scale economies in software 

maintenanl~e. Management science, 43: 1709-1725 
3. Basili V.R., Weiss D.M. (1984) A methodology for collecting valid software 

engineering data. IEEE transactions on software engineering, SE-I0: 728-738 
4. Basili V.R., Rombach H.D. (1998) The TAME project: towards improvement-oriented 

software environments. IEEE transactions on software engineering, SE-14: 758-773. 
5. Birk A., Solingen R. van, Järvinen 1. (1998) Business impact, benefit, and cost of 

applying GQM in industry: an in-depth, long-term investigation at Schlumberger RPS. 
In: Proceedings ofMetrics'98, Bethesda Maryland, 93-96 

6. Briand L.C., Ditferding C.M., Rombach, H.D. (1996) Practical guidelines for 
measurement based improvement, ISERN 96-05 

7. Entwistle N. (1981) Styles of learning and teaching, John Wiley and Sons, West 
Sussex, UK 

8. Fenton N.E., Pfleeger, S.L. (1996) Software metrics: a rigorous and practical approach. 
Thomson computer press, London, UK 

9. Garvin D.A. (1993) Building a learning organization. Harvard business review, 
pp. 81-91. 

10. Latum F. van, Oivo M., Hoisl B., Ruhe G. (1996) No improvement without feedback: 
experiences from goal oriented measurement at Schlumberger. In: Proceedings of the 
5th European workshop on software process technology, Lecture notes, Springer, 
Berlin Heidelberg New York, 1149: 167-182 

11. Latum F. van, Solingen R. van, Oivo M., Rombach H. D., Hoisl B., Ruhe G. (1998) 
Adopting GQM based measurement in an industrial environment. IEEE Software, 
15: 78-86 

12. Nevis E., DiBella A., Gould J. (1995) Understanding organizations as learning 
systems. Sloan management review, 36: 73-85 

13. Senge P.M. (1990) The fifth discipline: The art and practice of the learning 
organization, Doubleday, New York, USA 



www.manaraa.com

15 In-Project Leaming by Goal-oriented Measurement 337 

14. Solingen R. van, (2000) Product focused software process improvement: SPI in the 
embedded software domain. Ph.D. thesis, Eindhoven University of Technology, 
Netherlands, ISBN 90-386-0163-3 

15. Solingen R. van, Bergbout E.W. (1999) The goaVquestionimetric method. McGraw
Hill Publishers, ISBN 0077095537 

16. Solingen R. van, Basili V.R., Caldiera G., Rombach H.D. (2002) Goal question metric 
(GQM) approach. In: Marciniak J.J. (Ed.), Encyclopedia on software engineering, John 
Wiley and Sons, West Sussex, UK 

17. Solingen R. van, Bergbout E., Kooiman E. (1997) Assessing feedback of measurement 
data: relating Schlumberger practice to learning theory. In: Proceedings of IEEE 4th 
international software metrics symposium, 152-164. 

18. Ulrich D. (1998) Intellectual capital = competence x commitment. Sioan management 
review, 40: 9-20 

Author Biography 

See Chapter 14 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D 
Knowledge 

Christo! Ebert, Joze! De Man anti Fariba Schelenz 

Abstract: This chapter describes a process improvement initiative at Alcatel 
called e-R&D. It deals with systematically and continuously disseminating 
knowledge throughout the organization and embodying it in new products and 
services. e-R&D can be broken into three implementation tracks: strengthened 
process capability, visibility and workflow integration. These three tracks and 
their impact on knowledge management are explained in the chapter and are 
illustrated with examples and lessons learned. Focus is given to organizational 
learning as one component of knowledge management, and underlined with tool 
support that facilitates such learning. 

Keywords: Collaborative product commerce, e-R&D, Software process 
improvement, Managing process diversity, Workflow management, 

16.1 Introduction 

Effectively managing knowledge is a mandatory driver for business success in 
software-dominated product development. To keep software development 
competitive, Alcatel put in place an orchestrated process improvement with 
underlying engineering tools. This initiative is called e-R&D. One important 
aspect of e-R&D is illustrated within this chapter. It deals with systematically and 
continuously creating knowledge, disseminating it thrOUghout the organization 
and embodying it in new products and services. Knowledge management thus will 
be characterized from the three perspectives of products, processes and projects. 

Why do we map knowledge management on products, processes and projects, 
primarily? The great majority of today's technology-based companies has 
overloaded their R&D project pipelines and don't have the visibility of impacts 
across the various tracks. A little bit of processes tuning, improving project 
management, or getting some visibility on new product introduction can no longer 
cure this. The allure of new, high-margin products, combined with the delayed 
impacts of resource allocation decisions, seduce product managers into starting 
more projects than their development resources can handle. Similar manufacturing 
during the 1980s, the perceived "software factories" must focus simultaneously on 
all three dimensions. 

Why do we call managing these assets "e-R&D"? For two reasons: effectively 
managing and using product, process and project assets necessarily fit into the 
wider range of Alcatel's business process improvement and corporate e-business 



www.manaraa.com

340 Ebert, Man and Schelenz 

initiatives. The term e-R&D also means enabling of interactive R&D processes 
and increasingly collaborative work across the globe. 

What is the vision behind e-R&D? The vision of the e-R&D initiative is to 
provide outstanding R&D performance. This is achieved through the three 
elements of e-R&D, namely accountability, process improvement and technology 
effectiveness. Accountability targets management practices and is one of Alcatel's 
values. Process improvement considers the variety of R&D processes and how to 
improve our process capability based on available experiences and process assets. 
Technology effectiveness leverages on accountability and process improvement 
and looks into providing the right innovative technology to address our customers' 
needs. 

e-R&D can be broken into three implementation tracks: 

• Strengthened process capability 
• Visibility 
• Workflow integration 

These elements are centered on a standardized product life cycle (Fig. 16.1). For 
weIl-orchestrated product launch, development, post-Iaunch and discontinuance, 
all functions of the enterprise must playapart in developing and executing an 
integrated plan. The potential for growth as weIl as replacement must be assessed 
based on a common framework. 

Strengthened process capability is the key to e-R&D. Ifyou do not know where 
you are and where you want to go, change will never lead to improvement. For 
several years, Alcatel has implemented the world-renowned Capability Maturity 
Model (CMM), originally issued by the Software Engineering Institute [23]. This 
model provides a framework for process improvement and is USed by many 
software development organizations. It defines five levels of process maturity plus 
an improvement framework for process maturity, and as a consequence quality 
and predictability. 

Knowledge management must be linked to business. We thus included within 
e-R&D the CMM with a strong focus on business objectives and metrics for 
follow-up of change implementation. Take as an example a mobile phone design. 
Since this is a commodity good, we focus primarily on targets such as return rates. 
Defects increase return rates and reduce brand loyalty. Both have devastating 
business impacts. The business division responsible for Alcatel's mobile phones 
therefore looks carefully at that objective. Design reviews are centered on 
reducing return rates and check on not only manufacturing aspects, but also on 
how design decisions impact usability. Knowledge and experience from past 
projects (and failures) is embedded into the underlying design processes. 

How do engineering tools appear? Processes without adequate tool support 
remain theoretical. Our objective is to improve visibility in engineering and to 
master a variety of workflows and external interfaces related to R&D. e-R&D 
must bridge the needs of process improvement with tool support. Naturally, 
workflow management and knowledge management are closely related in such 
highly collaborative environments as described here. Process-related knowledge 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 341 

builds the nucleus toward automating and reusing artifacts, thus reducing cycle 
time and rework. 

Business Cose 
And Stmtegy 

U 
Pf"Ojed 

Core Team 

(f 
Product Ufe Cycle serves os 0 fromework, portal, delivembles list 

Oppc<lUnity 

Olllfln ition 
Plonning Oevolopmont Votidorion Convneroa 

(bu.in-.., (Salll!l;t c:rIdTDd1nicoQ Io.mc;;h 

.~n~ 

y Visibility on results 

Acc:eptonce 

Fig. 16.1. e-R&D drives R&D improvements along the life cycle 

DepI~·"".n. a.d 
MointenanOD 

Phoo..
Ou' 

Key terminology in this chapter is briefly explained here. A process is a 
sequence of steps performed for a given purpose, for example, the software 
development process. The process follows the guidance provided by enterprise or 
business unit policies. A work product or artifact is the outcome of a process. It 
can be intermediate and internal to a process or it can be delivered to another 
process. 

The product life cycle (PLC) summarizes on a high-level the phases between a 
product's inception and its phase-out. The Capability Maturity Model (CMM), has 
been the de facto standard of software process improvements. In this context, we 
do not distinguish between hardware and software systems regarding business 
processes and the underlying management processes in portfolio and project 
management. 

The chapter is organized as folIows: Sect. 16.2 describes the environment in 
which we operate. Sect. 16.3 briefly introduces the topic and background of 
knowledge management (KM) in software engineering. It also covers some results 
available from other studies and solutions. Sect. 16.4 covers integrated 
management of process diversity, for both concepts and tool support. Sect. 16.5 
introduces the concept of return on knowledge and how to select the appropriate 
solutions for effective knowledge management. Finally, Sect. 6 concludes with 
our own concrete results, which we achieved over the past years. 



www.manaraa.com

342 Ebert, Man and Schelenz 

16.2 Case Study Setting 

To cover the fuH depth of the possible integration of KM concepts, this chapter 
focuses on a single business unit in Alcatel. The study is based on experiences in 
the Alcatel 1000 S12 voice switching business unit in Alcatel's voice networking 
business. The Alcatel 1000 S12 is a digital switching system that is used in over 
50 countries world-wide, with over 180 million instalied lines. It provides a wide 
range of functionality (line concentrators, small local exchanges, transit 
exchanges, international exchanges, network service center, and intelligent 
networks) and scalability (from small remote concentrators to large local 
exchanges). Its typical size is over 4.5 million source statements (in a Pascal-like 
language), which are customized for network operators. In terms offunctionality, 
S 12 covers almost all areas of software and computer engineering. This includes 
operating systems, database management and distributed real-time software. 

Alcatel is ISO 9000 certified. Recently the entire business unit has reached 
CMM level 3. The activities and results described in this chapter played a 
dominant role in achieving this. The concepts of e-R&D are currently being 
reused more across Alcatel. In terms of effort or development cost, the share of 
software is increasing continuously and is currently in the range of 90010. The 
projects vary in size between a few person-years and more than a hundred person
years (broken into increments). 

More than 2000 R&D engineers work in this business unit globally. In such a 
large business unit operating in several geographically distributed development 
centers, the need for effectively managing process diversity arises earlier than in a 
small and co-Iocated unit. 

Having one PLC across Aleatel allowed us to dig deeper and identifY policies 
and templates for the decision process, as weH as to anehor a variety of functional 
detailed processes, roles and infrastructure tools. We definitely recommend 
starting with a generie PLC plan then eontinuing on a more detailed level, rather 
than in the opposite direetion. This top-down approach applies for the entire 
discussion around business process reengineering and e-commerce introduction. 
Start with a generic (business) process, apply it in pHots and product lines in order 
to improve on business processes, and then allow specific tailoring. 

Our vision was centered on visibility in engineering and mastering a variety of 
workflows and external interfaces. This need is pictured in the environment that 
we wanted to support (Fig. 16.2). A variety of workflows together describe how 
software engineering artifacts are gradually generated. Some are internal to 
engineering, while others are at the boundary to other functions. They all have 
their own t001 environments, which often overlap. Many of these tools are 
proprietary, mostly legacyand surely not originally intended to work with each 
other or to be managed externally. 

The need for workflow management stems from the heterogeneity of those 
tools and the detailed processes overlap considerably, such as 10gin proeedures, 
document management and product data management. The system described in 
this paragraph is buHd upon one instance accessible via an intranet to all engineers 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 343 

of the business unit who share similar needs, processes and tools. When scaling 
up to a broader corporate level, we maintain the notion of instances per product 
line, as this is where the greatest coherence and synergies can be achieved. 

ENTERPRISE MANAGEMENT SYSTEMS 

Fig. 16.2. Workflow management integrates various workflows in R&D and beyond and 
allows access to a diversity of shared and partially legacy tools environments 

16.3 Knowledge Management in Software Engineering 

Knowledge management usage gained a lot of momenturn during the 1990s. 
Eighty percent of the largest global enterprises now have KM projects [14]. 
Moreover, KM reached the software engineering community late in the 1990s. 
Typically knowledge was not managed before, but was randomlycollected and 
lost in the graveyards of corporate document vaults that were incompatible with 
each other. Increasingly KM has gained ground as a discipline that needs 
dedicated attention, not only from a functional but specifically from a cross
functional perspective [9]. 

Two recent publications deal with this subject and provide of evidence about 
how to link KM experiences into software organizations [3,21]. Most references, 
however, are still more on the theoretical side and do little to answer practical 
questions from day-to-day project business. In this section we try to approach the 
state of the practice, and in the next section we show what was implemented in 
Alcatel to address initial KM questions related to software engineering. 

How will KM help software organizations? KM provides modes and techniques 
to deal with the different kinds of software engineering related knowledge, 
namely: 



www.manaraa.com

344 Ebert, Man and Schelenz 

• Know-how (processes, interfaces, technologies, infrastructure) 
• Know-what (projects, project characteristics, predictions, relationships) 
• Know-why (products, product lines, product dependencies, portfolios) 

The goal of KM is to improve the organizational skills of an enterprise on all 
hierarchical and functional levels through better usage and deployment of skills 
and knowledge of its resources. It is a management activity, and as such is goal
oriented, planned and monitored [3, 18,21]. 

KM requires a c1ear definition of its context, scope and objectives. These 
parameters are closely linked to business objectives of the respective 
organizational entity. A software development tearn might be interested in 
identifying which checklist to apply to improve coding or peer reviews. 
Department leaders in software organizations are interested in skill evolution that 
is aligned with future technology needs. They might also insist on deploying peer 
reviews and similar techniques to improve maintainability and become experts 
dependent on experts. 

A project management tearn could be interested in learning from previous 
projects in order to better manage quality and reliability. Product line managers 
are interested in improving the portfolios they are responsible for, and the right 
baselines and evolution paths are agreed upon and implemented to serve an ever
changing market. 

Business unit and business division senior managers are interested in seeing 
operational performance and in improving on allocation of resources and 
restructuring their own operations. Customers are interested in project 
performance or service request management to reduce cycle times until they get 
solutions that serve their own operational needs. Stakeholders and financial 
analysts want to get fast insight into strategy and how the roadmaps satisfy the 
strategies. Finally, corporate management might have the need to relocate product 
lines or reassess strategie focus, and thus need a summary on all portfolios. 
Knowledge in a technology-driven company thus builds up hierarchically, starting 
from very basic software engineering practices. 

In this section we deal with knowledge identification, dissemination and 
preservation within software engineering organizations applied to the previously 
described e-R&D model. KM has to support knowledge identification, 
dissemination and preservation by providing a framework that encourages 
knowledge growth and reuse in the organization. This frarnework should be 
pragmatic. It should address concrete use cases of the initial target communities 
and then gradually grow to capture more use cases. Use cases could be "support of 
a project manager to retrleve information from past projects that apply to her 
current own projecf'. 

Instruments to solve this problem are workflow management, collaborative 
tools, document management, Web-based training or portals for access to 
information. All these tools help with learning and embedding knowledge into its 
operatiOnal usage. We have linked such instruments within e-R&D, starting from 
a process perspective, and growing to product and project dimensions. 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 345 

KM must bring together process, product and project knowledge from a 
learning perspective. The answer we investigate here is primarily centered on 
enabling R&D organizations to more effectively handle knowledge within the 
daily operational activities. Often information is reused, but with high 
redundancies or manual overhead. At times, the redundancies create rework as 
things are not done right the fIrst - or even errors that remain in the product. An 
example is product requirements and business case information. If this 
information is not shared between stakeholders at the beginning of a project, the 
development could end in gold plating or it could have the wrong focus. 

Being able to not only reuse information but also to embed the respective 
processes into integrated workflows for specific tasks generates immediate returns 
by making engineers more flexible. Consider the time and effort necessary to 
move engineers from one project to another. Having standard KM around a 
standard product life cycle reduces the learning curve to real technical challenges, 
instead of organization overheads. We should, however, be aware that KM is not 
reduced to workflow management, which we treat as a facilitator for effective 
KM. 

Knowledge management systems offer different perspectives to allow for 
instance navigation based on work products, roles or processes. Technological 
innovation and successful new products are the results of well-oiled relationships 
and tightly choreographed teamwork, whether among the different business units 
or divisions of a corporate enterprise, or between autonomous and geographically 
far-flung enterprises. 

The product life cycle (Fig.16.1) shows the global view ofthe processes. With 
its many embedded hyperlinks, it allows navigating with a few clicks to the final 
element the reader is interested in. Usability is key, rather than forrnalism and 
hierarchy. 

Processes must be easily accessible for the practitioners and managers. They 
must integrate seamlessly. By focusing on the essence of processes, integrating 
processes elements with each other and providing complete tools solutions, 
organizations can tailor processes to meet specific needs and allow localized and 
problem- or skill-specific software practices, while still ensuring that basic 
objectives ofthe organization are achieved. This is what we call managed process 
diversity. 

Practitioners do not look for heavy process documentation, but rather for 
process support that exactly describes what they have to do at the moment they 
have to do it. Modular process elements must be combined according to a specific 
role or work product to be delivered. Still, the need for an organizational process, 
as described by CMM L3 is strongly emphasized and reinforced [23]. To bridge 
thls gap, different approaches have been described recently for managing process 
diversity [15, 6,4]. 

Having the concepts for managing process diversity within the software 
development, the next step is to seamlessly integrate R&D workflows, such as 
software development or software maintenance, with their (e-)business 
counterparts, such as customer relationship management or service request 
management. Given the current focus on collaborative product commerce (CPC), 



www.manaraa.com

346 Ebert, Man and Sehelenz 

speeifieally from an end-to-end perspeetive, engineering proeesses must integrate 
with the related or interfacing business processes. Examples inelude eonfiguration 
management for software artifacts belonging to a single product line and reused in 
a variety of produets, and how they relate to the overall produet data management. 
Alternatively, software defect corrections and how they relate to overall service 
request management must be considered as part of the enterprise CRM solution. 
Product life cycles, though necessary as a foundation, are insufficient if not 
integrated weIl with non-software related business processes. 

Figurel6.2 details how such factors not only characterize the project 
complexity and thus the management challenges, but also how they determine the 
level of process integration and workflow management. Various project factors 
determine ditTerent approaches to manage the involved software processes. A 
good overview on the need for workflow systems and integrated process 
management is provided in [2]. 

Since the late 1980s, the software engineering community has achieved a good 
understanding of processes and their interaction, which was primarily driven by 
the CMM. The CMM is not a proeess model as such, but a listing of the 
capabilities that an organization must have to be effective in instituting a software 
or R&D proeess. This framework, though software-specific in its terminology, is 
fully open toward hardware- and systems engineering on its level 2. 

With knowledge about basic requirements of software processes and their 
interaction, CASE methods and processes can finally merge into what is called 
workflow systems or process models [2]. These process models have much in 
common with each other (e.g. Fusion [5], WSSDM [11], RUP [13], and OPEN 
[10]). The Object Management Group standardizes a Software Process 
Engineering Metamodel (SPEM) [19]. Current major integrated software 
engineering development environments try to scale across individual process steps 
and process artifacts [6]. 

A key step toward disseminating process knowledge is workflow automation. 
Although individual tools can increase productivity by a few percentage points, 
the non-automated portions become critical bottlenecks [22]. W orkflow 
management systems offer different perspectives to allow for instance navigation 
based on work products, roles or processes. Navigation is realized with HTLM 
hyperlinks as shown in Fig.16.3. A life-eyc1e picture shows the global overview of 
the processes, and many embedded hyperlinks allow navigating with a few clicks 
to the final element of interest. 

The entry level is a product catalogue, which is accessible from different 
points. We call it the entry level of the portal, as it is a good starting point for 
different functions that have speeific questions related to one dedieated product. 
Examples include non-R&D functions, such as marketing (e.g., How far is a 
product from its delivery?), securlty (Where are eertain protocols or components 
embedded that might cause security threads?) or procurement (How much 
royalties do we have to pay in a certain region?). 

The right side of Fig.16.3 shows the hierarchical access to increasingly specific 
product and project information. Since these layers are themselves portals, they 
are also accessed from specific project or R&D levels. Process-specific knowledge 



www.manaraa.com

16 e-R&D: Effeetively Managing and Using R&D Knowledge 347 

is depieted on the left side of Fig. 16.3. Starting from the eommon PLC, it 
indicates how a speeific produet-line mana~es process diversity, depending on 
produets, project size, resourees and other eriteria. If wedraw a · horizontalline 
through the middle of Fig. 16.3 we get basically a view of what is standardized 
and thus broadly introdueed by e-R&D, and what is produet-line specific and thus 
tailored or instantiated aecording to specifie needs. 

Produd Line 
(Entry Level) 

Life Cycle Details 

Produd Portal 

Fig. 16.3. Selecting the life cycle and navigating through an instance ofthis life cycle down 
to a work product 

Instead of the software engineering-specific solutions outlined above, a tool for 
product life-eyc1e management, enterprise resouree management (ERM) or 
eustomer relationship management (CRM) could also theoretically satisfy the 
needs specified in Sects. 16.1 and 16.2. For this reason we started to evaluate the 
tools and solutions landscapes that developed during the timeframe between 1999 
and 2001. Knowing that it would take us at least two years to build sueh 
environment, and also being aware that it would certainly scale up towards the 
entire eompany of around 20,000 R&D engineers, we looked carefully towards 
eommercial solutions. 

While product life-eyc1e management tools interwork with many HW design 
and manufaeturing tools, they only recently started to look into specific software 
engineering environments. Examples include MatrixOne, Agile or PTC, which try 
to interwork with specific software engineering tools, such as Rational's Clear
DDTS. More generic ERM tools would not sufficiently support software 
engineering on the more spel;ific workflows. CRM environments integrate with 



www.manaraa.com

348 Ebert, Man and Schelenz 

defect tracking tools, but not beyond. Their scope is limited to various front-end 
processes. However, all mentioned tools could be extended, as they are event
driven. 

The business case concems the benefit of creating an object request broker to 
give to such tools an open interface that allows interworking with legacyand 
proprietary tools. However, the transactional interface between such tools does not 
adequately support the fme-grained integration of data we want to achieve while 
avoiding as much as possible replication of data. For examples, the product life 
cycle view must include data from the PDM system, the software documentation 
system, the defect tracking system, the personnel database (for the actors), the 
process assets library, and the authorized tools list, all in one view. 

16.4 Practical R&D Knowledge Management 

To benefit from improved business processes, the different functions of the 
enterprise plus potential external partners (e.g. outsource manufacturing) need to 
agree on uniform processes and practices. They need to apply common access to 
knowledge, performance metrics and decision-making protocols. They need to 
share information, communication and underlying resources. 

The barriers to such harmonization and cooperation are not to be 
underestimated. They range from language barriers to time zone barriers to 
incompatible technology infrastructures to c1ashing product line cultures and "not 
invented here" syndrome. An obvious barrier is the individual profit and loss 
responsibility that in tough times means primarily to focus on current quarter 
results and not to invest in future infrastructures. Providing visibility is perceived 
a risk, because incumbents become accountable - which indeed is the objective -
and more subject to internal competition. 

We will show in this section how we dealt with such difficulties within R&D 
and project management ofbusiness unit for voice switching. Our focus here is on 
the processes and technologies that facilitated the growing amount of knowledge 
sharing and knowledge management in the three mentioned dimensions of 
product, process, and projects. 

The perceived conflict between organizational process and individual tailoring 
can be resolved by a tailorable process framework, which we introduced in the 
impacted product lines over the past two years. This framework is fully 
graphically accessible and allows the selection of a process applicable for 
components as weH as an entire product based on selecting the appropriate 
parameters cbaracterizing the project. The framework allows automatic 
instantiation of the respective development process and product life cyc1e, and a 
project quality plan or specific applicable metrics, based on modular process 
elements such as role descriptions, templates, procedures or check lists, which are 
hyperlinked with each other. 

Usability of any workflow support system is determined by the degree to which 
it can be adapted or tailored toward the projects' needs. There are organizational 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 349 

and project-specific environmental constraints, which make it virtually impossible 
to apply the workflow system out of the box. Most commercially available 
workflow systems therefore offer some adaptation of a standard workflow to a 
project-oriented instance, which ensures that each single activity supports the 
project targets [5, 10, 11, 13]. Adaptation is achieved by offering a set ofstandard 
workflows, which are selected (e.g. incremental delivery versus grand design; 
parallel versus sequential development; development versus maintenance). On a 
lower level, work products are defined or selected out of a predefmed catalogue. 
Some models distinguish among mandatory and optional components [10]. Most 
of them are implemented based on object-oriented paradigms that allow building 
of c1asses of process elements and (limited) inheritance in cases where 
hierarchical refinement is offered. 

Process diversity is not managed at an organizational level by current 
commercially available frameworks, but is delegated to the lowest level of 
application in a project. Before the start of a project, the models are adapted 
following the above-mentioned criteria. Rudimentary guidelines are available; 
however, often the workflow systems are not seen as a self-contained product, but 
require extensive additional consulting to create the right tailoring. 

When we evaluated such systems, users from different projects provided the 
feedback that the workflow systems are fine as they come out of the box, but after 
tailoring and embedding all sorts of legacy in terms of tools, methods or 
templates, they tend to become less flexible and finally end in a fragmented and 
isolated process mess. What may be right for green field development and start
ups that do not want to spend money developing their own software processes is 
not adequate for an organization with already defined processes and a mature tools 
environment involving legacy systems. 

A sma11 example shows this trade-off. To successfully deliver a product with 
heterogeneous architecture and a mixture of legacy components buHt in various 
languages, certain processes must be aligned on the project level. This holds for 
project management, configuration management and requirements management. 
Otherwise, it would, for instance, be impossible to trace customer requirements 
that might affect several components through the project life cycle. On the other 
band, design processes and validation strategies are so elose to the individual 
components' architecture and development paradigms that any standard would fail 
as would all standards for one design or programming methodology that failed in 
the past. To make the puzzle complete, for efficiency reasons, the manager ofthat 
heterogeneous project or product line surely would not like it if within each sma1l 
team the work product templates or tool-based workflows were redefmed. 

Such low-Ievel process change management is exactly the point where current 
workflow systems for unified processes fail. Though these workflow systems offer 
lots of functionality from various application use cases, they do not do a good job 
of integrating process needs on the above-mentioned levels into a hierarchy with 
guided selection. 

With these observations and practical experiences in mind, two years ago we 
started at Alcatel an approach to provide to the users on all levels with a standard 
workflow management framework with the opportunity to integrate different 



www.manaraa.com

350 Ebert, Man and Schelenz 

processes [7, 8]. We call it a framework because it offers process elements that 
can be linked on several hierarchical levels, starting from the life cycle down to 
phase descriptions and fmally ending on the level ofprocedure (Fig. 16.3). 

Many vendors offer platforms for enterprise portals with flexible mechanisms 
to display infonnation from various sources including legacy systems, but these 
systems fail to offer the support for integration and organizational tailoring we 
want to achieve [16]. We therefore decided to build the integration layer ourselves 
based on simple and generally supported Web standards, creating the necessary 
flexibility in a situation where not all requirements of the software engineering 
workflow management weie already known. The resulting architecture is simple 
yet effective (Fig. 16.4). 

CRM 

eR&D 

legacy{ 
R&D 

from service request 
management 

Step 3 

PLC management ond product portal allows plug-in of defect 
trecking workflow. Transparent visibility across legacy dotabases 

and manogement systems is ach ieved. 

(ClearDDTS ) ~ 
Federation of R&D defect trocking tools 

Fig. 16.4. Three-tier architeeture indicating the product in between the front-end business 
processes and the back-end functional (legacy) environments. Example shows service 
request management and its link to R&D defect management 

We distinguish three tiers, in which the top describes the front-end, which is 
typically a business process such as service request management. Such business 
process has interfaces with R&D that used to be achieved predominantly 
manually. Since there was no business case to remove all the legacy R&D tools, 
despite the fact that we could gradually introduce standard suites for new 
products, we needed to build a translation tier between the R&D processes, 
respective tools and the business processes. We call this tier e-R&D since it 
describes the electronic R&D workflows by aggregating R&D processes and work 
product management. e-R&D is governed by the product Iife cycle, thus ensuring 
a stable interface between R&D and external business processes. 

On top of the needs summarized in Sect. 16.1, we realized that within a 
business unit, the similarities of processes would allow a more reuse-oriented 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 351 

selection of processes on top of the corporate product life cycle. Our needs for 
managing process diversity within a business unit were as folIows: 

• Reinforce the concept that process change management must be based on 
process reuse 

• Focus on the essence of state-of-the-art software engineering paradigms and 
process description techniques 

• Ensure maintainability and defined tailoring of workflow according to needs of 
the project: project size, involved components, continuously improving quality 
and efficiency goals which are often are specified contractually 

• Support all types of development projects in the switching and routing sector: 
platform change, new development of a generic product, small customization 
projects (which is the majority of effort spent in this business division) 

• Facilitate reuse of processes and, where applicable, underlying technology and 
tools by providing clear interfaces between the different layers of a process 
description 

• Provide means for scalabiIity, for instance, what starts as a smaIl prototype or 
pilot project may later integrate with a larger product development 

In a fIrst step, we agreed on the factors that define the sets of processes and 
process elements that should be subject to tailorlng and those that should be 
invariant. These two classes can be identified if practical experiences with process 
diversity are balanced with the need to keep control on project and product 
management: 

• Invariant processes that would be unchanged across the various components 
and projects (e.g. project management such as planning and tracking, 
configuration and build management, requirements management, traceabiIity, 
system test, qualification test) 

• Processes and process elements that are tailored according to a specific 
development paradigm (e.g. design process, templates, guidelines, estimation 
rules, process metrics, project quality plan, validation and verification 
techniques, defect prevention actions) 

In the next step, we investigated which criteria would determine selection of a 
specific process. We identified the following criteria that determine the layout of 
processes: 

• The project size in terms of effort (we use three types to avoid too many 
choices) 

• The product type (for instance, whether it is a generic R&D project, or a 
customization or maintenance project or a prototype) 

• Specific component criteria (e.g. design paradigm, programming language, 
development platform, industrialization parameters related to market 
introduction and customer interfaces) 

• The process edition (the process is subject to configuration management, 
especially for big projects that overlap with ongoing improvement activities) 



www.manaraa.com

352 Ebert, Man and Sehelenz 

The tool itself was buHt entirely open to both external business processes and 
legacy R&D processes, strictly following the three-tier architecture described 
above (Figs. 16.2, 16.4). 

Fig. 16.5. HyperJiriks facilitate integration with other tools and processes. This instance 
shows the project dashboard that is automatically set-up and pre-populated upon approved 
project 

Fig. 16.6. The concrete instance of one work product, role, or milestone allows linking 
toward vaulting systems, metrics, reports, etc. This instance shows a milestone with all 
necessary details 

To facilitate deployment across Alcatel, interfaces to corporate databases were 
recently added (Figs. 16.5, 16.6). To support organizational tailoring, the 
organizational structure is included automatically from the corporate reference 
database where this information is maintained. All person-related information is 
also kept up to date through an automatie link into the corporate directory 
services, which are also used as the basis for a common authentication 
mechanism. 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 353 

16.5 Knowledge Management Return on Experience 

In order to define a successful KM program, it is mandatory to choose the right 
KM model. The knowledge management model is linked to the business strategy, 
the knowledge management organization, the knowledge management concept 
and the type ofknowledge (Table 16.1) 

• The productivity model results in sharing knowledge and avoiding redundancy 
by using electronic databases, filled with documents and best practices (explicit 
knowledge). This model fits weH for the implementation of a cost reduction 
business strategy. 

• The quality model concentrates on best practices through sharing of explicit 
process frameworks. Tbis is an ideal model to implement a business strategy 
based on specialization. 

• The creativity model emphasizes the integration and combination of 
knowledge. This model is essentially needed to implement a business strategy 
oriented toward innovation. 

Table 16.1. Choosing a knowledge management model 

Business Knowled~ Knowledge Knowledge K.nowl~e 
strategy management management management JYPe 

model organization concepts 
Cost Productivity Sharing avoid Information Explicit 
reduction redundancy base 
Specializat Quality Best practice Common Explicit 
ion processes 
Innovation Creativity Integration Dynamic Tacit 

and knowledge 
combination 
of knowledge 

According to Alcatel's experience, most KM programs use a combination of 
the above-mentioned KM models, because only 10% of the existing knowledge is 
explicit knowledge, and 90% tacit knowledge. Explicit knowledge is knowledge 
that can be formalized, described and stored in an organized way in "databases, 
allowing sending of targeted information to users according to profiles. Tacit 
knowledge is knowledge accumulated through experience. It is in individuals; it is 
alive and evolving, sometimes even unconsciously. Concretely tbis means that to 
share tacit knowledge we need other mechanisms than electronic databases. Tacit 
knowledge is transferable in working communities through exchange, workshops 
and on-the-job-training. Parts of tacit knowledge can be captured by communities 
of experts and written down in order to share with a larger number of people. 

Another important aspect is the use of appropriate tools to implement the 
chosen KM model (Fig. 16.7). As described in Sect. 16.4, we have selected 



www.manaraa.com

354 Ebert, Man and Schelenz 

several different tools to embed into e-R&D and thus integrate explicit and tacit 
knowledge. 

The tools need also to take into account the dynamic aspect of knowledge. 
Documents, reports and guidelines are easy to share but are quickly outdated. An 
important part of a KM program .consists of setting up and keeping alive 
knowledge flows through communities and processes. 

Knowledge sharing is a new way of working, and therefore new reflexes need 
to be trained. First comes the reflex of looking for existing knowledge before 
starting a new task, and second, the more difficult reflex, to bring one's own 
contributions to enrich the knowledge base in return. 

Data warehousing 
data & text mining 
search engines 
intelligent agents 
profiling 

Knowledge 
Management 

Explicit 
Know~dge 

~ 

Identification of competence 
yellowpages 

INOr1<fIOWS 
tools access 
self-service 

Team 
Management 

Groupware. newsiJrol4>S 
textmining 

Team building 
competency development 

training programs 
INOrking communities 

intelligent agents 
knowledge mapping 

Tacit Knowledge 

Fig.16.7. Choosing the appropriate knowledge management system 

As with any improvement program, successful KM programs are the ones that 
are measured and followed up by the management. Quantitative measures give 
feedback on the number of people, number of documents, number of processes, 
number of ideas, and number of downloads. What remains more difficult are 
qualitative measures like how much value has been created by the process of 
reuse, what new competencies and expertise have been built-up in the organization 
and what is its value. In the conclusions we address our own results on the returns 
observed. 



www.manaraa.com

16 e-R&D: Effeetively Managing and Using R&D Knowledge 355 

16.6 Conclusions 

We eonsider knowledge a erucial resouree that drives Aleatel's future suecess, 
whieh must therefore be managed carefully. Sustained knowledge management is 
aprerequisite to maintaining a eompetitive advantage. Customers today are less 
tolerant than ever of poor-quality software and delayed deliveries. To maintain 
market share, software companies are finding that it is no longer suffieient to have 
the most innovative produet without aeceptable quality or to miss the agreed 
delivery deadlines. 

When looking into the different dimensions of knowledge within R&D, we 
eould distinguish 

• Product knowledge, i.e. knowledge about how products are developed, their 
internal technology and how they relate to network elements, standards, 
protocols, and the like. Feature content, components and interfaces contribute 
to this dimension. Espeeially in telecommunications, which is characterized by 
particularly rapid technological ehange and uncertainty in an environment that 
often integrates technologies of more than five different decades, product 
knowledge is the key suceess factor for a solution supplier. 

• Process knowledge, i.e. knowledge of business processes, workflows, 
responsibilities, supportive teehnologies and interfaces between proeesses. 
Within software engineering - unlike hardware engineering - this aspect of 
KM is often neglected. As a result, elements don't scale up, and performance 
decreases. 

• Project knowledge, i.e. knowledge about the underlying parameters in terms of 
resourees, functional and attribute requirements, work products, budget, timing, 
milestones, deliverables, increments, quality targets and performance 
parameters. Project knowledge is closely linked with product and process 
knowledge as it glues together these two other dimensions and ensures that we 
can fmally deliver a produet. 

KM relates to cost management. Technology can be individually sufficient and 
perfecdy fitting to a dedicated product, while still not positively affecting 
productivity and throughput of the entire organization. We found out for instance, 
that at a given time a state-of-the-art commercial configuration management 
system was introduced for different products in parallel without knowledge from 
each other. 

Dedicated improvement objectives were in each case defmed and used to guide 
the introduction, but the set up, the definition of procedures, roles or delivery 
mechanisms and even the link to standard metrics and standard problem 
management was reinvented in each case. Certainly mere documentation of 
processes is not the target of e-R&D, as this should happen before. 

Synergy as it is intended within most companies cannot grow with such a lack 
of organizationallearning. Nevertheless, we should emphasize the experience that 
synergies are limited to that can be effectively reused and shared. These 
boundaries vary and are typically strongly limited at the product line level (i.e. 



www.manaraa.com

356 Ebert, Man and Sehelenz 

similar produets), and again appear at the eorporate level (e.g. eOInmon eustomer 
front end, eommon PLC, ete.). . 

e-R&D drives produetivity improvemtmt and thus frees resourees for 
innovation. The business ease combines several aspeets: 

Improved quality: We can direetly address the eustomer needs by linking 
dedieated improvement objeetives, sueh as return rate, via CMM to proeess 
ehanges in R&D. Over the past several years, Aleatel proved substantial field 
quality improvements and defeet reduetion. Two-digit improvements are feasible 
if the CMM is applied and elosely followed up in engineering projects. 

Reduced cyc/e time: The effieieney and effectiveness of engineering proeesses 
direetly influenee engineering eycle time. F or instanee earlier defeet deteetion 
means faster and more comprehensive defect eorrection.· Adefeet found during 
development costs less than 10% of effort to correet compared to its detection 
during testing. Utilizing a consistent produet life cycle and process repository is a 
necessary condition for reducing cyele time. These repositories reduce the friction 
of unclear interfaces and responsibilities and cut rework beeause of inconsistent 
assumptions and cut retrieval time for specific documents and work products. One 
of our product lines was able to cut cycle time to almost half after giving emphasis 
CMM and product life cycle (Fig. 16.8). 

97 98 99 00 
Year 

Fig. 16.8. Cycle time reduetion as a consequenee of strong foeus on process improvement 
and produet aIignments 

Improved engineering flexibility: With deereasing size and duration of projects, 
engineers need to be flexible to quickly start working in a new environment. 
Whiletechnical challenges cannot be redueed, the organizational and 
administrative overhead must be managed and limited. Alcatel relies on a 
eonsistent product life cycle across the company to ensure that we ean deliver 
solutions independently of the origin of the components. In a company the size of 
Alcatel, it is key to align workfug environments and the development process in 
order to reduce the learning eurve when starting a project. 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 357 

Reduced overhead: Links to the management system with its process and role 
descriptions and to document templates are embedded in the workflow support 
system, presenting engineers with immediate process support when and where 
they need it. Long process descriptions are replaced by pictorial overviews and 
automated interfaces. For example, clicking on a work product name activates an 
interface to a document management system, and administrative data such as the 
document number are automatically derived from the project context. 

Improved communication: Information is presented in a consistent way for all 
projects, avoiding replication of data and reducing search time. The PLC view of 
the workflow system provides a "dashboard" with immediate visibility on key 
data and responsibilities, contributing to an increased awareness of accountability. 

Increasing alignment 0/ processes and tools: With process asset libraries linked to 
tools, we are able to filter out and evaluate scenarios of how process change 
affects tools, or where tool changes would influence processes. So-called "best
practices" can be communicated with related tools and procedures to increase 
engineering effectiveness and to allow learning from the best in class around 
Alcatel. Interfaces to tools and their user guides can now be embedded in the 
process support environment. 

Faster ramp-up time and skill management: Increasingly, project roles and also 
specific work product templates or process-related roles are standardized and can 
be reused, thus facilitating more consistent skill and human resource management. 
Transferring products to another location, as is today often the case, is facilitated 
by standardized role descriptions and workflows. Ramp-up time is shorter with 
new engineers responsible for such transferred products. 

e-R&D has successfully grown in Alcatel from one product line to gradually 
cover the entire company. Today e-R&D concepts are being introduced in all 
product lines in order to stimulate organizational learning and improvements. 
With this initiative, R&D is fully included in Alcatel's e-business evolution. 

References 

1. Boehm B. (1996) Anchoring the software process. IEEE Software, 13: 73-82 
2. Bolcer GA., Taylor, RN. (1999) Advanced workflow management technologies. 

Software process practice and improvement, 4: 125-171 
3. Chang S.K. (2001) Handbook of software engineering and knowledge engineering. 

World Scientific, Singapore 
4. Cockburn A. (2000) Selecting a project' s methodology. IEEE Software, 17: 64-71 
5. Coleman, D. et al. (1997) Fusion update Part 11: architecture and design in the next 

generation of fusion. Fusion Newsletter Vol. 5.3. Palo Alto, www.hpl.hp.com/fusionl. 
(accessed 22nd August2002) 

6. Deck M. (2001) Managing process diversity: while improving your practices. IEEE 
Software, 18: 21-27 

7. De Man J. (1997) Process improvement through the Intranet. In: Proceedings ITU 
Telecom interactive, Geneva 



www.manaraa.com

358 Ebert, Man and Schelenz 

8. De Man J (2000) A lightweight process-centered project support environment: 
motivation, implementation and experience. In: Proceedings world multiconference on 
systemics, cybernetics and informatics, Orlando, Florida, USA, Vol. 9 

9. Edwards J.S. (2003) Managing software engineers and their knowledge. In: Aurum A., 
Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge, 
Springer, Berlin Heidelberg, New Y ork 

10. Graham I. (1997) The OPEN process specification. Addison-Wesley, Readings, MA 
11. IBM Object Oriented Technology Center (1997) Developing object oriented software. 

Prentice Hall, Englewood Cliffs, UK 
12. Jensen B.D. (1995) A software reliability engineering success story - AT&T's definity 

PBX. In: Proceeding of the IEEE 6th international symposium on software reliability 
engineering, Toulouse, France, pp. 338-343 

13. Kruchten P. (1999) The rational unified process. Addison-Wesley, Reading, MA, USA 
14. Lawton G. (2001) Knowledge management: ready for prime-time? IEEE Computer, 

34: 12-14 
15. Lindvall M., Rus I. (2000) Process diversity in software development. Guest editor's 

introduction to special volume on process diversity, IEEE Software, 17: 14-18 
16. Lindvall M., Rus I. (2003) Knowledge management for software organizations. In: 

Aurum A., Jeffery R., Wohlin C., Handzic M. (Eds.), Managing software engineering 
knowledge, Springer, Berlin Heidelberg New York 

17. McConnell S. (1998) Software project survival guide. Microsoft Press, Redmond, WA 
18. Oliver G.R., D'Ambra J. Toom, C. van (2003) Evaluating an approach to sharing 

software engineering knowledge to facilitate learning. In: Aurum A., Jeffery R., 
Wohlin C., Handzic M. (Eds.), Managing software engineering knowledge, Springer, 
Berlin Heidelberg New York 

19. OMG Object Management Group (2001): Software process engineering metamodel 
specification, http://www.omg.org/docs/ptc/OI-II-01.pdf(accessed 2 Ist April, 2003) 

20. Perry D.E., Siy H.P., Votta L.G. (1998) Parallel changes in large scale software 
development: an observational case study. In: Proceedings of IEEE 20th international. 
conference on software engineering, Kyoto, Japan, pp. 251-260 

21. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. Special 
issue ofIEEE Software, 19: 26-38 

22. Sharon D., Anderson T. (1997) A complete software engineering environment. IEEE 
Software, 14: 123-127 

23. Software Engineering Institute (1995): The capability maturlty model - guidelines for 
improving the software process, Addison Wesley, Boston, MA, USA 

Aothor Biography 

Christof Ebert is Alcatel's Director of Software Coordination and Process 
Improvement in Paris, France. He is a senior member of IEEE and IEEE Software 
associate editor-in-chief. He has published extensivelyon software engineering
related topics and lectures at conferences and university. He holds a Ph.D. with 
honors from the University of Stuttgart. 

Jozef De Man is Manager of Software Coordination and Process Improvement of 
Alcatel, based in Antwerp, Belgium. As a project leader, he is responsible for 



www.manaraa.com

16 e-R&D: Effectively Managing and Using R&D Knowledge 359 

introducing globally and further elaborating of the concepts of the managed 
process diversity as described in. He was the original lead designer of the 
mentioned automated process interface model. He is a Distinguished Member of 
the Alcate1 Technical Academy and professor at the University of Ghent, 
Department of Industria1 Management. 

Fariba Schelenz is Director of Knowledge Management with Alcatel's Network 
Service Division, specializing in large turn-key projects, and has been based in 
Paris, France for five years. She graduated from the Technical University Berlin 
and from INSEAD (France). She has given conference lectures and university 
courses on strategie impact of new technologies, business process improvement, 
and knowledge and project management. 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 

Pankaj Jalote 

Abstract: In any organization, past experience plays a key role in improvement 
and management. How effectively past experience can be leveraged depends on 
how weIl this experience is captured and organized to enable leaming and reuse. 
Systematically recording data from projects, deriving lessons from it, and then 
making the lessons available to other projects can enhance this reuse. In this 
chapter we discuss three key approaches for organizing and using past experience 
and how they are employed in Infosys Technologies, a large software house that 
has been assessed at level 5 of the CMM. First, we discuss the process 
infrastructure that encapsulates the past experience in the form of processes and 
supporting templates and checklists. Second, we discuss the process database that 
contains metrics from past projects. FinaIly, we discuss the body of knowledge 
system that is used to record experience of people in problem solving in a variety 
of areas. We also briefly discuss how this knowledge infrastructure is used for 
managing a project. 

Keywords: Project management, Metrics, Process assets, Knowledge 
infrastructure, Software development 

17.1 Introduction 

An organization is a cohesive entity that has some mission or defmed goals. The 
organization (or the people in it) performs some tasks to achieve these goals. 
Knowledge helps perform these tasks better, faster, and cheaper. The main goal of 
knowledge management is to help reduce cost, reduce cycle time, or improve 
quality through the effective use of knowledge. In an organization that is in the 
business of software development, since the main assets are the intellectual 
capital, knowledge management is particularly important [14]. 

Knowledge can be external, i.e. knowledge produced by people outside the 
organization. This type of knowledge resides in books, journals, magazines, and 
so on. Knowledge can also be internal, i.e. the knowledge that is created primarily 
within the organization, largely through experience and experimentation. 
Generally, the goal of knowledge management within an organization is to 
manage the internal knowledge of the organization (creation of which uses 
external knowledge.) Leveraging experiential knowledge is the focus in the 
experience factory model [1] and is envisaged at the higher levels of the 
Capability Maturity Model (CMM) [15]. In this paper we focus on the 
management of internal knowledge, particularly the knowledge that is useful in 
project management, Le. use of which can make project management more 
effective. 



www.manaraa.com

362 Jalote 

Suppose in a software organization, there exists a "super" project manager who 
consistently executes projects successfuIly, whose estimates are generally on 
target, and who seems to avoid the "frre-fighting" mode most ofthe time. Clearly, 
this project manager has acquired the knowledge to properly perform the various 
tasks associated with project planning and execution through experience. 

Clearly, the organization will want this experience to be available to other 
project managers so they can also execute projects successfully. One way to 
achieve this is to have the super project manager available as a "consultanf' to 
other project managers. This approach is not scalable. Having knowledge reside 
with an individual also has other undesirable side effects. The goal of knowledge 
management (for project management purposes) is to preserve and leverage 
experience of individuals, such as this super project manager, for the benefit of all 
project managers. 

Hence the basic objective of knowledge management is to compile and 
organize internal knowledge such that it resides in systems and is available for use 
by project managers. Consequently, the key elements of knowledge management 
are collecting and organizing the knowledge, making it available through some 
knowledge infrastructure, and then using the knowledge to improve the execution 
of projects. 

The centerpiece of a knowledge infrastructure for project management is the 
processes and related process assets. Processes describe how different tasks are to 
be executed and encapsulate the knowledge the organization has for efficiently 
performing that task. Process assets are documents that aid in the use of processes. 
Besides process and process assets, metrics knowledge from past projects is 
invaluable for new projects - both for planning and project monitoring. Hence, 
another key element in knowledge infrastructure for project execution is the 
process database which keeps the summary of the past projects. Process assets and 
process databases capture the key elements but stillleave some things uncaptured. 
Hence a system to capture the rest of the knowledge that may be of use is needed. 
We discuss these three elements of knowledge infrastructure in the rest of this 
paper. These elements are based on how they are supported at Infosys, a large 
software house that has been assessed at level 5 of the CMM. Further details on 
these are given in [8,10]. 

17.2 Process Specification and Process Assets 

A process-oriented approach for project execution forms the foundation, or the 
backbone of any knowledge management system. Without deflned processes for 
executing different tasks, it is not even possible for a project manager to ask the 
question "How can I use past experience to perform this task better?" This is 
because implicit in this question is the existence of some method that the project 
manager is to use and that he wants to improve! Hence the centerpiece of any 
knowledge management system for project execution is the set of processes 
deflned to perform different tasks in a project. 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 363 

And what is a process? Technically, a process for a task is comprised of a 
sequence of steps that should be followed to execute that task. For an 
organization, however, the processes recommended for use by its engineers and 
project managers are much more than a sequence of steps-they encapsulate what 
the engineers and project managers have learned about successfully executing 
projects. Through the processes, which cover engineering as well as project 
management tasks, the benefits of experience are conferred to all, including a 
newcomer in the organization. These processes help managers and engineers 
emulate past successes and avoid the pitfalls that lead to failures. Hence, processes 
are the main means of packaging and reusing past knowledge. 

For an organization, the standard processes that have to be followed by a 
project have to be properly specified and documented. Different approaches are 
possible to precisely and succinctly specify a process. At Infosys, processes are 
organized in a top-down manner. A process consists of stages or phases, in which 
a stage (phase) consists of activities, and each activity could be further broken 
down into subactivities. The formal process definition specifies the top three 
levels only, and further details are specified as checklists. The definition for each 
stage generally follows the entry, task, verification, and eXit (ETVX) model [12], 
and specifies the following: 

1. Overview: Abrief description of the stage 
2. Participants: All the participants that take part in executing the various 

activities in the stage 
3. Entry criteria: the pre-requisites that must be satisfied before this stage can 

be started 
4. Inputs: All the inputs needed to execute the stage 
5. Activities: List of all activities (sometimes also important sub-activities) that 

are performed in this stage 
6. Exit criteria: The conditions that the outputs of the stage must satisfy in order 

to consider the stage as completed 
7. Outputs: All the outputs ofthe stage 
8. Measurements: All the measurements that must be done during the execution 

ofthe stage 
9. Special verification 
10. References 

With a specification like this for each stage, the dependence between stages is 
explicitly specified in the form of entry criteria. The order in which the stages are 
presented in the process definition is merely for documentation convenience. Note 
that this specification captures past experience not only about the sequence of 
steps that should be used, but also about entry and exit criteria that should be 
satisfied, what measurements to take, what outputs should be produced, and so on. 

At Infosys, various processes are specified. These include processes relating to 
both the engineering tasks of the project, as well as the tasks related to project 
management. For example, for a development project, the recommended life-cycle 
process is specified as the development process. There are other processes for 
different types of projects, for example, the reengineering process and the 



www.manaraa.com

364 Jalote 

maintenance process. The project management process, which covers project 
planning as weIl as project monitoring and closure, is the main management
related process. There are other supporting processes, like the configuration 
management and review process. 

A process specification encapsulates an organization's experience in form of 
"successful recipes". Process descriptions, however, are generally succinct and do 
not give detaHed steps on how to execute different tasks or how to document their 
outputs. In order to facilitate the use of processes on projects, guidelines, 
checklists, and templates usually provide useful support. These together are called 
process assets and are generally present in many high-maturity organizations [9]. 

Fig. 17.1. Proces:s and process assets 

Guidelines usually give rules and procedures for executing some step in the 
process. For example, a step in project planning process is "estimate effort". But 
to actually eX(lcute this step, a project manager will need some guidelines. 
Checklists are usually of two types; activity checklists and review checklists. An 
activity checklist is, as the name suggests, a list of activities that should be done 
while performing a process step. The purpose of review checklists is to draw the 
attention of reviewers to the defects that are likely to be found in an output. 
Templates essentially provide the structure ofthe document in which the output of 
a process or a step can be captured. The relationship between process and these 
assets is shown in Fig. 17.1. 

The main purpose of these process assets, which capture specific aspects of 
organizational knowledge, is to facilitate the use of processes and to save effort. 
For example, creating a document with a template can be so much easier and less 
time consuming than creating it from scratch. These assets also help improve the 
quality by minimizing the number of defects injected by providing proper 
guidelines and :activity checklists, and by catching the injected defects early by 
aiding reviews. It should be clear that to derive full benefits from a process-



www.manaraa.com

17 Knowledge Infrastructure for Project Management 365 

oriented approach for project execution, process assets are extremely important. 
At Infosys, all guidelines, checklists, and templates are available on-line and are 
regularly updated. A sampie of some of the process assets that are used in project 
management is shown in Table 17.1. 

Table 17.1. Process assets for project management 

Guidelines Checklists Templates/Forms 

• Effort and schedule • Requirements • Requirements 
estimation guidelines analysis checklist specification 

• Group review • Unit test and system document 
procedure test plan checklists • Unit test plan 

• Process tailoring • Configuration document 
guidelines management • Acceptance test 

• Defect estimation and checklist plan document 
monitoring guidelines • Status report • Project 

• Guidelines for checklist management plan 
measurements and data • Requirement review • Configuration 
analysis checklist management plan 

• Risk management • Functional design • Metrics analysis 
guidelines review checklist report 

• Guidelines for • Project plan review • Milestone status 
requirement checklist report 
traceability • Code review • Defect prevention 

• Defect prevention checklist for C++ analysis report 
guidelines 

In the context of knowledge management, the guidelines for process tailoring 
deserve special mention. Any defined process will not apply to all situations and 
all projects. Tailoring is the process of adjusting a previously defmed process of 
the organization to obtain a process that is suitable for the particular business or 
technical needs of a project. To allow proper tailoring of previously defined 
processes, tailoring guidelines are provided. These guidelines define under what 
conditions which type of changes should be done to a standard process. In 
essence, they define a set of "permitted deviations" of the standard process to suit 
the needs of a project. These guidelines are themselves based on experience and 
encapsulate the past experience of project managers regarding how to tailor the 
process under different circumstances. Fig. 17.2 illustrates the role of tailoring 
guidelines for a project. More information on the tailoring guidelines at Infosys is 
given in [8, 10]. 

In addition to these generic assets, if a project manager finds that a past project 
was similar in some respects, he may want to use some of its outputs. Reusing 
artifacts can save effort and increase productivity. To promote this goal, process 
assets from projects mayaiso be collected when the projects terminate. The assets 
that are typically collected and made available through a separate system, include 
project management plan, configuration management plan, schedules, standards, 



www.manaraa.com

366 Jalote 

checklists, guidelines, templates, developed tools, training material, and other 
documents that could be used by future projects 

Standard 
Process 

Fig. 17.2. Process taHoring 

--.. 
~ 

Characteristics of 
the project 

" Process 
Tailoring 

.... 

Tailoring 
Guidelines 

17.3 Process Database 

• Process for 
the project 

The process database (PDB) is a repository of process performance data from 
projects, which can be used for project planning, estimation, analysis of 
productivity and quality, and other purpose [7]. The PDB consists of data from 
completed projects and forms the quantitative knowledge about experience in 
project execution. As can be imagined, to populate the PDB, data is collected in 
projects, is analyzed, and then is organized for entry into the PDB [6]. Many high
maturity organizations have some form of process database [9]. Here we discuss 
what the PDB at Infosys contains. We do not discuss how measurements are done 
in projects, and refer the reader to [8, 10] for more information. 

Overall, the data captured in the PDB at Infosys can be classified into the 
following categories: 

• Project characteristics 
• Project schedule 
• Project effort: 
• Size 
• Defects 

Data on project characteristics consists of the project name, the names of the 
project manager and module leaders (so they can be contacted for further 
information or clarifications about the project), the business unit to which the 
project belongs (to permit business-unit-wise analysis), the process being 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 367 

deployed in the project (which allows analysis for different processes to be done 
separately), the application domain, the hardware platform, the languages used, 
the DBMS used, a brief statement ofthe project goals, information about project 
risks, the duration ofthe project, and the team size. 

The data on schedule is primarily the expected start and end dates for the 
project, and the actual start and end dates. The data on project effort includes data 
on the initial estimated effort and the total actual effort, and the distribution of the 
actual effort among different stages, e.g. project initiation, requirements 
management, design, build, unit testing, and other phases. This data is useful in 
estimating the effort or the schedule of a new project. 

The size of the software developed may be in terms of lines of code (LOC), the 
number of simple, medium, or complex programs; or a combination of these. Even 
if function points are not used for estimation, a uniform metrlc for productivity 
may be obtained by representing the final size in function points. The final size in 
function points is usually obtained by converting the measured size of the software 
in LOC to function points, using published conversion tables. Size data is always 
required for comparison purposes and for building models. 

The data on defects includes the number of defects found in different defect 
detection activities, and the number of defects injected in different stages. Hence, 
the number of defects of different origins found in requirements review, design 
review, code review, unit testing, and other phases is recorded. (The detailed data 
on reviews, however, is kept in a separate review database, which is used for 
analyzing the review process and setting suitable guidelines for controlling 
reviews [8].) Defect data can be used for quality planning for a project and 
evaluating the effectiveness of the various quality activities, when performed in 
the project. 

This information in the PDB allows a project manager to obtain data on 
"similar" past projects - information that is most often sought by project 
managers when planning a new project. With this type of information, a project 
manager can search and find infonnation on alt projects that focused on a 
particular business application, used a particular database management system, 
operating system, hardware, language, etc., was of certain size or duration, and so 
on. The screen that can be used by project managers to generate this report is 
shown in Fig. 17.3. 

How is the data for the PDB obtained from projects? As part of the standard 
process for executing projects, project personnel are required to enter data on 
effort, defects, and schedule. There are tools for each of these. For schedule 
management, most projects use Microsoft Project, in which all the tasks and 
milestones are enumerated, along with their dates and the resources of each task. 
For effort collection, an in-house tool called the weekly activity report (WAR) 
system is used. The WAR system for a person shows all the tasks assigned to 
their, and requires the person to enter the hours spent on the different tasks every 
day. To ensure consistency in usage, codes are specified for various activities. 
Every week, each person has to submit their WAR, which is then used for 
analysis. For defect tracking and analysis, a PC-based commercial tool called the 
defect control system was earlier used, but has now been replaced by a Web-based 



www.manaraa.com

368 Jalote 

in-house tool. For defects, predefined categories exist for severity, type, stage of 
injection, stage of detection, and so on. More details about data collection are 
given in [8, 10]. 

1 filter (rltcnd Mlcro~oft Internet lxplorcr ~r::l:R 

_Appiution _.Ilftomg 
!«.tion 

Pn>c ... type 

~~=====-:::J 8M'.lIilld 

Fig.17.3. Screen for generating reports from process database 

I .... 

At the end of the project, the raw data on effort, schedule, defects, and size is 
analyzed and summarized during a postmortem analysis [2, 3,4], whose objective 
is to derive lessons from the project based on what worked and what did not. That 
is, the purpose ofhaving an identified completion analysis activity, rather thanjust 
saying, "the project is done", is clearly not to help this project, but to help future 
projects by leveraging the "lessons learned" in this project. This type of learning 
can be effectively supported by analysis of data from completed projects. At 
Infosys, it is done as part of project closure analysis. After cIosure analysis, the 
results are packaged in a manner such that they can be used by others through the 
PDB. Packaging is an important step in knowledge management and is also a key 
step in the quality improvement paradigm [1]. Full examples of closure analysis 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 369 

reports are given in [8, 10]. The relationship between projects and PDB is shown 
in Fig. 17.4. 

Process 
Database 

~ 

Closure Process 

Analysis Capability 
Baseline 

~ 

~ 

B ... 
~ 

Fig. 17.4. Process database and closure analysis 

The data from the PDB can also be used to understand the capability of the 
process in quantitative terms. The capability of a process is essentially the range of 
expected outcomes that can usually be expected ifthe process is followed. In other 
words, if a project follows a process, the process capability can be used to 
determine the range of possible outcomes that the project can expect. A process 
capability baseline (PCB) is the snapshot of the capability of the process. At 
Infosys, the PCB specifies the capability of the process for parameters like 
delivered quality, productivity, effort distribution, defect injection rate, defect 
removal efficiency, defect distribution, and so forth. 

The PCB is essentially a summary ofknowledge about process capability. This 
knowledge can be used in various ways in project management. For example, 
productivity data can be used to estimate the effort for the project from the 
estimated size, and distribution of effort can be used to estimate the effort for the 
various phases of the project and for making staffmg plans. Similarly, defect 
injection rate can be used to estimate the total number of defects a project is 
expected to have, and the distribution of defects can be used to estimate the defect 
levels for different defect detection activities. The overall defect removal 
efficiency or quality can be used for estimating the number of defects that may be 
expected after the software is delivered and can be used to plan for maintenance. 
The PCB also plays an important role in overall process management within the 
organization. 



www.manaraa.com

370 Jalote 

17.4 Body ofKnowledge 

Though the processes and process assets capture experience related to how 
different tasks should be done, they still leave information that cannot be 
generalized or "processized". For example, this might be specific information 
about how to use a particular tool, how to "get around" some problem in a new 
compiler, how to tune an application. It is hard to put a process assets-like 
framework on such knowledge. To capture this type of unstructured knowledge, 
some other mechanism is needed. At Infosys, another system called the body of 
knowledge (BOK) is used to encapsulate experience. Now this system has been 
enhanced with other knowledge management initiatives into a knowledge shop 
(K-Shop) [13]. 

1 http://19Z.16B.1Z1.14/kmhomelDlspldyOHPage.dSp?ldSp/ddvseorchl/seörchstort.asp Microsoft Internet fxpl " g[~ 

., Go t .... , » 

i Knowledge Shop In1tb)5 
knollJledge I • "'~ 
} lnrn5Ys _M _____ M _____ M____ \'., I 

~ : Teehnology 

Seareh by 0 "ny 0 All keYllord(s) in abo"e Kpath 

I 
(Sep.r.te multiple kevw.tds by .: .nd us ••••• s wild eh.t.".,.) 

Search speeme 0 Content· type< 0 Author I PU I Portal 

Search these eontent·type<: 0 All 

o SOK Entne, 0 Book Review, 0 Co,e Studie, 

o Product 0 Project 0 Reu'able 
ReVIews Snapshols Amf.cts 

Searchlng AU ,shop sltes 

o Event-moteriol 

o Software 
Downlo.ds 

ofAQ, oGlo,,"rie, o Lrteratu", 

o T",nds o Tutori.l, 0 Websne 
revIews 

Teehnology 5holling 1-4 out of 6 Related KPaths [ .. showall .. ) 
• Technology I DbJect Teehnology 
• Applleatlon Domaln I Insurance I Use of teehnology In Insurance 
• Appl;eat;on Domain I Transport.tion I Technology in Transportation 

o New. 

oothers 

• A5/400 
technologles • ... lieneral Applieations I 8usiness Proeesses > 8usin ... Proce .. es • State of technology 

• CR/'I Teehnologies 1-------------------------- ., 

Fig. 17.5: Search screen for the K-shop 

The knowledge in the BOK, which is primarily in the form of articles, is 
organized by different topics. Some of the topics are requirement specification, 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 371 

tools, build, methodologies/techniques, design, testing, quality assurance, 
productivity, and project management. In the BOK system, articles relating to 
"lessons learned" and "best practices" are posted. Tutorials and articles on trends 
are also available. The BOK system is Web-based, with its own keyword or 
author-based search facility. The top-level screen of the K-shop is shown in 
Fig.17.5. 

Any member of the organization can submit an entry for inclusion in the BOK. 
A template for submitting a BOK entry has been provided. Each submission 
undergoes a review, which focuses on usefulness, generality, changes required, 
and so on. and an editorial control is maintained to ensure the quality of the 
entries. Financial incentives are provided for employees to submit to BOK, and 
the department that manages the BOK actively pursues people to submit. To 
further the cause, submission to the BOK is also one of the factors that is 
considered during the yearly performance appraisal. A quarterly target for BOK 
entries is set for the organization. 

In addition to the K-shop, there is also a people knowledge map [13]. This 
system details the skills and expertise of the different people in the organization. 
Using this, a project manager can quickly identify and contact specialists. This is 
referred to as competence management in [14]. Such a system helps speed up 
learning through informal knowledge transfer between people. It also helps the 
organization identify areas where it is lacking the necessary skills and where 
expertise needs to be built. 

17.5 Use ofKnowledge Infrastructure in Projects 

We briefly discuss how these elements of the knowledge infrastructure are used in 
projects. The user is referred to [8, 10] for more details. The main use of this 
knowledge is in project planning and project monitoring. During project planning, 
a number of tasks need to be performed for which some elements of this 
knowledge infrastructure are used. 

For planning the process that should be used in the project, and for performing 
the different tasks in the project, processes and process assets are used extensively. 
All projects use one of the defined standard processes and use the defined 
guidelines for tailoring the process. During the execution of the project, 
guidelines, checklists, and templates are used heavily for most ofthe tasks. During 
reviews, review checklists are used. It is fair to say that for most of the major 
tasks, projects rely heavily on past experience in the form of checklists, process, 
and templates. 

During project planning, onee the process planning is done, some of the key 
tasks are effort and schedule estimation, risk management planning, and quality 
planning. In Infosys, for many of these tasks there are guidelines that specify how 
these tasks are to be done. These guidelines are such that they explicitly make use 
of past data from process database or the PCB. 



www.manaraa.com

372 Jalote 

We can get asense of the usage of these elements from their access figures. 
The overall quality system documentation, which contains all the main documents, 
is accessed about 4,000 times each month. Within this documentation, many ofthe 
templates like the ones for CM plan, unit testing plan, or project management plan 
are accessed about 100 to 200 times each month; the common processes (like the 
CM process, project management process, or development process) are accessed 
about 100 to 200 times each month; various estimation guidelines are accessed 
about 150 times each month; the metrics analysis spreadsheet is accessed about 
iso times per month; a typical programming language standard is accessed about 
100 time a month, and a typical checklist is accessed about 50 to 100 times a 
month. The PCB, which summarizes the data in the PDB and which is used 
heavily for estimation, is accessed about 1,500 times each month. 

The metrics infrastructure is also used for project monitoring. As discussed 
earlier, metrics data on size, effort, schedule, and defects is collected regularly in 
projects. These data are regularly analyzed to evaluate the health of the project. 
These evaluations include actual versus estimated analysis for effort and schedule. 
For some quality activities also where defect predictions are made, similar 
analysis is done. Earlier, these analyses were done through reports that were 
genera ted at milestones. Now an integrated project management (IPM) system has 
been developed that integrates all the tools for collecting different metrics. Based 
on the data, it generates a project health report on demand. Hence, the health of 
the project can be checked at any time. The IPM system also shows the audit and 
review reports. The top-level screen of the IPM system is shown in Fig. 17.6. 

Metrics from the project give up some numbers about the various parameters 
being measured. But interpretation of these numbers require past experience. For 
example, when is the measured attribute, ''too large" or ''too small" to deserve 
management intervention requires past experience? At Infosys, guidelines have 
been provided for evaluating various parameters. For example, thresholds have 
been set based on past experience on how much deviation of actual from planned 
is acceptable [8]. 

Similarly, when using statistical process control for controlling the process, 
controllimits need to be set. Setting ofthese limits require past data on the process 
execution. We refer the reader to [5, 11, 16] for concepts related to statistical 
process control and control charts. At Infosys, analysis of data in the PDB and 
review database is 

used for setting these limits. Further details on this can be found in [8]. 
What is the cost of this entire knowledge infrastructure? At Infosys, most of 

this infrastructure is managed by the software engineering process group (SEPG), 
whose strength is about 0.5% of the engineering staff strength (but the SEPG also 
does other tasks besides managing this infrastructure.) In addition, task forces 
from across the organization are formed for limited periods for special initiatives 
that are needed from time to time. This overhead, clearly, is quite small for an 
organization. However, there is also a small overhead in using these systems, 
entering the data, doing data analysis, and so on. This cost is hard to measure. 
However, we suspect that it is no more than an hour or so per person per week. 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 373 

Regarding the benefits, we have already mentioned the access data earlier. The 
benefit in using this information is also hard to quantify. However, the heavy 
usage seems to suggest that project managers do find it useful. The senior 
management also swear by it - without these systems they feel that the large 
number of projects being executed at Infosys cannot be kept in tight control. 

Fig. 17.6. Integrated project management system 

17.6 Summary 

The main purpose of knowledge infrastructure for project management is to 
leverage past experience of the organization to improve the execution of new 
projects. To achieve this objective, the knowledge infrastructure has to compile 
and organize internal knowledge such that it resides in systems and is available for 
use by project managers. Consequently, the key elements of building knowledge 
infrastructure are collecting and organizing the knowledge, making it available 
through systems, and reusing it to improve the execution of projects. In this 
chapter we discussed three main knowledge management systems that are used at 
Infosys; processes and process assets, process database, and body ofknowledge. 



www.manaraa.com

374 Jalote 

The centerpiece of a knowledge management set up for project management is 
the processes and related process assets. Processes describe how different tasks are 
to be executed and encapsulate the knowledge the organization has for efficiently 
performing that task. Process assets are guidelines, checklists, and templates to 
support the use of the processes. With processes and process assets, past 
experience can be effectively used by a new project as help is available on how to 
execute a task, how to review it, how to document the output, and so on 

Besides process and process assets, metrics knowledge from past projects is 
invaluable for new projects, both for planning and for project monitoring. Hence, 
another key element in knowledge management for project execution is the 
process database, which keeps the summary of the past projects. The process 
database is a repository of process performance data from projects that can be 
used for project planning, estimation, analysis of productivity and quality, and 
other purposes. The required metrics from a project are captured through various 
tools as the project proceeds. The captured data is also used for monitoring a 
project through the integrated project management tool. 

The process assets and the process database capture the key elements but still 
leave some tllings ''uncaptured''. Hence a system to capture the rest of the 
knowledge that may be ofuse is needed. The body ofknowledge system preserves 
such knowledge. It is a Web-based system with its own keyword or author-based 
search facility. The knowledge in BOK is primarily in the form of articles 
describing best practices, lessons learned, "how to", and so on for a range of 
topics. 

In the end, it is worth pointing out something that perhaps is quite obvious; The 
knowledge captured in various systems is dynamic and keeps changing. In the 
software world, the change is even more rapid. Hence, maintaining the knowledge 
and keeping it current by enhancing it, adding more useful knowledge, and 
removing information that is not of use is a task that has to be undertaken within 
the organization. In other words, knowledge management is not free. However, 
the gains from the use of knowledge captured in these systems should pay many 
times more than the cost of setting and maintaining these systems. 

References 

1. Basili V.R., Rombach H.R. (1994) The experience factory. In: Marcianac J,J. (Ed.), 
Encyclopedia of software engineering, John-Wiley and Sons, West Sussex, UK 

2. Birk A.; Dingsoyr T.; Stalhane T. (2002) Postmortem: never leave a project without it, 
IEEE Software, 19: 43 -45 

3. Chikofsky E. J. (1990) Changing your endgame strategy. IEEE Software. 7: 87, 112 
4. Collier B., DeMarco T., Fearey P. A. (1996) Defined process for project postmortem 

review. IEEE Software, 13: 65-72 
5. Florac W.A., Carleton A.D. (1999) Measuring the software process - statistical process 

control for software process improvement. Addison Wesley, SEI Series on software 
engineering, Boston, MA, USA 



www.manaraa.com

17 Knowledge Infrastructure for Project Management 375 

6. Grady R., Caswell D. (1987) Software metries: establishing a company-wide program, 
Prentice Hall, Englewood Cliffs, UK 

7. Humphrey W. (1989): Managing the software process, Addison-Wesley, Harlow, UK 
8. Jalote P. (1999) CMM in practice - processes for executing projects at Infosys, 

Addison-Wesley, SEI Series on software engineering, Boston, MA, USA 
9. Jalote P. (2000) Use ofmetrics in high maturity organizations. In: Proceedings of 12th 

software engineering process group conference, SEPG 2K, Seattle, USA 
10. Jalote P. (2002) Software project management in practice. Addison-Wesley, 

Harlow, UK 
11. Montgomery D.C. (1996) Introduction to statistical quality control. John Wiley and 

Sons, West Sussex, UK 
12. Radice R.A., Roth N.K., O'Hara A.C., Ciarfella jr. W.A.(1985) A programming 

process architecture. IBM systems journal, 24(2), p.79 
13. Ramasubramanian S., Jagadeesan G. (2002) Knowledge management at Infosys. IEEE 

Software, 19: 53-55 
14. Rus 1., Lindvall M. (2002) Knowledge management in software engineering. IEEE 

Software, 19: 26-38 
15. Software Engineering Institute (1995) The capability maturity model - guidelines for 

improving the software process. Addison Wesley, Harlow, UK 
16. Wheeler DJ., Chambers D.S. (1992) Understanding statistical process control. SPS 

press, ISBN: 0945320132, Knoxville, lN, USA 

Author Biography 

Pankaj Jalote is Professor and Head of the Department of Computer Science and 
Engineering, Indian Institute of Technology, Kanpur, India. He was formerly an 
assistant professor in the Department of Computer Science at the University of 
Maryland, College Park, where he also had a joint appointment with the Institute 
of Advanced Computer Studies. He obtained bis B. Tech. from IIT Kanpur and his 
Ph.D. in computer science from University ofIllinois at Urbana-Champaign. From 
1996 to 1998, he was Vice President (quality) at Infosys Technologies, a large 
Bangalore-based company providing software solutions worldwide, where he 
spearheaded Infosys' successful transition from ISO to CMM Level 4. 



www.manaraa.com

Index 

analogical reasoning, 192 
Boolean approach, 186 
business model, 160 
Capability Maturity Model, 8, 256, 340 
case-based reasoning, 181, 271 
case-based systems, 83 
CBR,181 

cycle, 183 
process, 184 

change impacts, 140 
change management, 70, 136, 148 
characterization schema, 209 
codification, 51 

strategy,21 
collaboration, 79 
collaborative learning, 275 
collaborative product commerce, 346 
communication failures, 32 
communities ofknowledge workers, 53 
competence management, 79 
complementary strategy, 22 
computer-supported learning, 272 
configuration management, 80, 165,346 
content management, 161 
CORONET, 119,270 
CORONET-Train,275 
corporate memory, 278 
cost management, 355 
creativity, 11 

model, 353 
critical success factors, 30 
cultural issue, 23 
data mining, 83 
decision support, 236, 242 
defect 

content estimation, 244 
density, 238 
detection, 234 
detection effectiveness, 239 
impact, 238 
overlap,240 
reduction,237 

potential, 238 
defect tracking, 81 
design rationale, 81 
development failures, 29 
DlSER, 281 
documentmanagement,78 
dynamic model, 96 
effort estimation, 34 
E-Learning, 87 

system, 274 
empirical schema, 213 
enabling factors, 69 
e-R&D,340 
estimation and scheduling failures, 32 
experience 

base, 200, 278, 308 
factory, 193,269 
package,200 
repository, 295 

experience package, 108 
expert networks, 80 
explicit knowledge, 77, 102,353 

management, 295 
exploitation, 51 
exploration, 51 
facilitating factors, 96 
factual knowledge, 232 
feedback sessions, 324 
functional requirements, 137 
Goal Question Metric, 320 
GQM, 320, 335 
history of software engineering, 7 
impact analysis, 144 
individual issues, 88 
information, 210 
inspection 

context, 239 
management, 235 
manager, 239 
planning, 233, 236 
process,233 

inspector qualification, 241 



www.manaraa.com

378 Index 

intellectual 
capital, 178 

intellectual property, 84 
KM 

model,353 
knowledge, 139, 178,232,361 

activities, 20 
based systems, 271 
card,279 
cartography,53 
creation techniques, 102 
domains, 280 
engineering methods, 275 
generation, 243 
~tructure,362,371 

management, 1, 15,69,76, 135, 199, 
339,343,362 
community,6 
frameworks, 71 
strategy,21 
system, 345 
tools, active, 52 
tools, passive, 52 

repositories and libraries, 53 
sharing, 75,354 

culture,75 
support, 70 
transfer methods, 275 
work, 11 
workers, II 

knowledge card, 129 
knowledge creating process, 100 
knowledge creation, 96 
knowledge discovery, 83 
knowledge economy, 122 
knowledge network, 126 
knowledge portals, 85 
knowledge sharing, 86, 121 
knowledge sharing model, 122 
knowledge sharing process, 125 
knowledge system, 126 
knowledge transfer, 86, 124 
knowledge workers, 126 
learning 

methods, 275 

learning cycle, 96 
leaming map, 130 
learning organizations, 126 
lessons leamed, 83, 252, 371 
local knowledge, 100 
maintenance knowledge, 283 

process, 284 
maturity levels, 8 
measurement goal, 321 

program, 322 
memory categories, 106 
metrics, 223, 322 

infrastructure, 372 
knowledge, 374 

mitigants, 30 
negative knowledge, 81 
non-functional requirements, 137 
operationallevel, 210, 211 
opportunity costs, 242 
organizational 

knowledge, 17 
support, 325 

organizational context, 96 
organizational issues, 88 
organizationallearning, 124 
organizational memory, 104, 105 
organizational performance, 96, 109, 110 
people solutions, 20 
performance measures, 109 
personalization, 51 

strategies,22 
positive knowledge, 81 
post mortems, 29 
post traceability, 140 
post-traceability, 143 
prediction models, 82 
preliminary schema, 217 
pre-traceability, 140, 142 
problem domain knowledge, 75 
problematic features, 13 
procedure knowledge, 284 
process 

assets, 364 
assurance, 255 
capability baseline, 369 



www.manaraa.com

database, 366 
diversity, 341 
failures, 33 
improvement, 340 
knowledge, 355 
-oriented approach, 362 
planning,371 
product 100p, 301 
quality loop, 301 
solutions, 21 
specification, 364 
tailoring, 365 

product 
assurance, 255 
knowledge, 355 
quality, 302 

100p,301 
profile, 306 

productivity model, 353 
professional expertise, 16 
project 

context, 238 
failure, 30, 32 
knowledge,355 
management, 34, 285, 344, 365 
management tool, 31 
manager, 30 
planning,371 
success, 30, 36 

quality assurance, 163,252 
attributes, 306 
knowledge, 284 
management, 235 
manager, 236, 239 
model, 353 
product, 309 
requirements, 245 

quality improvement paradigm, 193 
Quality Improvement Pamdigm, 9 
rationale, 139, 141 
reading techniques effectiveness, 239 
reinspection, 243 

decision, 243 
reliability, 334 
requirements 

engineering, 136 

evolution, 139 
failures,32 
gathering, 33 

reuse, 192,334 
risk management, 33, 266 
risks,30 
safety,258 
schedule management, 367 
scheduling, 34 
schema 

completeness, 226 
effectiveness, 226 
efficiency, 226 
usability, 227 

Index 379 

sensitivity characterization, 139, 140 
similarity measures, 186 
skills, 14 

management, 79 
software 

development, 74 
process,35 
projects, 29 

engineering, 7, 13,69, 189,343 
metrics, 262 
process, 212 
product requirements engineering, 303 
project risk, 33 
quality,253 

assurance, 251 
reliability, 263 
systems, 162 
testing, 200 

software assurance plan, 257 
software testing, 261 
sources ofknowledge, 75 
strategic decision, 243 
strategic knowledge, 125 
supporting people, 70 
supporting software process, 70 
supporting software product, 70 
supportive culture, 123 
system architecture, 160 
tacit knowledge, 102, 136, 177,241,353 
tacticallevel, 210, 211 
team learning, 329 

working,14 



www.manaraa.com

380 Index 

technical knowledge, 17 
technological solutions, 20 
technology effectiveness, 340 
technology issues, 88 
testing techniqucs, 200 
theoretical schema, 213 
total quality management, 8 
traceability, 81 
trade-off decisions, 255 
trouble reports, 81 
use case, 146 

user interface, 163 
verification and validation, 251 
WBT too1s, 276 
WBT -Master, 276 
Web 

applications, 162 
engineering, 157 
systems, 157, 158 

workflow management, 342, 344 
workflow support system, 349 



www.manaraa.com

• 

00891'9~OOb; ... I( 

he first to know 

with the new online notification service 

SpringerAlert 
You decide how we keep you up to date on new publications: 

• Select a specialist field within a subject area 
• Take your pick from various information formats 
• Choose how often you'd l ike to be informed 

And receive customised information 10 suit your needs 

Register 
noW 

and then you are one dick away 
from a world of computer science information! 

Come and visit Springer's Computer Science 
Online Library 

, Springer 




